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ABSTRACT The size and shape of macro-
molecules such as proteins and nucleic acids
play an important role in their functions. Prior
efforts to quantify these properties have been
based on various discretization or tessellation
procedures involving analytical or numerical
computations. In this article, we present an
analytically exact method for computing the
metric properties of macromolecules based on
the alpha shape theory. This method uses the
duality between alpha complex and the
weighted Voronoi decomposition of a mol-
ecule. We describe the intuitive ideas and con-
cepts behind the alpha shape theory and the
algorithm for computing areas and volumes of
macromolecules. We apply our method to com-
pute areas and volumes of a number of protein
systems. We also discuss several difficulties
commonly encountered in molecular shape
computations and outline methods to over-
come these problems. Proteins 33:1–17, 1998.
r 1998 Wiley-Liss, Inc.
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INTRODUCTION

Macromolecules such as proteins and nucleic acids
have complex structures. The specific spatial configu-
rations of molecules are important for protein and
nucleic acid function. The surface area and molecu-
lar volume are geometric quantities that determine
various properties of these complex molecules. They
play a role in protein folding,1 conformational stabil-
ity,2 solubility,3,4 crystal packing,5,6 molecular recog-
nition and docking,7 and enzyme catalysis.8 Re-
cently, energy refinement methods have been
developed which include the surface area9 or ex-

cluded volume10 for calculating solvation energies.
With the advances in X-ray crystallography and
NMR techniques, structures have been determined
for many proteins and nucleic acids in atomic detail.
Current and future structural results provide rich
material for atomic-level molecular modeling and
analysis.

Lee and Richards11 introduced the models of sol-
vent accessible surface (SA) and molecular surface
(MS) for proteins. The molecular volume obtained
from the MS model is also called the solvent excluded
volume.12 In the important special case of a point-
sized solvent, the two surfaces are the same and
referred to as the van der Waals surface (VW) of the
molecule (see Fig. 1). These surface models provide a
means to unambiguously define geometric proper-
ties of molecules and they motivate the development
of algorithms and software for computing such prop-
erties. Computation of the surface area and volume
of molecules has been the focus of research for some
time, and algorithms of both analytical and numeri-
cal nature are available. In general, however, it is
still difficult to rigorously and precisely describe and
manipulate various aspects of the shape of a macro-
molecule.

The field of computational geometry has experi-
enced rapid progress since its establishment in the
late 70s13,14 and some developments have direct
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implications for molecular biology. Among these, the
alpha shape theory15,17 provides a quantitative
method to accurately describe and compute shapes
at multilevels of detail in three-dimensional space. It
uses Delaunay complexes and their filtrations to
describe the topological structure of a molecule. The
mathematical relationship between alpha shapes
and the sphere models of a molecule has been firmly
established.16 With the availability of three-dimen-
sional alpha shape software,17,18,19 it is now possible
to accurately and efficiently compute a variety of
geometric aspects of molecules.

Computational methods to determine the area and
volume based on VW, SA, and MS models can be
broadly divided into two categories: approximation
methods20–29 and analytic methods.10,12,12,30–35 Most
approximation methods involve certain discretiza-
tions, such as polyhedral or triangular decomposi-
tions or the representation of a surface with a large
number of dots. Among these methods, Richards’
VOLUME program21 is widely used and is distrib-
uted in the VADAR package.36 It uses either bisector
planes or planes based on van der Waals radii to divide
the space of the internal atoms into polyhedra.Atoms on
the surface are divided similarly with the help of ficti-
tiously placed solvent atoms. The area and volume of
the molecule are then calculated through these polyhe-
dra. The GEPOL program, distributed as part of the
ARVOLMOL package,37 is one of the two programs
known to us that compute both the MS area and
volume.27,38,39 It fills the solvent inaccessible space be-
tween atoms with spheres, and then triangulates these
spheres. The triangles facing outside are selected and
used in turn to compute area and volume.

Representing atoms by spherical balls provides the
opportunity for analytic treatment of surface area and
volume of molecules. Among the analytic methods, the
ANAREA program distributed in the VADAR package
computes the area of the SA model.32 The MSDOT
program by Connolly, which is distributed as part of
ARVOMOL, is the second program computing the MS
area and volume.30,31,37 Closed-form analytical expres-
sions for area and volume computation were also de-
rived by Gibson and Sheraga;33 they eliminate overlap
of five or more atoms using an observation by Kratky.40

In this article, we compare our results with those
obtained using the programs ANAREA, GEPOL,
MSDOT, and VOLUME.

First, we introduce the basic ideas and concepts
behind the alpha shape theory as a fundamental ap-
proach to address geometric and topological questions
about molecules. We then describe the alpha shape-
based method for computing surface area and volume.
We compare our computational results with results
obtained by other methods. Finally, the appendices
include details of the geometric and topological concepts
and the computational aspects of our method.

THEORY AND ALGORITHMS

A full account of the alpha shape theory and the
resulting algorithms for computing geometric proper-
ties of molecules can be found in computer science-
oriented literature.15–18 This article intuitively de-
scribes the most basic concepts and ideas behind the
alpha shape theory, and provides more details in the
appendix. It also explains the algorithms that com-
pute the area and volume of a molecule based on its
alpha complex.

Voronoi Diagram and Delaunay Complex

Three definitions of surface are widely used for
molecular modeling. In each case, atoms are treated
as intersecting spherical balls.5,11,30 The van der
Waals surface (VW) is the surface of what is covered
by the atoms, each atom represented by a spherical
ball of its van der Waals radius (Fig. 1A). The solvent
accessible surface (SA) is generated by the center of
the solvent (modeled as a rigid sphere) when rolling
about the van der Waals surface of the molecule (Fig.
1B). The molecular surface (MS) is the surface
generated by the front of the same solvent sphere
(Fig. 1C).

In early work on algorithms for surface area
computation, Richards and others applied Voronoi
diagrams to decompose a molecule.21,41,42 The Voro-
noi diagram divides the space into Voronoi regions,
one per atom. A Voronoi region is generated by an
atom, and consists of the part of space closest to this
atom.43 (When atoms with different radii are consid-
ered, the appropriate diagram is the weighted Voro-
noi diagram, also called the power diagram.) The
boundaries of the Voronoi regions neatly divide up
the entire molecule. The part of an atom contained in
a Voronoi region has a simple shape which is always
convex. Intuitively, we can sense that the Voronoi

Fig. 1. Molecular surface
models (A) van der Waals sur-
face (VW), (B) solvent acces-
sible surface (SA), and (C) mo-
lecular surface (MS).
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diagram contains information about nearness among
the atoms, since each Voronoi region is closest to its
generating atom. A variety of applications of Voronoi
diagrams to biology and chemistry have been pub-
lished.44,45

The Delaunay complex is a geometric construct
that can be derived from the Voronoi diagram by the
following direct translation. The center of an atom
ball with a Voronoi region becomes a vertex in the
Delaunay complex. If two Voronoi regions share a
common facet, then the edge connecting the centers
of the two corresponding atom balls is in the com-
plex. If three Voronoi regions share a common edge,
then the triangle spanned by the three ball centers is
in the complex. Finally, if four Voronoi regions share
a common point, then the tetrahedron spanned by
the four ball centers is in the complex. We have thus
accounted for all possible intersection patterns among
Voronoi regions, since in three-dimensional space
there can be no more than four Voronoi regions that
meet. The vertices, edges, triangles, and solid tetra-
hedra together form a special complex, called the
Delaunay complex.48 Recently, protein structures
have been analyzed statistically in terms of Delau-
nay tetrahedra, where each amino acid residue is
represented by a point placed at the Ca position. The
results have been applied to sequence-based protein
fold recognition.49–51

The Voronoi diagram and the Delaunay complex
have very different appearances. For example, the
Voronoi regions of the surface atoms may be un-
bounded and extend to infinity, whereas the whole
Delaunay complex is bounded and lives within the
convex hull of the atom centers. Nevertheless, these
two geometric constructs are mathematically dual to
one another. Both the Voronoi diagram and the
Delaunay complex contain exactly the same combina-
torial information (such as volume overlaps), al-
though this information is represented differently.
Therefore, we can obtain information about the
Voronoi diagram by computing instead the corre-
sponding Delaunay complex, which is easier than
computing the Voronoi diagram. We use the DELCX
program to compute the Delaunay complexes for
molecules.17,52,53 The algorithm used by DELCX has
time-complexity O(n log n) when computing molecules,
implying that the computing time required scales
roughly to n log n, where n is the number of atoms.

Alpha Complexes and Alpha Shapes

The Delaunay complex of a molecule has many
basic building blocks, i.e., vertex, edges, triangles,
and tetrahedra, as described above. These basic
building blocks are called simplices. We need to
organize them rather than randomly pile them up.
There is a natural way to arrange the simplices in a
sequence.17 It is based on a ball growth model and
involves a parameter a that controls the growth of
the balls. Essentially, the atom centers are swelled

into balls of increasing radii as the controlling a
value is increased. When two atom balls are large
enough to touch one another, the edge connecting
their centers appear. Similarly, when three or four
atom balls are grown such that they meet at a
common point, the triangle or tetrahedron spanning
the atom centers appear, respectively. The ‘‘chronol-
ogy’’ (alpha value) at which each of the basic ele-
ments in the Delaunay complex appears is then
marked. In this way for a given value of a, simplices
with this or smaller a value form a sequence (called a
simplicial complex). More and more simplices of the
Delaunay complex enter the sequence as a grows. When
a becomes very large relative to the distances between
atoms, the organized sequence contains all the simplices
of the Delaunay complex. As a result, a parametric
family of complexes and shapes are obtained from the
Delaunay complex, and each reflects the shape accu-
rately at a particular level of resolution.

The molecule with van der Waals atom radii is
represented by the alpha complex when a is set to 0.
This alpha complex retains the Delaunay tetrahe-
dra, triangles, and edges that exactly correspond to
overlapping atoms. Together with the Delaunay com-
plex it contains a wealth of information about the
spatial arrangement of the molecule. The key to
making a connection to the actual molecule is to link
the alpha complex with the Voronoi decomposition of
the molecule, i.e., the restriction of the Voronoi
diagram to the molecule (or, the intersection of the
Voronoi diagram with the molecule). As demon-
strated in Reference 16, the alpha complex reflects or
encodes combinatorial, topological, and metric infor-
mation about the molecule. Particularly, the alpha
complex allows obtaining area and volume informa-
tion directly from the alpha complex without explic-
itly constructing the geometric model of the mol-
ecule. As an application, we will see in this article
and the companion article how the alpha complex
can be translated into a combinatorial expression for
the volume and surface area of a molecule and its
cavities. An analytical method for identification and
measurement of protein pockets has also been devel-
oped using alpha complex and discrete flow,55 which
has been applied to the pocket characterization of
several proteins.56,57

COMPUTING AREA AND VOLUME

The computation of surface area and volume of a
molecule has received much attention in the past.
The problem is difficult because the spherical balls
modeling the van der Waals atoms overlap due to
chemical bonds, van der Waals contacts, and solvent
contacts (when a solvent probe can touch two or more
atoms simultaneously). Were the atoms completely
isolated, we would only need to sum up the area and
volume of each individual ball. An obvious approach
is to use the principle of inclusion-exclusion: when
two atoms overlap, we subtract the overlap, when
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three atoms overlap, we first subtract the pair
overlaps, we then add back the triple overlap, etc.
This continues when there are four, five, or more
atoms intersecting. At a combinatorial level, the
principle of inclusion-exclusion is related to the
Gauss-Bonnet theorem used by Connolly.30 It is still
difficult to accurately keep track of where the over-
laps occur, especially when there are many different
combinatorial situations.58

Direct Inclusion-Exclusion

Once the alpha complex is constructed, it provides
a route to untangling the combinatorial complexity
of atom intersections. This is done by trimming the
full inclusion-exclusion formula until it contains no
redundant terms. An example of area computation
by alpha shape trimmed inclusion-exclusion is shown
in Figure 2. Let b1, b2, b3, b4 be the four disks. To
simplify the notation we write Ai for the area of bi, Aij

for the area of bi > bj, and Aijk for the area of bi > bj >
bk. The total area of the union, b1 < b2 < b3 < b4, is

Atotal 5 (A1 1 A2 1 A3 1 A4)

2 (A12 1 A23 1 A24 1 A34)

1 A234.

We add the area of bi if the corresponding vertex
belongs to the alpha complex, we subtract the area of
bi > bj if the corresponding edge belongs to the alpha
complex, and we add the area of bi > bj > bk if the
corresponding triangle belongs to the alpha complex.
This is an example of what we call the direct
inclusion-exclusion method. Note that without the
guidance of the alpha complex, the inclusion-
exclusion formula may be written as

Atotal 5 (A1 1 A2 1 A3 1 A4)

2 (A12 1 A13 1 A14 1 A23 1 A24 1 A34)

1 (A123 1 A124 1 A134 1 A234)

2 A1234.

This contains six canceling redundant terms: A13 5

A123, A14 5 A124, and A134 5 A1234. Computing these
terms would be wasteful. Such redundancy does not
occur when we use the alpha complex: the part of the
Voronoi regions contained in the respective atom
balls for the redundant terms do not intersect.
Therefore, the corresponding edges and triangles do
not enter the alpha complex. In two dimensions, we
have terms of at most three disk intersections,
corresponding to triangles in the alpha complex.
Similarly, in three dimensions the most complicated
terms are intersections of four spherical balls, and
they correspond to tetrahedra in the alpha complex.

It turns out that for three-dimensional molecules,
intersections of five or more atom balls at a time can
always be reduced to a ‘‘1’’ or ‘‘2’’ signed combination
of intersections of four or fewer balls.16 That overlaps
of more than four balls actually occur for real molecu-
lar data and reductions are applicable is argued in
Petitjean.58 In particular, the union of all balls can be
expressed as a signed combination of intersections,
with a term per vertex, edge, triangle, tetrahedron in
the alpha complex. Each vertex corresponds to a
single ball taken positive, each edge corresponds to
the intersection of two balls taken negative, each
triangle corresponds to the intersection of three balls
taken positive, and each tetrahedron corresponds to
the intersection of four balls taken negative. In other
words, following the combinatorial information of
the alpha complex avoids higher order intersections
altogether. Although the resulting formula is much
smaller than the entire inclusion-exclusion formula,
it expresses the exact volume and surface area of the
molecule.16 A further speed-up can be gained by
using the short inclusion-exclusion formula, which is
described in Appendix B2.

A brief description of the algorithmic implementa-
tion in the VOLBL package can be found in Appendix
B. As illustrated in Figure 1, the combinatorial
structure of the SA and the MS models of a molecule
are the same. Both are represented by the same
alpha complex. Therefore, we can also compute the
area and volume of the MS model using the alpha
complex (see Appendix for more details).

Checking Correctness

The program VOLBL has a built-in mechanism for
checking the correctness of the computations. Using
the checking option, it computes the surface area
and volume of both SA and MS models by the direct
and the short inclusion-exclusion formulas. After
computing area and volume, the two results are
checked to match to the last digit of precision.
Besides checking the overall area and volume,
VOLBL also checks the correctness of atomic SA
contributions, which are again computed in two
different ways and results are compared.

Fig. 2. Representation of the union of the atoms. (A) The
application of the direct inclusion-exclusion formula. The alpha
complex can be used to trim the list of terms from the straight
application of the inclusion-exclusion principle. The resulting area
formula contains only one term per simplex in the alpha complex.
(B) The application of the short inclusion-exclusion formula, where
the explicit computation of 3-degree overlap is avoided. (See text
for details.)
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RESULTS

The protein structures for calculating area and
volume are chosen from the protein databank and
are listed in Table I. The computation based on alpha
complexes involves four steps. The first step assigns
the radii to the atom centers. The radius of an atom
is its van der Waals radius plus the probe radius.
When the radius of the probe is assigned to 0.0 Å by
the utility program PDB2ALF, both the solvent
accessible and molecular surface results will give the
van der Waals area and volume. In these examples,
van der Waals radii are taken from Richards’ param-
eter set in VADAR. All accessible and molecular
surface calculations use a probe radius of 1.2 Å. In
the second step, the program DELCX computes the
(weighted) Delaunay complex of the collection of
atom balls, using the coordinates of the sphere
centers and the radii as assigned by the first step. Its
expected running time is on the order of n log n,
where n is the number of atoms. Implicitly, DELCX
also builds the (weighted) Voronoi diagram that
decomposes the molecular space into non-overlap-
ping convex pieces. The third step constructs the
alpha complexes from the Delaunay complex using
the program MKALF.17 The running time is again on
the order of n log n. The final step uses VOLBL to
compute the metric area and volume, as well as the
atomic contributions thereof. The SA and MS area
and volume are computed simultaneously using one
probe radius. All calculations are performed without
corrections for the cusp condition. VOLBL requires
time proportional to n. The constant of proportional-
ity is relatively high so that the actual running time
of VOLBL sometimes exceeds the time required for
constructing the Delaunay complex and the alpha
complexes, even for large proteins with tens of
thousands of atoms. The actual running time for the
short inclusion-exclusion version of VOLBL is signifi-
cantly less than that for the direction inclusion-
exclusion method. This is mostly due to the smaller
constant of proportionality: only triplets rather than
quadruplets of intersecting balls need to be consid-
ered. On an SGI workstation with an R5000 proces-
sor and 128 Mb memory, the timing for computing
atomic volume and area of myoglobin (5mbn) is: 0.2
sec for PDB2ALF, 12.0 sec for DELCX, 24.3 sec for
MKALF, 22.8 sec for VOLBL, and the overall time
combined is 59.4 sec. This timing is for simultaneous
area and volume (both SA and MS) computation, and
between the two the volume computation is more
time-consuming. In addition, DELCX generates the
weighted Delaunay complex of the molecule, and
MKALF generates a whole family of shapes with
different a values. These can be further exploited for
other calculations, e.g., analytical identification and
measurement of pockets for binding sites and analy-
sis of atomic nearest neighbor environment. Among

those tested, GEPOL can also compute SA and MS
volume. For myoglobin (5mbn), GEPOL takes 280.3
sec for a similar computation on the same machine.
The MSDOT program, as bundled in Quantum Chem-
istry Program Exchange, does not compute volume
(either SA or MS), and a direct comparison of timing
is not possible. MSDOT takes 7.8 sec to compute the
MS and SA surface area of myoglobin.

The computed areas for the proteins are given in
Tables II, III, and IV. For comparison, VW, SA,
and/or MS area are also computed using several
programs distributed in the VADAR and ARVOMOL
packages.36,37 With the exception of VW volume,
comparisons are given with the computations ob-
tained with at least one analytical and one approxi-
mation method. From VADAR, VW volume is com-
puted using Richards’ VOLUME program (the
bisection/radical plane method), and SA area is
computed using Richmond’s analytical ANAREA pro-
gram. From ARVOMOL, VW, SA, and MS area and
volume is computed using Pascual-Ahuir et al.’s

TABLE I. List of Proteins for Which MolecularArea
and VolumeAre Calculated

PDB
name

#
Res Protein name Reference

1eca 137 Hemoglobin (erythrocruorin, aquo
met)

67

1nxb 62 Neurotoxin B 68
1rbc 124 Ribonuclease S mutant met13ala 69
1rbe 124 Ribonuclease S mutant met13phe 69
1rbf 124 Ribonuclease S mutant met13gly 69
1rbg 124 Ribonuclease S mutant met13ile 69
1rbh 124 Ribonuclease S mutant met13leu 69
1rbi 124 Ribonuclease S mutant met13val 69
2act 218 Actinidin 70
2cha 248 Alpha chymotrypsin a 71
2lyz 129 Lysozyme 72
2ptn 230 Trypsin 73
2rns 124 Ribonuclease S 74
2sn3 51 Scorpion neurotoxin 75
3cyt 104 Cytochrome C 76
3rn3 125 Ribonuclease A 77
4pti 58 Trypsin inhibitor 78
5mbn 154 Myoglobin (deoxy) 79
1arb 263 Achromobacter protease I 80
1cau 424 Canavalin 81
1cse 345 Subtilisin carlsberg 82
1ecd 136 Hemoglobin (erythrocruorin,

deoxy)
67

1icm 131 Intestinal fatty acid binding pro-
tein

83

1mbd 153 Myoglobin (deoxy, pH 8.4) 84
1plc 99 Plastocyanin 85
1rro 108 Rat oncomodulin 86
1thm 279 Thermitase 87
1ycc 103 Cytochrome C 88
3sdh 292 Hemoglobin I 89
4gcr 174 Gamma-B crystallin 90
5p21 165 C-*H-Ras p21 protein 91
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GEPOL program. VW and MS area are also com-
puted using Connolly’s analytical MS/MSDOT pro-
gram.37 In the calculations with GEPOL, we used 60
triangles to approximate an atom sphere. For consis-
tency, all calculations use Richards’ van der Waals
radii parameter set available from the VADAR pack-
age36 and a probe radius of 1.2 Å when SA or MS
area/volume are computed.

Table II reports the VW surface area computed
with the alpha shape-based analytical method,
VOLBL, with Connolly’s analytical method, MSDOT,
and with Pascual-Ahuir et al.’s GEPOL method.
Table III reports the SAareas computed with VOLBL,
ANAREA, and GEPOL. Table IV reports the molecu-
lar surface area computed with VOLBL, MSDOT,
and GEPOL. Tables V, VI, and VII compare results of
volume computation using the alpha shape based
VOLBL with results obtained with GEPOL and
Richards’ VOLUME. VOLBL and GEPOL compute
volume in all three models, VW, SA, and MS, while
Richards’s VOLUME as distributed in VADAR only
computes VW volume.

DISCUSSION

We see from Tables II, III, and IV that VW, SA, and
MS area computed from VOLBL are comparable to
the areas computed by other analytical methods
such as ANAREA and MS/MSDOT. On the other
hand, VW volumes computed with VOLBL and VOL-
UME differ significantly, with the latter giving vol-
umes always larger by 20–40% (Table V). VOLUME
is one of the earliest programs developed for molecu-
lar metric computation. This highlights the differ-
ence between the approximation and the analytic
methods. Approximation methods are usually less
accurate, because they do not rigorously deal with
the complicated combinatorial problems of the mo-
lecular structures. To achieve faster speed, approxi-
mations are often made in these methods when
errors are assumed to be tolerable, or when an
accurate treatment is too involved or too costly. On
the other hand, when fine-grained discretization is
used and longer running times are allowed, the
accuracy of approximation methods can converge to
that of analytical methods.

TABLE II. Computed van der Waals Surface (VW)
Area (in Å2) of Selected Proteins UsingAlpha Shape

Method VOLBL; Comparison With MS/MSDOT
and GEPOL27,30,31,37–39

Protein
#

Res VOLBL
MS/

MSDOT GEPOL

1eca 137 13852.0 13842.9 13909.4
1nxb 62 5673.7 5672.1 5683.3
1rbc 124 11996.6 11989.8 12040.3
1rbe 124 12060.9 12042.2 12120.8
1rbf 124 11960.8 11958.3 12025.2
1rbg 124 12054.2 12033.1 12106.8
1rbh 124 12061.2 12061.3 12160.8
1rbi 124 12047.7 12046.1 12102.7
2act 218 21252.3 21260.6 21162.0
2cha 248 22551.2 22521.6 22505.6
2lyz 129 12720.4 12700.7 12704.8
2ptn 230 21433.1 21439.9 21480.5
2rns 124 11853.0 11828.8 11867.7
2sn3 51 6453.6 6449.8 6432.4
3cyt 104 21158.1 21170.3 21125.1
3rn3 125 12332.2 12328.1 12287.9
4pti 58 5939.1 5939.4 5919.6
5mbn 154 16201.3 16192.0 16247.8
1arb 263 24796.8 24773.2 24861.1
1cau 424 37453.0 37452.7 37367.2
1cse 345 31905.9 31889.5 31955.6
1ecd 136 13826.2 13817.3 13862.2
1icm 131 14098.8 14108.9 14116.1
1mbd 153 16238.9 16220.5 16248.3
1plc 99 9726.1 9714.5 9760.0
1rro 108 11143.6 11144.1 11105.9
1thm 279 26174.1 26169.4 26123.8
1ycc 103 11152.2 11142.5 11102.6
3sdh 292 29941.1 29960.0 29981.6
4gcr 174 18900.2 18875.8 18893.9
5p21 165 17636.9 17611.3 17716.0

TABLE III. Computed SolventAccessible (SA)
SurfaceArea (in Å2) of Selected Proteins Using
Alpha Shape Method VOLBL; Comparison With

ANAREAand GEPOL27,32,37–39

Protein
#

Res VOLBL ANAREA GEPOL

1eca 137 7085.2 7132.4 7111.1
1nxb 62 4035.3 4058.8 4027.7
1rbc 124 6679.0 6733.4 6721.7
1rbe 124 6619.4 6651.2 6618.2
1rbf 124 6624.6 6660.0 6661.8
1rbg 124 6619.4 6649.6 6581.7
1rbh 124 6628.7 6666.8 6647.4
1rbi 124 6607.0 6653.5 6573.8
2act 218 9157.4 9192.9 9131.5
2cha 248 10952.8 11073.1 10885.2
2lyz 129 6693.7 6765.6 6678.0
2ptn 230 9420.4 9463.6 9403.4
2rns 124 6635.9 6691.4 6669.7
2sn3 51 4198.6 4234.6 4183.9
3cyt 104 11634.8 11741.4 11633.5
3rn3 125 6857.6 6908.3 6814.9
4pti 58 3974.5 4019.6 3971.9
5mbn 154 8340.0 8433.3 8349.9
1arb 263 9707.9 9706.4 9733.9
1cau 424 20050.9 20171.5 20107.8
1cse 345 12729.4 12777.2 12718.8
1ecd 136 7056.6 7112.6 7089.8
1icm 131 7440.2 7519.5 7439.9
1mbd 153 8384.2 8500.9 8326.1
1plc 99 5056.5 5112.7 5044.8
1rro 108 5973.0 5999.7 5970.8
1thm 279 9879.2 9913.5 9873.9
1ycc 103 6498.8 6599.8 6372.7
3sdh 292 13674.3 13747.1 13695.4
4gcr 174 8918.8 8963.9 8974.2
5p21 165 8590.6 8639.4 8615.7
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Among the analytical methods, the difference in
computed SA area between VOLBL and Richmond’s
ANAREA, as well as the difference in computed VW
and MS area between VOLBL and Connolly’s MS/
MSDOT, are probably due to the (lack of) treatment
of high order atom overlaps and different treatment
of geometric degeneracy. We elaborate on both issues
in the following two sections.

Higher Order Atom Overlap

Some of the available analytical methods ignore
higher order overlaps of atoms. For example, it is
reported that Connolly’s analytical algorithm and
related methods ignore overlaps of four or more
atoms.58 Petitjean 58 investigated this problem in
detail. Using small molecules as examples, he discov-
ered that the relative error can be around 30% for
surface calculation and 5% for volume calculation
when overlaps of four atoms and above are ignored.
He also shows that in practical situations (e.g.,

aromatic compounds), overlaps of up to six atom
balls occur frequently. Applications requiring high
precision of surface area and volume computation
should benefit from the use of VOLBL, which treats
overlaps accurately.

Degeneracy

Afundamental issue in practical geometric comput-
ing is robustness; that is, whether programs crash or
not. Common sources for the lack of robustness are
geometric primitive tests that are ambiguous in
degenerate or near degenerate cases. For example,
degeneracy occurs when three or more points are
collinear, when four or more points are coplanar, or
when five or more points are cospherical. The trouble
starts when a primitive geometric test is applied to
these points. Different outcomes of such a test lead the
process into logically different branches of the program.
An arbitrary decision would typically be acceptable if it
is consistent with earlier ones. However, inconsistent
decisions can lead the program into geometrically impos-
sible states that cannot be resolved.

TABLE IV. Computed Molecular Surface (MS)Area
(in Å2) of Selected Proteins UsingAlpha Shape
Method VOLBL; Comparison With MS/MSDOT

and GEPOL27,30,31,37–39†

Protein
#

Res VOLBL
MS/

MSDOT GEPOL

1eca 137 7002.0 6849.8 5970.7
1nxb 62 3437.1 3402.6 3196.5
1rbc 124 6070.9 5958.6 5337.0
1rbe 124 5921.0 5872.6 5341.5
1rbf 124 6003.5 5939.4 5351.0
1rbg 124 5917.1 5877.0 5380.4
1rbh 124 6017.6 5907.0 5391.6
1rbi 124 5914.9 5811.5 5389.1
2act 218 9135.2 8919.8 7740.7
2cha 248 11086.9 10796.4 9004.0
2lyz 129 6328.7 6248.6 5426.3
2ptn 230 9518.0 9380.5 7798.7
2rns 124 5836.0 5782.7 5375.6
2sn3 51 3572.6 3528.9 3316.3
3cyt 104 10895.4 10797.9 9796.3
3rn3 125 6089.5 6036.1 5601.3
4pti 58 3346.5 3346.0 3123.9
5mbn 154 8212.5 8048.0 6893.1
1arb 263 10009.3 9776.7 8177.7
1cau 424 20306.2 19855.6 16547.0
1cse 345 12649.5 12366.1 10592.0
1ecd 136 6948.5 6820.3 5888.2
1icm 131 7536.9 7390.0 6315.3
1mbd 153 8343.9 8152.8 6850.1
1plc 99 4387.0 4368.2 4114.6
1rro 108 5502.9 5379.5 4764.8
1thm 279 9692.5 9454.7 8228.1
1ycc 103 6060.4 5961.0 5292.8
3sdh 292 14037.1 13765.9 11731.4
4gcr 174 8634.1 8471.6 7381.9
5p21 165 8447.1 8202.3 7050.9
†The numbers for VOLBL reflect area without cusp
correction, see Immersion of Molecular Surface.

TABLE V. Computed van der Waals Surface (VW)
Volume (in Å3) of Selected Proteins UsingAlpha

Shape Method VOLBL; Comparison With VOLUME
and GEPOL21,27,36–39

Protein
#

Res VOLBL VOLUME GEPOL

1eca 137 13402.0 18740.1 13383.1
1nxb 62 5841.0 7522.3 5741.0
1rbc 124 11674.9 15693.2 11763.9
1rbe 124 11757.4 15512.2 11807.0
1rbf 124 11662.8 15679.4 11696.3
1rbg 124 11743.4 15793.4 11886.4
1rbh 124 11743.0 15795.0 11785.2
1rbi 124 11726.8 15763.4 11761.8
2act 218 20930.5 28303.9 21055.6
2cha 248 22431.3 31631.7 22460.5
2lyz 129 12663.4 17228.2 12594.1
2ptn 230 21031.0 29298.8 21305.9
2rns 124 11524.2 15400.9 11575.2
2sn3 51 6256.3 8410.9 6529.1
3cyt 104 20667.6 29345.1 20606.5
3rn3 125 12110.8 16279.2 12196.0
4pti 58 5836.5 7640.8 5830.2
5mbn 154 15816.5 22147.4 15944.2
1arb 263 24384.9 32636.1 24455.2
1cau 424 37337.7 52776.3 37335.9
1cse 345 31410.8 42659.3 31310.6
1ecd 136 13397.8 18768.5 13325.5
1icm 131 13579.7 19289.9 13519.3
1mbd 153 15835.4 22105.8 15764.2
1plc 99 9419.2 12580.7 9331.1
1rro 108 10687.6 14682.4 10769.9
1thm 279 25478.9 34946.0 25567.0
1ycc 103 10903.4 15162.8 10883.9
3sdh 292 29096.4 41242.6 28840.1
4gcr 174 18636.7 25478.9 18826.7
5p21 165 16987.1 23586.6 16998.0
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Here is a typical example in two dimensions. We
consider an algorithm that needs to decide whether a
point is to the right or to the left of a directed line
passing through two other points. When the three
points are collinear, the test is ambiguous, and let us
suppose the outcome of the test is ‘‘left,’’ maybe
because of a slight bias caused by a small numerical
error. When the same three points are encountered
later, the test might assign an inconsistent ‘‘right’’
value, possibly because the points are presented to
the test in a different order. This inconsistency is
likely to ultimately crash the program. In principle,
this problem cannot be fixed with improved numeri-
cal precision, since collinear points will always be
collinear. What is needed is a decision that can be
arbitrary, albeit consistent.

A popular method of battling the problem of robust-
ness is the (actual) perturbation of atom coordinates35,60

and/or atom radii.61 The hope is that a small perturba-
tion will remove all degeneracies in the data. The
drawback of such perturbations is that they do not
always work, and if they do work, they change the input
and, thus, the output. Alternatively, one could write

tests that unambiguously detect and classify degenerate
cases. Such tests would have to rely on exact rather than
floating-point arithmetic. This method leads to a large
number of special cases, which have to be handled
individually in a consistent manner. In the case of
spherical balls in three dimensions, this case analysis is
likely to result in complicated programming require-
ments.

In the computational geometry community, sev-
eral methods have been suggested to cope with
geometric degeneracy.62–64 The method of choice in
our implementation is the symbolic perturbation of
coordinates and radii. This is referred to as SoS (for
‘‘simulation of simplicity’’) and described in detail in
Reference 62. SoS symbolically perturbs coordinates
and radii and systematically treats all special cases
by a consistent reduction to the general case. We
observe that only the construction of the Delaunay
complex and the alpha complexes are prone to un-
stable behavior if presented with inaccurate numeri-

TABLE VI. Computed SolventAccessible
(SA) Volume (in Å3) of Selected Proteins

UsingAlpha Shape Method VOLBL;
Comparison with GEPOL27,37–39

Protein # Res VOLBL GEPOL

1eca 137 24932.8 25396.5
1nxb 62 11344.7 11273.0
1rbc 124 21919.6 21798.0
1rbe 124 21971.2 22040.4
1rbf 124 21839.0 21969.9
1rbg 124 21947.6 21819.7
1rbh 124 21941.3 21793.8
1rbi 124 21863.8 21890.7
2act 218 36890.6 36881.9
2cha 248 41058.5 40777.8
2lyz 129 23344.1 23540.1
2ptn 230 37563.5 37884.0
2rns 124 21667.5 21604.0
2sn3 51 12195.5 12112.7
3cyt 104 38715.6 38657.7
3rn3 125 22579.6 22433.7
4pti 58 11323.0 11067.5
5mbn 154 29316.7 29235.9
1arb 263 42314.7 42185.8
1cau 424 70369.1 70364.5
1cse 345 54619.0 54862.1
1ecd 136 24870.8 25504.8
1icm 131 25826.5 25898.8
1mbd 153 29354.5 29460.4
1plc 99 17391.9 17641.5
1rro 108 20034.6 19906.3
1thm 279 44096.1 43768.0
1ycc 103 20697.2 20240.6
3sdh 292 52726.6 52004.3
4gcr 174 33417.6 33776.8
5p21 165 31329.3 31251.5

TABLE VII. Computed Molecular Surface
(MS) Volume (in Å3) of Selected Proteins

UsingAlpha Shape Method VOLBL;
Comparison With GEPOL27,37–39†

Protein # Res VOLBL GEPOL

1eca 137 16598.5 17728.2
1nxb 62 6881.3 7385.1
1rbc 124 14332.9 15174.7
1rbe 124 14496.0 15356.6
1rbf 124 14325.3 14947.2
1rbg 124 14459.3 15181.6
1rbh 124 14423.7 15282.9
1rbi 124 14421.9 15193.6
2act 218 26071.2 28413.7
2cha 248 28038.0 30283.5
2lyz 129 15614.0 16356.4
2ptn 230 26355.1 28148.5
2rns 124 14223.3 14909.2
2sn3 51 7567.2 7971.6
3cyt 104 25291.6 26771.7
3rn3 125 14864.3 15861.3
4pti 58 6971.8 7388.5
5mbn 154 19537.9 21147.4
1arb 263 30657.3 32746.8
1cau 424 46529.0 49967.3
1cse 345 39581.0 41387.5
1ecd 136 16580.2 17470.8
1icm 131 16965.8 18363.7
1mbd 153 19473.3 20773.0
1plc 99 11758.8 11949.8
1rro 108 13239.1 13932.9
1thm 279 32501.2 33996.8
1ycc 103 13253.8 13994.2
3sdh 292 36287.3 39297.2
4gcr 174 23023.9 24040.1
5p21 165 21286.8 22523.7
†VOLBL computes volume with cusp correction for
intersecting pairs only, see Immersion of Molecular
Surface.
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cal computation. Floating-point operations in VOLBL
are solely used to compute area and volume and not
to derive any decisions impacting the flow of control.
The above problems of robustness and perturbation
thus do not apply to VOLBL.

Immersion of Molecular Surface

The SA and the MS models are defined by the same
solvent sphere rolling about the VW model. They are,
therefore, combinatorially equivalent and repre-
sented by the same alpha complex. Nevertheless, the
area and volume of the two models may differ
significantly. For example, we can measure the area
and volume variation on octanol molecule experi-
ences during a rotation. This variation can differ by
50% between the two models.27 Motivated by these
differences, it has been suggested that the MS mod-
els represent physical/chemical phenomena more
accurately than SA models.65

Unfortunately, the MS model suffers from an
inherent geometric deficiency. Surface smoothness
lacking in the SA model was probably the motivation
for the development of the MS model. However,
when two copies of the solvent sphere overlap in the
process of reaching into a tunnel too narrow to pass
through, they form cusps, which are local violations
of smoothness (Fig. 3). We call these Type I impuri-
ties. Type II impurities can arise when the solvent
sphere rotates about two atom balls. During this
rotation, the solvent sweeps out a torus, and depend-
ing on radii and distances, this torus may intersect
itself. It does so forming a spindle with reversed
surface orientation. We observed that spindles in the
creation of MS models of proteins occur quite fre-
quently, and typically only small fractions of self-
intersecting tori are swept out by the solvent sphere.
We can either clip the molecule surface at places of
self-intersection, or we can leave the surface intact
and consider it an immersion rather than an embed-
ding of an ideal surface. It is difficult to do the
clipping in an algorithmically robust manner, and if
we succeeded the overall smoothness of the molecu-
lar surface would be destroyed. We thus decide to
ignore self-intersections and deal with the immersed
surfaces. Type I impurities create self-intersections
but leave the surface locally smooth. Partial spindles
arising from Type II impurities violate smoothness
by connecting to the rest of the surface along circular
arc cusps. The numbers for MS area computed with
VOLBL reflect the immersed interpretation of the
surface (Table IV). An analysis of various self-
intersections and an alternative smooth invariant
surface can be found in Reference 66.

The meaning of the volume of an immersed molecu-
lar surface needs some explanation. The correspond-
ing ideal surface is orientable and we measure the
volume on the positive side of the immersion, which
is defined as the side where all atom centers lie. We
start with the volume of the SA model and subtract

the volume close to the SA surface swept out by the
rolling solvent sphere. A Type I impurity leads to
double subtraction of the space accessible to the
solvent sphere from two sides. The spindle in a Type
II impurity is interpreted as negative volume be-
cause of the locally reversed surface orientation. In
effect, the volume of the (partial) spindle is added to
the SA volume, which compensates for a fraction of
the double subtraction caused by the begining and
ending positions of the rotating solvent sphere. In
Table VII, the numbers computed with VOLBL
reflect the immersed interpretation of the MS area
and the volume computation as explained.

CONCLUSIONS

This article describes an alpha shape-based algo-
rithm for computing molecular surface area and volume
for both SA and MS models. Its implementation as the
program VOLBL is described in some detail in an
unpublished report,59 (but see Reference 18). It belongs
to the category of analytical methods and is combinato-
rial in nature.13,14 Unlike previous analytical ap-
proaches, all computations are based on the dual topo-
logical structure of the molecule, which guarantees the
combinatorial correctness of the computation. For ex-
ample, it does not neglect cases when more than four
atoms have a common intersection, although area and
volume computations of such high-order intersections
are not actually performed. Efficient computation is
achieved by precisely identifying atoms on the surface
and their topological structure. Area and volume can be
computed using the short inclusion-exclusion formula
whose terms involve at most three intersecting balls at a
time. The computations by DELCX and MKALF employ
a symbolic perturbation62 of the geometric data. As a
consequence, our software does not suffer from a lack of
robustness caused by degenerate data. We applied the
method to several proteins to demonstrate both the
validity and the robustness of the alpha shape-based
method. In the companion article, we describe the
computation of inaccessible cavities in proteins using
the alpha shape method.
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17. Edelsbrunner, H., Mücke, E. Three-dimensional alpha
shapes. ACM Trans. Graphics 13:43–72, 1994.

18. Edelsbrunner, H., Facello, M., Fu, P., Liang, J. Measuring
proteins and voids in proteins. In: ‘‘Proc. 28th Annu.
Hawaii Intl. Conf. System Sciences, Vol. 5. Los Alamitos,
California: IEEE Computer Society Press, 1995:256–264.

19. Varshney, A., Brooks, F., Wright, W. Computing smooth
molecular surfaces. IEEE Comput. Graphics Applications
14:19–25, 1994.

20. Shrake, A., Rupley, J. Environment and exposure to sol-
vent of protein atoms. Lysozyme and insulin. J. Mol. Biol.
79:351–371, 1973.

21. Richards, F. The interpretation of protein structures: Total
volume, group volume distributions and packing density. J.
Mol. Biol. 82:1–14, 1974.

22. Richmond, T., Richards, F.M. Packing of a-helices: Geo-
metrical constraints and contact areas. J. Mol. Biol. 119:
537–555, 1978.

23. Alden, C., Kim, S.-H. Solvent accessible surfaces of nucleic-
acids. J. Mol. Biol. 132:411–434, 1979.

24. Wodak, S., Janin, J. Analytical approximation to the
accessible surface area of proteins. Proc. Natl. Acad. Sci.
USA 77:1736–1740, 1980.

25. Muller, J. Calculation of scattering curves for macromolecules
in solution and comparison with results of methods using
effective atomic scattering factors. J. Appl. Cryst. 16:74–82,
1983.

26. Pavlov, M., Fedorov, B. Improved technique for calculating
x-ray scattering intensity of biopolymers in solution: Evalu-
ation of the form volume, and surface of a particle. Biopoly-
mers 22:1507–1522, 1983.

27. Pascual-Ahuir, J., Silla, E. GEPOL: An improved descrip-
tion of molecular surfaces. I. Building the spherical surface
set. J. Comput. Chem. 11:1047–1060, 1990.

28. Wang, H., Levinthal, C. A vectorized algorithm for calculat-
ing the accessible surface area of macromolecules. J.
Comput. Chem. 12:868–871, 1991.

29. Grand, S.L., Merz, K.M. Jr. Rapid approximation to molecu-
lar surface area via the use of boolean logic and look-up
tables. J. Comput. Chem. 14:349–352, 1993.

30. Connolly, T. Analytical molecular surface calculation. J.
Appl. Cryst. 16:548–558, 1983.

31. Connolly, M. Molecular surface triangulation. J. Appl.
Cryst. 18:499–505, 1985.

32. Richmond, T. Solvent accessible surface area and excluded
volume in proteins: Analytical equations for overlapping
spheres and implications for the hydrophobic effect. J. Mol.
Biol. 178:63–89, 1984.

33. Gibson, K., Scheraga, H. Exact calculation of the volume
and surface area of of fused hard-sphere molecules with
unequal atomic radii. Mol. Phys. 62:1247–1265, 1987.

34. Gibson, K., Scheraga, H. Surface area of the intersection of
three spheres with unequl radii: A simplified analytical
formula. Mol. Phys. 64:641–644, 1988.

35. Perrot, G., Cheng, B., Gilson, K., Palmer, K., Nayeem, A.,
Maigret, B., et al. MSEED: A program for the rapid
analytical determination of accessible surface areas and
their derivatives. J. Comp. Chem. 13:1–11, 1992.

36. Wishart, D.L., Willard, F.R., Sykes, B. University of Al-
berta, Vadar Version 0.9, 1994.

37. Pacios, L. Arvomol. Quantum Chemistry Program Ex-
change 132, 1993.
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APPENDIX A. GEOMETRIC AND
TOPOLOGICAL CONCEPTS

A1. Voronoi Diagram

The Voronoi diagram divides the space into Voro-
noi regions; each region contains one atom. A Voronoi
region consists of the part of space closest to the
generating atom contained within. Thus, for every
point inside a region its distance to the generating
atom is less than (or equal to) its distance to any
other atom in the molecule. See Figure 4 for a
two-dimensional version, where atoms are modeled
as disks.

Exactly how the space is divided up depends on
what kind of distance is used. If every atom has the
same van der Waals radius, we use the Euclidean
distance between the point of interest and the center
of the atom. As a result, the dividing plane for two
equally large atoms is the bisector plane, on which
every point is equidistant to the centers of both
atoms. When we have different van der Waals radii
for different atoms, we use the square of the length of
the tangent line segment to the surface of an atom as
the weighted distance. The dividing plane of two
atoms is called the radical plane, which is in general
different from the bisector plane of the centers,
although parallel to it. Every point on the radical
plane has equally long tangent line segments to both
of the atoms. Figure 5 shows a radical line defined for
two disks and illustrates the weighted distance to
the disks. The decomposition obtained using weighted
distance is called the weighted Voronoi diagram. Its
Voronoi regions have the same properties for atoms
of mixed radii as the (unweighted) Voronoi regions
have for atoms of identical radii. Figure 4 illustrates
the concept by superimposing atoms modeled as
disks and the weighted Voronoi diagram they define.

Note that the Voronoi regions neatly decompose the
molecule into small convex pieces. Furthermore, the
regions themselves fill space without redundant
overlap.

In the general three-dimensional case, two
weighted Voronoi regions either have no common
intersection or they intersect in a planar facet, three
regions either have no common intersection or they
intersect in a common straight edge, and four re-
gions either do not intersect or they intersect at a
common vertex. Five regions do not share any com-
mon points at all. The part of an atom contained in a
weighted Voronoi region is convex since the Voronoi
region is convex and so is the atom ball.

A difficulty encountered by early attempts to apply
Voronoi diagrams directly to molecules is dealing
with the Voronoi regions that extend to infinity.46

Whereas atoms occupy only a finite part of space, the
Voronoi regions of some atoms at the surface of the
molecule are infinitely large. This is a potential
problem if Voronoi regions are used for computations
and several heuristics for dealing with this problem
have been proposed.46,21,41,42 For example, hypotheti-
cal solvent molecules were set up around the mol-
ecule, with the sole purpose of defining positions of
additional radical planes that close off Voronoi re-
gions of atoms. As described in the next section, we
use the dual of the Voronoi diagram as our combina-
torial map to carry out area and volume computa-
tion, based on the atom parts contained or restricted
in the weighted Voronoi regions. Together with the
principle of inclusion-exclusion, this leads to an
analytic method for area and volume computation,
without the help of any heuristic techniques.

Fig. 4. The weighted Voronoi diagram (dashed lines) decom-
poses the molecule into convex pieces.

Fig. 5. The radical line is defined such that the weighted
distance, i.e., the lengths of the tangent line segments to the two
atoms, are equal.
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A2. Delaunay Complex

The problem of triangulating the atom centers
might at first seem unrelated to the construction of
the Voronoi diagram. The solid lines in Figure 6 show
the edges of a complex that covers the convex hull of
the atom centers. To describe the connection between
the Voronoi diagram and a triangulating complex,
we need to first define the convex hull of a set of
points. Suppose we have a finite set of points in
three-dimensional space, R3, for example, the atom
centers of a molecule. If we stretch a plastic wrap
tightly around the points, the shape taken up by the
wrap then gives the boundary of a convex body
referred to as the convex hull of the point set. We
decompose the convex hull into a collection of tetrahe-
dra with points in the set as vertices. To cleanly fill
up the convex hull, the edges of the tetrahedra are
not allowed to cross or intersect the triangles, except
that they may share common vertices. More for-
mally, any two tetrahedra in the decomposition are
either disjoint or they intersect in a common triangle
or a common edge or a common vertex. Such a
decomposition is called a simplicial complex. The
complex triangulates the set of points. In R2, the
tetrahedra are reduced to triangles (Fig. 6). A set of
points can be triangulated in many ways. The com-
plex shown in Figure 6 is a well-known one, called
the Delaunay complex or Delaunay triangulation. It
has many useful geometric properties (see, e.g.,
Reference 47), and it reflects the boundary overlap
among the Voronoi regions. We described in Theory
and Algorithms a rule to obtain the Delaunay com-
plex from the Voronoi diagram. Observe that the rule
guarantees that if an edge belongs to the complex

then its endpoints are vertices in the complex.
Similarly, if a triangle belongs to the complex then so
do its edges, and if a tetrahedron belongs to a
complex then so do its triangles.

The duality between the Delaunay complex and
the Voronoi diagram is reflected in a number of
aspects. In R3, each vertex, edge, triangle, and
tetrahedron in the Delaunay complex corresponds to
a Voronoi region, facet, edge, or vertex in the Voronoi
diagram. Similarly in R2, each vertex, edge, and
triangle in the Delaunay complex corresponds to a
Voronoi region, edge, or vertex in the Voronoi dia-
gram. (See Figure 6 for an illustration of the two-
dimensional case, where the Delaunay complex and
the Voronoi diagram are superimposed.) An impor-
tant consequence of the duality is that algorithms for
Delaunay complexes are meaningful for Voronoi
diagrams and vice versa. In particular, it is easier to
design a robust algorithm for constructing Delaunay
complexes than for constructing Voronoi diagrams.
The main reason is that the Delaunay complex
comprises no new geometric information and all
edges, triangles, and tetrahedra can be stored combi-
natorially as pairs, triplets, and quadruplets of
vertex indices. In contrast, the Voronoi diagram
contains vertices that are not part of the input data.
The Delaunay complex has an added advantage in
that it lives in a bounded space and does not extend
to infinity.

The method we use to compute the Delaunay
complex of a set of spherical balls is based on the
notion of flipping.52,53,17 This is implemented in the
DELCX program. The most common type of flip in R2

changes the diagonal of a convex quadrilateral.

Fig. 6. Dark lines and shaded
triangles display the (weighted)
Delaunay complex of the centers
of the atoms. The dashed lines
display the (weighted) Voronoi
diagram.
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Before the flip the quadrilateral is decomposed into
two triangles sharing a diagonal; after the flip it is
decomposed into the two triangles sharing the other
diagonal. There are two other types of flips. One adds
a point in the middle of a triangle and decomposes
the triangle into three smaller ones, the other re-
moves a vertex common to three triangles and
replaces them by their union, which is again a
triangle. In R3, there are four types of flips. An edge
shared by three tetrahedra can be replaced by the
triangle shared by two tetrahedra occupying the
same part of space. Inversely, a triangle shared by
two tetrahedra can be replaced by the edge shared by
three tetrahedra. A single tetrahedron can be decom-
posed into four by adding a new vertex inside.
Inversely, a vertex shared by four tetrahedra can be
removed replacing the four by their union, which is
again a tetrahedron.

The program DELCX adds one point at a time via
a flip that decomposes the containing tetrahedron
into four. Successive flips are used to transform the
neighborhood of the new point into a decomposition
with Delaunay tetrahedra.52,53 For molecules, this
algorithm has time-complexity O(n log n). This is a
consequence of the spatial distribution of atoms in
molecules, which typically form a dense arrange-
ment of balls. All atoms have bond lengths of roughly
the same length and the distribution is more or less
of uniform density. For such a spatial arrangement,
the number of tetrahedra, triangles, edges, and
vertices in the Delaunay complex is O(n) and the
required time is O(n log n).

A3. Simplicial Complexes

We are interested in the Voronoi decompositions of
the molecule rather than the decomposition of the
entire space. Similarly, we are not just interested in
the Delaunay complex of the molecular convex hull
but rather the part that corresponds to the molecule.
To understand how to obtain information from the
Delaunay complex about the actual molecule, we
first need to describe a few topological concepts,
which can be found in introductory texts on topology
(see, e.g., Reference 54).

Topology creates a unified language and notation by
calling a vertex a 0-simplex, an edge a 1-simplex, a
triangle a 2-simplex, and a solid tetrahedra a 3-simplex.
The integer number indicates the intrinsic dimension.
Examples are shown in Figure 7A. Observe that the
boundary of a simplex consists of other simplices, albeit
their dimensions are lower. These lower-dimensional
simplices are the faces of the original simplex.

Complicated geometric objects can be built from a
collection of simplices. The goal is to construct the
object in an organized fashion. This is achieved by
adhering to the following rules:

(i) for every simplex used, its faces are also part of
the construction, and

(ii) the common intersection of any two simplices is
either empty or a face of both simplices.

Figure 7B and C illustrates these ideas. If the above
two rules are followed, the resulting object is called a
simplicial complex. We have already seen an ex-
ample of such a complex, namely the Delaunay
complex of a molecule. It contains a wealth of
combinatorial information about the molecule.

A4. Alpha Complexes and Alpha Shapes

To explain the idea behind the alpha shape, we first
ignore the differences in van der Waals radii among
atoms and assume all have the same radius. For all the
atoms in this peculiar molecule, we start to grow balls
simultaneously from each atom center by gradually
increasing the uniform radius, a. A ball grows only
inside its own Voronoi region and is clipped when it
reaches the boundary of this region. A simplex is col-
lected at the moment the clipped balls growing from its
vertices have a common boundary intersection.

We have the following scenario. At the beginning
when radius is 0, we only have vertices in our collection,
and we take the atom centers as the first elements to
appear in our sequence of simplices. All vertices appear
simultaneously. Because the balls gradually grow they
will eventually overlap.At the moment when the bound-
aries of two clipped balls overlap, we chronologically
mark the corresponding edge in the Delaunay complex,
and add it at the end of the evolving sequence. When the

Fig. 7. (A) A 0-simplex is a vertex, a 1-simplex is an edge, a
2-simplex is a triangle, and a 3-simplex is a tetrahedron. (B) A
collection of simplices that fit together nicely in three-dimensional
space. (C) Intersection patterns among simplices that are not
allowed in a complex.
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boundaries of three clipped balls grow to overlap, we
mark the corresponding triangle in the Delaunay com-
plex and add it to the sequence. We do the same for the
solid tetrahedra whenever the boundaries of four clipped
balls overlap. When the balls are grown large enough,
all the simplices in the Delaunay complex will have been
put in the sequence. Thus, we have organized all the
simplices into a sequence. In topology, this sequence is
called a filter of the simplicial complex. The filter has an
important property. If we sequentially choose any num-
ber of simplices from the beginning of the sequence, we
obtain a collection of simplices that itself forms a com-
plex. It is a subcomplex of the Delaunay complex. The
sequence of such subcomplexes is called a filtration of
the Delaunay complex.

Note that when two balls grow, their bounding
spheres intersect in a circle that sweeps out the
bisector plane. A piece of this plane is found as a
two-dimensional facet in the Voronoi diagram. Now
we consider atoms of different sizes. We assign the
van der Waals radius of the associated atom as the
initial radius r0 to each ball. We grow or shrink the ball
by changing the a parameter: the actual radius is

ra 5 Îr0
2 1 a2.

For increasing a the ball grows and for decreasing a the
ball shrinks until it vanishes when a2 5 2r0

2. This would
never be the case if we chose a from the set of real
numbers. To avoid this technical difficulty, we choose a2

from the set of real numbers, positive and negative,
which really means we choose a from the set of non-
negative reals or positive multiples of the imaginary
unit, Î21. When a 5 0, we have the actual size of the
molecule. Note that the particular way a ball grows
under this formula dictates that the weighted Voronoi
diagram, and hence the Delaunay complex, stay the
same at all times when a changes value.17 By growing
the balls in this fashion we again obtain a sequence of
the Delaunay simplices, i.e., the filter.

If we increase a from its least possible value, we can
imagine an index moving along the filter from its start.
When we stop at a certain value, all simplices to the left
of the index have shown up and form a simplicial
complex. The corresponding ball diagram at the mo-
ment is characterized by the particular a value, which
controls the ball size. The simplicial complex associated
with an a value is a subcomplex of the Delaunay
complex and is referred to as the alpha complex.15,17 The

alpha shape is the part of space covered by simplices in
the alpha complex. Figure 8 shows the alpha complex of
the two-dimensional molecule in Figures 4 and 6 for a
small, medium, and large value of a. Because of the
filter property, simplices in an alpha complex for a
smaller value of a are present in an alpha complex of
a larger value of a. As a result, the alpha complex for a
smaller value of a is always a subcomplex of one for a
larger value of a, and both are subcomplexes of the
Delaunay complex. Furthermore, the number of pos-
sible alpha complexes for a molecule cannot exceed the
number of simplices in the Delaunay complexes.

The combinatorial equivalence between the alpha
complex and the corresponding Voronoi decomposi-
tion of the union of balls is most obvious from the
definition: each simplex indicates a collection of
clipped balls with a non-empty common intersection.
The topological correspondence between the mol-
ecule and the alpha complex (for a 5 0) can be seen
from Figure 8. Consider, for example, the tiny hole in
the molecule represented by the disk union in Figure
8B. It corresponds to a much larger triangular hole
in the alpha complex. If the atom sizes were a little
larger, such as in C, where that specific hole has
disappeared, the planar triangle would have been
added so as to fill the hole in the alpha complex. As
illustrated, each component of the union of disks
contains a component of the alpha complex, and each
hole of the union of disks is contained in a hole of the
alpha complex. Mathematically, there is a homotopy
equivalence between the molecule and the alpha
complex (for a 5 0).16 One characteristic of combina-
torics is that changes occur in discrete steps, such
that the actual size of the hole has no direct influence
on the nature of the alpha complex. Taking advan-
tage of this topological correspondence, we can locate
all voids inside a protein, regardless of their sizes.
We can also identify atoms facing outside with
precision. Void or inaccessible cavity computations
will be explained in the companion article. The third
correspondence between the molecule and its alpha
complex is the capability to obtain area and volume
information directly from the alpha complex without
explicitly constructing the geometric model of the
molecule. As an application, we see in this article
and the companion article how the simplices in the
alpha complex can be translated into a combinatorial
expressions for the volume and surface area of a
molecule and its cavities.

Fig. 8. (A) The alpha complex for the
small value of alpha consists mostly of verti-
ces, together with four edges and one tri-
angle. (B) The alpha complex for the medium
value of alpha consists of two components,
one just a vertex and the other consisting of
quite a few triangles, edges, and vertices. It
contains the complex in (A) as a subcomplex
(C). The alpha complex for the large value of
alpha is connected and contains the other
alpha complexes as subcomplexes.
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APPENDIX B. COMPUTATIONAL ASPECTS
B1. Direct Inclusion-Exclusion

As to reducing the redundant terms in the direct
inclusion-exclusion formula, a similar but weaker
result has been discovered for the earlier two-
dimensional case.40 Kratky observed that the com-
mon intersection of four or more circular disks can be
reduced to a signed sum of lower order intersections.
Successive application of this idea eventually leads
to a formula where each term is the intersection of at
most three disks. This formula may still contain
redundant terms and will generally be longer than
the formula obtained from the alpha complex. Krat-
ky’s idea has been applied to three dimensions
without proof.33

In this context, it is worth mentioning that the
intersections of up to four atom balls derived from
the alpha complex all have a uniform structure. This
simplifies the necessary analytic computation of
volume and area for such small groups of atoms. To
explain the uniformity, consider a tetrahedron in the
alpha complex whose vertices are the centers of atom
balls b1, b2, b3, and b4. First, the intersection of the
balls is non-empty. Second, the common intersection
of any three of the four balls is non-empty and not
contained in the fourth ball. Third, the common
intersection of any two of the four balls is non-empty
and not contained in the union of the other two balls.
Finally, no ball is contained in the union of the other
three balls. Such a configuration is referred to as an
independent collection of balls. The reductions de-
scribed earlier are possible because collections of five
or more spherical balls in three-dimensional space
cannot be independent and because every non-
independent collection can be reduced to a signed
combination of smaller collections. This also implies
that a formula obtained by following the ideas of
Kratky can still be further reduced until all terms
correspond to independent collections.

B2. Short Inclusion-Exclusion

Although the inclusion-exclusion formula obtained
from the alpha complex contains only independent
terms and is therefore minimal, it is possible to find
even shorter expressions of area and volume if fractional
coefficients are used in the formulas. We can use the
angles at the atom centers relative to its neighbors in
the alpha complex as coefficients for that purpose. All
angles are measured as fractions of circles or spheres
and are thus automatically normalized between 0 and 1.
This is what we refer to as the short inclusion-exclusion
method. It expresses the surface area as a sum of areas
of intersections of at most three balls, each with an angle
coefficient. A similar approach is taken in summing the
volume, except that the total volume of all tetrahedra in
the alpha complex needs to be added to the sum of the
intersections. Tetrahedra volumes are significantly
easier to compute than volumes of the intersections of
four balls, which leads to improved running-time even

in the case of volume. The short inclusion-exclusion
method is important for practical computation.

Rather than describing the short formula in detail we
refer the reader to Edelsbrunner16 and present a small
two-dimensional example. Figure 2B illustrates the
method in two dimensions. In this case, the alpha
complex consists of a single triangle, four edges, and
four vertices. Let f2, f3, f4 be the outside angles of the
triangle. Then the area of the disk union is

Atotal 5 (1 ? A1 1 f2 ? A2 1 f3 ? A3 1 f4 ? A4)

2 11 ? A12 1
1

2
? A23 1

1

2
A24 1

1

2
A342

1 A

where A is the area of the triangle. In general, A is the
total area of all triangles in the alpha complex, or in
three dimensions it is the total volume of all tetrahedra.

B3. Algorithms

In this description, we use the following notation:
k for the alpha complex, s for a simplex in k, i for a
vertex, ij for an edge, ijk for a triangle, and ijkl for a
tetrahedron. The algorithm expressing the direct
inclusion-exclusion method can be written as:

V :5 A :5 0.0;

for each s [ k do

if s is a vertex i then V :5 V 1 vol(bi);

A :5 A 1 area(bi) endif;

if s is an edge ij then V :5 V 2 vol(bi > bj);

A :5 A 2 area (bi > bj) endif;

if s is a triangle ijk then V :5 V

1 vol(bi > bj > bk); A :5 A

1 area(bi > bj > bk) endif;

if s is a tetrahedron ijkl then V :5 V

2 vol(bi > bj > bk > bl); A :5 A

2 area(bi > bj > bk > bl) endif

endfor.

Here, vol() and area() are metric functions for vol-
ume and area computations of the intersection of up
to four balls. As mentioned earlier, all intersections
are of a uniform type; namely, the atom balls in-
volved are independent.

For the short inclusion-exclusion method, we di-
vide our computations into three parts: void compu-
tation, shape computation, and outside-fringe compu-
tation. Voids here are defined in strictly topological
sense; that is, they are cavities buried inside the
molecule that have no open outlets to connect them
to the outside. In void computation, the volume of a
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void is computed by first measuring the volume of
the corresponding void in the alpha complex, then
measuring the volume and area of the atom balls
that reach into this void in the complex. Volume of
the complex void minus the volume covered by the
reaching-in balls gives the volume of the actual void
in the molecule. More details of void computation
can be found in the companion article (see also
Reference 18). Shape computation is straightfor-
ward: it sums the volume over all the tetrahedra
found in the alpha complex.

The outside-fringe is the part of the molecule that
lies outside the alpha complex. It is measured by the
short inclusion-exclusion method, which was illus-
trated by our second example earlier. The algorithm
can be summarized as:

V :5 A :5 0.0;

for each s on the outside boundary of k do

if s is a vertex i then V :5 V 1 fs ? vol(bi);

A :5 A 1 fs ? area(bi) endif;

if s is an edge ij then V :5 V 2 fs ? vol(bi > bj);

A :5 A 2 fs ? area(bi > bj) endif;

if s is a triangle ijk then V :5 V

1 fs ? vol(bi > bj > bk); A :5 A

1 fs ? area(bi > bj > bk) endif

endfor.

For a vertex s, fs is the solid angle at s outside the
alpha complex. For an edge s, fs is the dihedral
angle at s outside k. Finally, for a triangle s, fs is 1 if
both sides of s lie on the outside and 1⁄2 if only one
side lies on the outside of k.

B4. Area and Volume of MS Model

Here, we explain the computation of MS area and
volume in more detail. Each sphere patch of the SA
model corresponds to a somewhat smaller but other-
wise identical sphere patch in the MS model. Each
circular arc where two intersecting atoms meet in
the SA model corresponds to a torus patch in the MS
model. This torus patch is swept out by the solvent
sphere as its center moves along the circular arc.
Each corner point of the SA model where three atom
balls meet corresponds to an inverse sphere patch
that lies on the surface of the solvent sphere, whose
center is the corner point. Figure 9 illustrates the
relationship between the MS and the SA model in
two dimensions, and it indicates how the metric sizes
of the MS patches can be computed from the SA
model (see Reference 18).

The ball radius of an atom in the SA model, rSA, is
the sum of its van der Waals radius rVW and the
radius of the solvent sphere, rs. We shrink the SA
model by excluding all volume that can be reached by

a copy of the solvent sphere with a center on the SA
surface. The effect of this shrinking process is differ-
ent for the sphere patches, the circular arcs, and the
corner points of the SA model. A sphere patch
shrinks to radius rVW towards its center; this gives
the convex sphere patches of the MS model. A
circular arc grows into a torus patch, which is a
saddle-shaped patch. In two dimensions, the torus
patch becomes an arc of a circle outside the MS
model (see Fig. 9). A corner point at the intersection
of three spheres in the SA model grows into a
triangular patch on the solvent sphere centered at
the corner point.

Measuring the MS model requires the computa-
tion of area and volume of various basic geometric
pieces. For example, the formula for computing the
fraction of the torus swept out by a revolving circular
arc bounding the disk sector shown in black in
Figure 9 can be obtained by using the following
formula, which measures the part of the torus on one
side of the (radical) plane through the circular arc:

Area 5 2p ? rs(rd ? u 2 rs ? sin u)

where rd is the radius of the circular arc in the SA
model, which is also the center circle of the torus,
and u is the angle between the plane containing the
circular arc and the line from the edge of the torus to
the center of the corresponding solvent sphere. Note
that the above formula measures the area for a
complete revolution of the arc. In general, we have
partial revolutions and the area is the appropriate
fraction of the complete revolution. The following
formula computes the volume of the same piece of
solid torus swept out by the disk sector.

Volume 5 p ? rs
2 1rd ? u 2

2

3
rs ? sin u2

Formulas for other basic geometric pieces, such as
ball wedges, ball sectors, sphere caps, etc., can be
found in Reference 59.

Fig. 9. Correspondence between the molecular surface (MS)
and the solvent accessible (SA) model of a molecule; rs is the
radius of the solvent probe sphere, rSA and rVW are the SA and VW
radii, respectively.
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