
 

 

  

ASSESSING EFFECT OF CROSS-
HYBRIDIZATION ON OLIGONUCLEOTIDE 
MICROARRAYS 
 

Seman Kachalo, Zarema Arbieva and Jie Liang 
Dept of Bioengineering and Core Genomic Facility, University of Illinois at Chicago 

Abstract: We introduce computational method, which allows estimating the input of 
non-specific binding into hybridization signal intensities on the 
oligonucleotide-based Affymetrix GeneChip arrays.  

We consider a simplified linear model of hybridization that should work well for 
microarray experiments with low DNA concentrations during hybridization, 
and use the quadratic programming technique to estimate the parameters of 
this model (binding coefficients). 

We show that binding coefficients estimated based on our model depend on the degree of 
homology between the target and the probe.  Detectable contribution into 
DNA binding starts from matches of 7-8 nucleotides. 

The method suggested here may prove useful for the interpretation of hybridization results 
and for the assessment of true target concentrations in microarray experiments. 
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1. INTRODUCTION 

At the present time, DNA microarray-based comparative expression 
analysis [Liang and Kachalo, 2002; Bertucci et al, 2003; Lockhart et 
al.,1996; Wodicka et al. 1997] and analysis of DNA variation on a genome-
wide scale [Liang and Kachalo, 2002; Chakravarti, 1999; Pollack et al. 1999; 
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Mei et al, 2000] have become an important tool in the variety of research 
areas, including cancer research, pharmacogenomics, populational studies, 
etc. 

Although different in some aspects, these applications have many 
common requirements and utilize fundamental property of nucleic acids to 
re-associate separate strands in solutions in a fashion dependant on salt 
concentration, strand composition and sequence, as well as length and 
degree of homology.  

The starting point for the introduction of the solid support was 
observation that single-stranded DNA binds strongly to nitrocellulose 
membrane in a way that prevents strands from re-association with each 
other, but permits hybridization to complementary strands [Gillespie and 
Spiegelman, 1965].  The process of recognition or hybridization can be 
highly parallel; every sequence in a complex solution mixture can, in 
principle, be interrogated simultaneously.  

Based on these principles, a powerful new experimental technology has 
been developed, which allows fabrication of hundreds of thousands of 
polynucleotides at high spatial resolution on a solid surface, allowing for 
parallel detection and analysis of multiple molecular interactions. 

Affymetrix arrays represent one of the major versions of the microarray 
platform and are based on light-directed synthesis with the use of 
photolithography and solid-phase DNA synthesis. In brief, synthetic linkers 
modified with photochemically removable protecting groups are attached to 
a glass substrate; light directed through a photolithographic mask to specific 
areas on the surface produces localized photodeprotection. The first of a 
series of chemical building blocks, hydroxyl-protected deoxynucleosides, are 
incubated with the surface, and chemical coupling occurs at those sites that 
have been illuminated in the preceding step. Next, light is directed to 
different regions of the substrate by a new mask, and the chemical cycle is 
repeated [McGall and Fidanza, 2001]. This highly efficient strategy allows 
synthesis of the arbitrary polynucleotides at specific locations; given a 
reference sequence a DNA probe array can be designed and fabricated that 
consists of a highly dense collection of complementary probes with virtually 
no constrains on design parameters. The amount of nucleic acid information 
encoded on the array is limited only by physical size of the array and the 
achievable lithographic resolution.  

A nucleic acid sample is being used for the synthesis of cDNA, 
fluorescently tagged throughout entire length of the molecules and 
hybridized to an array. Subsequent washes remove the majority of the non-
specifically bound material. Array scanning involves laser excitation of the 
incorporated fluorophores; emitted fluorescence is then collected by a lens 
and passes through a series of optical filters to a sensitive detector. By 
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scanning with laser beam or translating the array, a quantitative two-
dimensional fluorescent image is obtained. 

Oligonucleotide arrays are designed and synthesized based on sequence 
information alone. With the use of the 200-300 nucleotides of the most 3' 
end of a cDNA sequence, independent 25-mers are selected to serve as 
sensitive, unique sequence-specific detectors. Probes are chosen based on the 
set of empirically derived, composition-dependant design rules [Lockhart et 
al.,1996; Wodicka et al. 1997]. These rules are designed with the intension 
of improving the odds of choosing oligonucleotides with high specificity and 
to substantially diminish cross-hybridization effects.  

The design of the array implies some level of redundancy, including the 
use of multiple probes derived from different region of the same gene and 
the use of mismatch (MM) probes, which are identical to their perfect match 
(PM) partners except for a single base substitution in a central position.  The 
MM probes are thought out to provide a measure of non-specific 
hybridization and to discriminate between "real signal" and that due to non-
specific hybridization. In theory, hybridization of the intended nucleic acid 
molecule produces higher signal from the PM probes than from MM probes, 
resulting in the consistent and recognizable patterns that are unlikely to 
occur by chance. This approach implies that a major component of the signal 
derived from any given probe set will be due to duplexes formed 
predominantly with the involvement of the entire length of the 25-nucleotide 
probe. 

However, a question remains whether or not much shorter stretches of 
nucleotide homologies (or shorter duplexes) may impact total signal 
intensity and substantially reduce the discriminatory power of the designed 
pair PM-MM.  

This study was designed to investigate the contribution of low-
homologous DNA sequences into cross-hybridization. 

2. DATA 

We use the Human portion of Affymetrix Latin Square dataset 
[Affymetrix, 2001], which can be found on Affymetrix corporate website at 
http://www.affymetrix.com/analysis/download_center.affx or on CAMDA 
website at http://www.camda.duke.edu/camda02. This dataset contains 
signal intensities for a total of 409,600 probes on Affymetrix HG-U95A 
microarray chip in 59 experiments. Experiments are divided into three 
groups of twenty, twenty and nineteen experiments. 
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In each experiment fourteen labeled DNA targets with known 
concentrations were spiked into labeled complex target and hybridized to the 
array.  Two of fourteen targets (transcripts corresponding to probe sets 
37777_at and 407_at) have equal concentrations in each experiment; 
therefore, there are only 13 distinct targets of varying concentrations in the 
dataset.  The composition of complex target is not specified, however, it was 
identical within each of the three groups of experiments.  In this study we 
can treat unknown complex targets as three additional targets, each with a 
concentration of one in one group of experiments and zero in two others. 

Oligonucleotide probe sequences and target definitions for HG-U95A 
microarray chip can be found at Affymetrix corporate website.  Complete 
cDNA sequences for the spiked targets can be retrieved from GenBank 
database (http://www.ncbi.nlm.nih.gov). 

3. MODELS 

DNA binding to oligonucleotide probes on microarray is a dynamic 
process [Tibanyenda et al., 1984; Ikuta et al., 1987; Wang et al., 1995; 
Vernier et al., 1996; Persson et al., 1997].  The rate +R  of DNA molecules 
associating with the spot is proportional to the concentration of DNA x  and 
to the number unoccN  of unoccupied oligonucleotides on the microarray spot: 

 

unoccxNkR ++ = . (1) 

The rate −R  of DNA dissociating is proportional to the amount of DNA 
bound to the spot or to the number occN  of occupied oligonucleotides: 

occNkR −− = . (2) 

Here, +k  and −k  are the coefficients of proportionality, that can depend 
on DNA structure, oligonucleotide sequence and many other factors.  The 
total number of oligonucleotides per spot occunocc NNN +=  does not 
change. 

When equilibrium is achieved, the rates of DNA associating and 
dissociating become equal, i.e.: 

unoccocc kxNN = , (3) 

where −+= kkk / , or, after making all substitutions, 
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kx
kxNNocc +

=
1

 (4) 

As the probe signal intensity is proportional to the amount of DNA 
molecules bound to the probe, the same formula can be used for the probe 
signal intensity y : 

kx
kxyy sat

+
=

1
, (5) 

where saty  is the probe intensity in saturated state when all probe 
oligonucleotide molecules are bound to DNA.  The dependency of signal 
intensity on DNA concentration is hyperbolic. However, for 1<<kx  (i.e. for 
low probe signal intensities), it can be approximated by the linear function: 

bxy = , (6) 

where satkyb =  will be called binding coefficient.  The experimental 
dependency of probe signal intensity from DNA concentration is illustrated 
on Figure 1. 

The assumption of linearity allows us to develop a linear binding model 
for simultaneous binding of many different DNA targets on many different 
probes in a series of experiments:  

∑ +=
j

ikjkijik xby ε , (7) 

where 0≥iky  is the signal intensity for the i -th probe in k -th experiment, 
0≥jkx  is molar concentration of the j -th target in k -th experiment, 

0≥ijb  is the binding coefficient for the j -th target and the i -th probe, and 
ikε  - random noise. 

For further comparison, we will also use a random binding model, which 
assumes that the probe signal intensities are random and independent of 
target molar concentrations: 

ikiik yy ε̂+= , (8) 
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where  iy  is the mean signal intensity of the i -th probe in the whole set of 
experiments. 
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Figure 1. The dependency of the probe signal intensity (in device units) from the molar 
concentration of DNA transcript (in pmol).  DNA transcript 684_at; probe [517:489]; first 
group of experiments.   Probe [517:489] is specific to the transcript 684_at. The dependency 
can be approximated by linear function for low DNA concentrations. 

4. EXPERIMENTAL BINDING COEFFICIENTS 

Dropping index i  from (7), for each probe we can write: 

∑ +=
j

kjkjk xby ε . (9) 
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Provided that target concentrations x  and probe signal intensities y  are 
known for the set of experiments, binding coefficients jb  can be found as 
the solutions of the classical quadratic programming problem [Boot, 1964]:  

 
minimize ∑ 2

kε  in (9), 
 
subject to: 0≥jb . (10) 
 
The program for solving the problem (10) was implemented as a 

combination of C++ and Matlab code.  It was used to calculate a complete 
set of binding coefficients for 409,600 probes and 16 targets (thirteen known 
targets and three complex targets).  Obtained binding coefficients were 
substituted in (9) to calculate the minimized error ∑ 2

kε , which was 
compared with the minimized error ∑ 2ˆkε of random binding model (8). 

As seen on Figure 2, minimized error of linear model is smaller than 
minimized error of random model. However, the difference is less than one 
order of magnitude.  This can be explained by high level of noise as well as 
by the nonlinearity of signal from many probes due to high probe signal 
intensity. 

For further study a subset of 304 probes was selected for which we 
expected binding coefficients to be found with best accuracy.  First, from the 
complete set there were a few-hundred probes chosen for which quadratic 
programming problem (10) solution gave the best optimization: 

10/1ˆ/ 22 ≤∑∑ kk εε . 

Next, the probes specific, or having high similarities to the thirteen 
known targets were excluded from the analysis.  Because of high target 
concentrations in the experiments these probes were expected to demonstrate 
nonlinear concentration-intensity dependency. 

The obtained results reveal the existence of a relationship between the 
binding coefficient and the degree of homology of the probe with the target 
nucleotide sequences.  As shown on Figure 3, the correlation between the 
binding coefficient and the length of the longest common substring is over 
60%.  Almost identical relationship is observed when using Smith-
Waterman [Smith and Waterman, 1981] alignment score with various 
parameters instead of common substring length. 
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Figure 2. Sorted error ratios ∑∑ 22 ˆ/ kk εε  calculated for 409,600 probes. 

5. ESTIMATED BINDING COEFFICIENTS 

As suggested by above  results, even modest similarities result in cross-
hybridization.  It is natural to think that DNA binds to the probe not only at 
the site of the best match, but also at the sites of weaker matches.  To model 
this situation, many kinds of binding patterns can be introduced as multiple 
non-overlapping areas of similarity between the probe and target sequences, 
that all together contribute to the binding coefficient: 

ε+=∑
a

aacnb , (11) 

where b  is binding coefficient between any fixed probe and target, an  - 
number of matches of type a  found between these probe and target 
sequences, ac  - contribution of each pattern of type a  into the binding 
coefficient and ε  - error (not to be confused with errors in equations 8 and 
9). 
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Figure 3. Binding coefficients and longest common substring lengths for the 304 top probes 
and transcript 684_at are 61% correlated. 

Once the set of binding patterns is defined, it's easy to calculate the 
number of each pattern occurrence within the sequences of probe and target.  
If the binding coefficients are known for a number of probe-target pairs, the 
contribution of each binding pattern can be found by methods of quadratic 
programming similar to those applied for solving problem (10). 

The simplest definition of binding patterns set can be a set of non-
overlapping substrings of different lengths that are common in the probe and 
target sequences.  Since the length of all probes on HG-U95A microarray is 
25 nucleotides, there are only 25 types of binding patterns in the set.  If the 
binding coefficients are known for a set of DNA sequences and a set of 
probes, equation (11) can now be rewritten as: 

ij
l

lijlij cnb ε+=∑ , (12) 
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where ijb  is binding coefficient binding coefficient for the i -th probe and 
the j -th target, ijln  - number of matches of length l  found between these 
probe and target sequences, lc  - contribution of each match of length l  into 
the binding coefficient and ijε  - random noise.  Optimization problem to 
find match contribution in this case will look like: 

 
minimize ∑ 2

ijε  in (12), 
 
subject to: 0≥lc , (13) 
 
additional condition: ll cc ≥+1 . (14) 
 
We used experimental values of binding coefficients for 304 probes, 

selected above to calculate the contributions of matches of various lengths 
into DNA binding.  For each probe-target pair, a histogram was built for the 
number of non-overlapping common substrings of one to twenty five 
nucleotides in length.  Following that, the optimization problem (13) was 
solved with and without additional conditions (14) using Matlab code.  The 
problem was solved for the complete set of thirteen targets and for each 
target separately, revealing very similar results.  Figure 4 shows the perfect 
match contributions obtained for one of the targets with and without 
additional conditions (14).  Slight disagreement between these two solutions 
for matches longer than 10 nucleotides can be explained by the relative rarity 
of long matches and high level of noise, which therefore cannot be 
compensated statistically. 

As seen from the figure, matches of length eight or greater contribute 
significantly to cross-hybridization.  Though it’s not well seen on the plot, 
contributions to cross-hybridization from matches of length seven are also 
detectable. 

One could expect faster growth of match contribution function with the 
increase of match length.  Slow growth of this function for longer matches is 
due to the fact that probes with high similarities to targets have high signal 
intensities through the experiments, and because of possible non-linearity 
their binding coefficients may be underestimated. 
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Figure 4. Contributions of perfect matches of different length into the binding coefficient, 
calculated for transcript 684_at and the top 304 probes.  Dots are the solution of problem (13) 
with no additional condition; line is the solution of the same problem with additional 
condition (14). 

Calculated match contributions were substituted back into (12) to obtain 
estimated binding coefficients that were afterwards compared with 
experimental binding coefficients obtained in previous section.  Figure 5 
illustrates the results of this comparison.  Method based on the use of 
binding patterns performs better than the method using just best match 
scores.  We expect that this method can be further improved by using more 
diverse set of binding patterns rather than the set of matches of different 
length.  This will require, however, a larger set of experimental data. 
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Figure 5. Estimated binding coefficients for the top 304 probes and transcript 684_at are 71% 
correlated with experimental binding coefficients. 

 

6. DISCUSSION 

Our results demonstrate that cross-hybridization can be a significant 
contribution to the hybridization signal, potentially introducing substantial 
error.  By rough estimation, in the case of randomly uniformly distributed 
nucleotides, for any DNA transcript of 500 nucleotides in length there is 
about 50% chance to have a 7-nucleotide match with any 25-nucleotide 
probe.  This suggests that any gene, which presents in high abundance 
during hybridization, can affect the signal intensity on the half of the probes 
on the microarray.  In seven of nineteen possible cases, 7-nucleotite match 
will cover the central nucleotide of 25-nucleotide probe, and thus, cross-
hybridization affects PM probe and its corresponding MM probe differently.  
The ratio is even worse for longer matches. Therefore, one cannot always be 
sure about accuracy of results obtained using PM/MM methods. 

The main benefit of using linear binding model suggested here is the 
opportunity to eliminate the effect of cross-hybridization.  Once the binding 
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coefficients are determined (either experimentally or computationally), 
finding DNA concentrations in (7) from known the probe signal intensities 
becomes a trivial linear algebra problem that can be effectively solved 
computationally. 

However, for the proper use of linear model the hybridizations should be 
performed at much lower target concentrations than those commonly used 
for hybridization, which may result in higher relative level of noise. 

To adopt a typical microarray experiment with high DNA concentration a 
non-linear model with more than one parameter for each probe-target pair 
can be applied. Its disadvantage in comparison with linear model is that 
calculation of transcript concentrations from signal intensities can be a 
difficult mathematical problem requiring substantially longer computational 
time.  

Nonetheless the use of a linear binding model can still be helpful when 
applied to analyzing microarray data obtained from experiments with high 
target concentrations.  It can help to determine whether a signal corresponds 
to a low expressed gene or it is just a result of cross-hybridization 
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