
Analytical Shape Computation of Macromolecules:
II. Inaccessible Cavities in Proteins
Jie Liang,1,2 Herbert Edelsbrunner,2 Ping Fu,1 Pamidighantam V. Sudhakar,1
and Shankar Subramaniam1,3*
1National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
2Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
3Beckman Institute for Advanced Science and Technology, Departments of Biochemistry, Molecular & Integrative
Physiology, and Chemical Engineering, Center for Biophysics and Computational Biology,
University of Illinois at Urbana-Champaign, Urbana, Illinois

ABSTRACT The structures of proteins are
well-packed, yet they contain numerous cavi-
ties which play key roles in accommodating
small molecules, or enabling conformational
changes. From high-resolution structures it is
possible to identify these cavities. We have
developed a precise algorithm based on alpha
shapes for measuring space-filling-based mo-
lecular models (such as van der Waals, solvent
accessible, and molecular surface descrip-
tions). We applied this method for accurate
computation of the surface area and volume of
cavities in several proteins. In addition, all of
the atoms/residues lining the cavities are identi-
fied. We use this method to study the structure
and the stability of proteins, as well as to locate
cavities that could contain structural water mol-
ecules in the proton transport pathway in the
membrane protein bacteriorhodopsin. Proteins
33:18–29, 1998. r 1998 Wiley-Liss, Inc.
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INTRODUCTION

Native protein structures are well-packed and a
large degree of the stabilization comes from packing
interactions. Nevertheless, proteins have cavities,
which either accommodate prosthetic groups or func-
tional water molecules, or serve the function of
allowing conformational flexibility. Extensive muta-
genesis studies on proteins show that the alteration
of cavity shape and size influences both the thermo-
dynamic stability1,2,3 and in some cases the function
of the protein.4 It is therefore important to calculate
accurately the shapes and sizes of cavities in pro-
teins.

Lee and Richards5 used a modified version of their
solvent accessibility area and volume computation
method to calculate cavities in myoglobin and in
other proteins. Using a modified version of the
Shrake and Rupley algorithm, Rashin et al.6 calcu-

lated cavities in a set of proteins. They analyzed
their results to probe the immediate vicinity of
occupied and empty cavities. They concluded that
cavities lined by polar residues accommodate one or
more water molecules and these water molecules
form up to three hydrogen bonds with the amino
acids lining the cavity. They also estimated that the
energetic cost of creating a cavity is about 1kT/10 Å.
More recently, Hubbard et al.7,8 did an exhaustive
analysis of cavities in 121 high-resolution protein
structures. They find that cavities that do not con-
tain ordered water molecules are surrounded by
hydrophobic sidechains of residues in well-defined
secondary structures, while cavities containing one
or more water molecules are surrounded by coil
regions. Experiments using water-sensitive two-
dimensional heteronuclear NMR techniques show
that cavities in proteins could contain disordered
water molecules not apparent in the X-ray structural
data.9 Recently, a method for quantitative measure-
ment of the hydrophilicity of cavities was developed
by Zhang and Hermans,10 along with the free energy
analysis of introducing buried waters in protein
cavities. Using this method, hydrated cavities were
shown to be distinguishable from empty cavities by a
threshold value of the water–protein interaction
energy of 212 kcal/mol.

Cavities also play an important role in protein–
protein interfaces. Interdomain contacts in proteins
are often mediated by structurally well-defined inter-
facial water molecules isolated from bulk solvent. In
addition, allosteric transformations in proteins are
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associated with changes in domain contacts and
concomitantly with sizes and shapes of interfacial
cavities. Furthermore, water-filled cavities play the
role of modulating pKa values of acidic and basic
residues surrounding the cavities. In the absence of
high-resolution structural information capable of
resolving all the water molecules in protein cavities,
it will be extremely useful to develop accurate and
fast computational methods for quantitatively calcu-
lating the shapes and sizes of these cavities.

In this article we present an algorithm for accu-
rately computing the location, shape, and size of
internal cavities in proteins. The algorithm is based
on the notions of alpha shapes and weighted Voronoi
dissections of space-filling-based molecular models,
such as the van der Waals, solvent accessible, and
molecular surface models. The rest of the article
consists of two parts. The first part presents the
alpha shape method and algorithmic details; the
second part discusses applications of this method to
a set of proteins and compares the results of this
study with the results from experiments. The method
is also applied to study the role cavities play in the
stability of the protein ribonuclease S, the conforma-
tional flexibility in the oxygen transport pathway in
myoglobin, and the proton pathway in bacteriorho-
dopsin. Our goal is to highlight the specificity of
these cavities and correlate their presence with
experimental data.

MODELING, COMPUTING, AND
MEASURING INACCESSIBLE CAVITIES

Geometric Models

Space-filling diagrams are widely used geometric
models for macromolecules such as proteins and
nucleic acids. They model a molecule as the union of
many fused spherical balls in three-dimensional
space. Each ball represents an atom by adopting the
spatial location and an appropriate van der Waals
radius of the atom. The van der Waals or VW model
is the union of these spherical balls. Two related but
different models are often used to describe the
interaction of the molecule with a solvent. The
solvent is treated as a sphere of appropriate radius
and is rolled around the van der Waals surface of the
protein. The center of the solvent sphere sweeps out
the surface of the solvent accessible or SA model,
while the front of the solvent sphere defines the
molecular surface or MS model (see References
5,11,12).

Recently, a combinatorial model of a molecule in
terms of an associated geometric construct called
dual complex has been proposed. It is based on the
weighted Voronoi diagram, the Delaunay complex,
and the theory of alpha shapes that have been
developed in the computational geometry commu-
nity.13 For the VW model of the molecule, the Voronoi
diagram of the atom balls divides the space into
Voronoi regions, one per atom. A Voronoi region is

generated by an atom, and consists of the part of
space closest to this atom.14 Adjacent Voronoi regions
are separated by the radical plane of their balls.

The Delaunay complex is a geometric construct
that can be derived from the Voronoi diagram by the
following direct translation. The center of an atom
ball with a Voronoi region becomes a vertex in the
Delaunay complex. If two Voronoi regions share a
common facet, then the edge connecting the centers
of the two corresponding atom balls is in the com-
plex. If three Voronoi regions share a common edge,
then the triangle spanned by the three ball centers is
in the complex. Finally, if four Voronoi regions share
a common point, then the tetrahedron spanned by
the four ball centers is in the complex. We have thus
accounted for all possible intersection patterns among
Voronoi regions, since in three-dimensional space
there can be no more than four Voronoi regions that
meet. The vertexes, edges, triangles, and tetrahedra
are the four basic types of elements, called simplices.

The Voronoi regions decompose the VW molecule
into convex cells that are either disjoint or overlap
along common boundary pieces. Each convex cell
contains one atom. The dual complex (or the 0-alpha
complex) consists of the four different types of sim-
plices described above. The vertices are the centers
of the atom balls. We add an edge connecting two
atom centers to the dual complex if their two convex
cells overlap along a common face. Similarly, we add
a triangle spanned by three centers if their convex
cells share a common edge. Finally, we add a tetrahe-
dron spanned by four centers if their convex cells
share a common point. (See Reference 15 for a
complete and rigorous treatment of dual complexes
and to the companion paper16 for an intuitive descrip-
tion concerning biology applications.)

Most importantly, the dual complex faithfully rep-
resents geometric and topological properties of the
molecule as represented by the VW model. Since the
SA model is also a union of balls, we can repeat the
same construction after incrementing the radii of all
atoms by the radius of the solvent ball, and obtain a
dual complex representing the properties of this
enlarged model.

Representing Inaccessible Cavities

We consider the SA surface area model of a mol-
ecule. The complement space is the part of three-
dimensional space not covered by any atom ball in
that model. It may consist of several components,
and each component except the infinitely large one,
namely the ‘‘outside,’’ is an inaccessible cavity, also
referred to as a void. Since a void is disconnected
from the outside component, solvent trapped within
cannot escape to the outside or infinity if there is no
dynamic structural fluctuation of the molecule. A
proven mathematical fact is that for every void of the
SA model of the molecule, there is a unique corre-
sponding void in the dual complex, and the SA
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molecular void is contained within the complex
void.15 Therefore, we first identify and compute the
voids in the dual complex, and then (conceptually)
map them into voids in the molecules.

A void in the dual complex is triangulated by a set
of Delaunay tetrahedra and can therefore be repre-
sented by them. These tetrahedra do not belong to
the dual complex. The surface of the void can be
represented by a subset of triangles from the triangu-
lar faces of these tetrahedra. Multiple sets of se-
lected Delaunay tetrahedra can be used to represent
the whole collection of voids in a molecule, with each
set of tetrahedra corresponding to one void. A union-
find data structure is used to implement the set
system. Our algorithm identifies all Delaunay tetra-
hedra that do not belong to the dual complex, and
collects them in the union-find system. Every trian-
gular interface between two such tetrahedra will
then trigger a merge operation so the two tetrahedra
are labeled as members of the same void in the dual
complex. More details of the union-find system and
the algorithm are described in the Appendix.

Computing Volume and Area of Molecular
Void

The volume and area of the molecular void can be
computed from the corresponding void in the dual
complex. The same short inclusion-exclusion for-
mula described in the companion article is applied.
Essentially, we first compute the volume of the voids
in the dual complex, which is the sum of the indi-
vidual tetrahedron volume. We then subtract the
volume of a sector of the atom ball (which is the part
of the atom contained within a corner of the tetrahe-
dron), since this atom reaches into the void tetrahe-
dron. Because the reached-in portions of atom balls
have two overlaps, we add back corresponding wedges
of the intersections of two balls (lenses) contained
within the tetrahedron. For three overlaps, we sub-
tract halves of intersections of three balls. We use a
similar strategy to compute the area of the molecular
void.

The volume and area computations are performed
by the software module VOLBL, which is part of the
standard distribution of the alpha shapes software.
The entire computation is analytical, and numerical
errors are introduced only through imprecise floating-
point arithmetic and mathematical function evalua-
tion, such as the square-root and the inverse of the
cosine. A recent version of VOLBL extends the
volume and area computation to the MS model,
albeit in some circumstances the model is ambiguous
and it is not entirely clear what its volume and area
should mean.

We conclude this section by mentioning that our
software is robust and complete, i.e., no inaccessible
cavities are missed no matter how small. This is in
contrast to other available software, which typically
have difficulties with high degree of overlap, with

surface arcs that form complete circles, etc.17 Three-
dimensional pictures of cavities bounded by spheri-
cal patches can be generated by software based on
the structure of alpha complexes.18

RESULTS AND DISCUSSION

We first compare the number and size of cavities
for a set of proteins investigated previously.6 We then
compute cavities in three other proteins where the
presence of solvent and possible roles of cavities in
protein function are exemplified: myoglobin, where
xenon binds in its hydrophobic cavities; ribonuclease
(native and modified proteins), where isolated cavi-
ties and protein packing changes when proteins are
modified; and bacteriorhodopsin, where sites for
structural water molecules may play important roles
in proton pumping. All structures are taken from the
Brookhaven Protein Data Bank,19 and all solvent
water molecules are explicitly removed. Heteroa-
toms are included: the heme group in myoglobin and
retinal in bacteriorhodopsin. A probe of radius 1.2 Å
for water is used in our calculations, except for
bacteriorhodopsin, where a radius of 1.4 Å is used.

Inaccessible Cavities and Comparison With
Previous Results

A list of proteins (the set computed by Rashin et
al.6), together with the number of cavities, total
cavity SA area/volume, and total cavity MS area/
volume are given in (Table I). Rashin et al. used an
approximate algorithm to compute cavities. The
overall results in computed SA area of the two
methods are comparable. However, the MS volumes
differ significantly. We note that a Monte Carlo-
based point-sampling method was used by Rashin et
al. to estimate the MS volume. Pronounced differ-
ences are observed for 1eca, 2ptn and 8tln (3tln used
by Rashin) molecules. In general, VOLBL finds more
cavities for proteins (except 2cha and 5mbn), indicat-
ing the accuracy and sensitivity of the method.
VOLBL-computed cavities show large differences
from the results of Hubbard et al.,8 where a probe
radius of 1.4 Å was used.

Myoglobin: Ligand-Binding Cavities

Myoglobin is an oxygen transport protein found in
skeletal muscles. Diffusion and binding of oxygen to
the heme iron have been the subject of numerous
investigations.20,4,21 The X-ray structure of myoglo-
bin shows no direct pathway for the transport of
oxygen from the exterior to the heme. It has been
postulated that protein conformational changes oc-
cur concomitantly with oxygen diffusion.22 These
conformational changes are related to atomic interac-
tions and structural changes such as residue
sidechain movement and cavity formation. Cavities
in myoglobin have been explored experimentally
through binding of the noble gas atom xenon. X-ray
structural analysis shows that xenon binding cavi-
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ties are surrounded by relatively nonpolar resi-
dues.23 Four known xenon binding sites are seen in
the X-ray structure with varying degrees of occu-
pancy. One site is found in a cavity near the proximal
histidine and a pyrrole group of the heme.24 A second
site is located near the corner of G-H and A-B helices
close to the external surface.25 These two xenon
binding sites are also observed in 129Xe NMR experi-
ments on met-myoglobin in solution.26 A third xenon
binding site is located at the corner of the E-F helix
and H helix and is close to the surface. A fourth site is
on the distal side of the heme and is close to the
oxygen binding site.

Computation of cavities in myoglobin would pro-
vide insights into the locations of hydrophobic sites
where ligands (such as xenon) can bind, as well as
help to identify cavities that can aid in diffusion of
the ligands. The cavities in myoglobin computed
from alpha-shape program VOLBL are shown in the
Figure 1. We obtain a total of 17 inaccessible cavities
in myoglobin. Rashin et al., using the same size
probe, obtained 23 cavities using a modified Shrake
and Rupley procedure.

In our result, cavities 1, 2, 4, and 7 correspond to
the xenon binding sites. The volume contained in
each cavity is listed, along with the identity of
surrounding residues, in Table II (information at the
level of atomic detail is computed by our software,
but these are omitted for the sake of brevity). The
xenon binding site I corresponds to cavity 7, which
has the highest occupancy and the lowest B factor.
Site II corresponds to cavity 4, site III to cavity 1, and
site IV to cavity 2. Of the four xenon binding cavities
sites, site I has the smallest volume and surface
area. Site II has the largest B factor (49.6 Å2) and
sites III and IV have large volumes and areas. The
sizes of the computed cavities correlate well with
results of the NMR experiments. Tightly bound
xenon atoms with slow off-rates (1 3 1025 M/s) and

sensitivity to the paramagnetic iron atom. These are
the xenon atoms in sites I and II, which have small
volume and are close to the heme prosthetic group.
Xenon atoms with larger off-rates are found in the
larger cavities III and IV. Residue F138 is close to
site III but has no direct contact with site I. Free
energy perturbation molecular dynamics simula-
tions27 suggest that, apart from the immediate resi-
dues surrounding xenon site I, residue F138 also
experiences a large movement. This suggests that
site II located between sites I and III may mediate
the changes in F138.

The oxygen binding region is also apparent in our
cavity computations. Cavity 5 is flanked by heme on
one side, and the distal histidine H64 and hydropho-
bic residues L29, L32, F43, and I107 on another side.
Cavity 12 is flanked by residues L29, F43, and H64
(also shared by cavity 5). These cavities form a
possible pathway through which oxygen diffuses to
the iron-binding site. Cavity 5 is also close to the
xenon binding site IV. This suggests that the struc-
ture around the oxygen binding pocket is flexible.
There are other cavities (cavities 9 and cavity 14) in
addition to cavity 12 along the path toward the CD
loop. These cavities could also play a role in provid-
ing a pathway for oxygen diffusion into myoglobin
from the exterior.

Ribonuclease: Cavities and Packing
Interactions in Proteins

Packing interactions in proteins play an important
role for protein folding and protein stability. The role
of packing was examined in ribonuclease S formed
by the S-protein–S-peptide complex.28 The S-peptide
is obtained by subtilisin cleavage of the ribonuclease
S. The S-peptide and S-protein associate to form
native-like ribonuclease-S structure. Methionine 13
on the S-peptide packs into a hydrophobic cluster in
the ribonuclease S native structure. By replacing

TABLE I. Cavities Computed for the Listed Proteins UsingAlpha Shape Method (VOLBL);
Comparison With Results From Rashin et al.6†

Protein
# of cavities Area Volume

VOLBL Rashin SA MS Rashin (SA) SA MS Rashin (MS)

1eca 10 9 46.4 435.8 69 6.4 252.5 401
1nxb 3 0 0.4 62.5 0 0.0 26.7 0
2act 20 21 140.4 958.2 130 35.0 611.2 449
2cha 23 26 132.2 1079.7 120 20.4 647.6 571
2lyz 12 8 58.7 498.7 53 9.0 297.2 190
2ptn 19 13 175.4 1123.0 168 31.5 702.0 494
2sn3 2 2 6.0 80.2 6 0.4 44.4 32
3cyt 8 5 3.1 211.0 2 0.1 97.1 34
3rn3 4 5 1.3 94.9 3 0.1 42.7 41
4pti 2 2 23.4 132.7 20 3.7 87.3 70
5mbn 17 23 95.8 877.0 85 14.1 503.4 391
8tln 42 30 163.4 1777.8 117 22.2 987.0 528
†Areas are in Å2 and volumes in Å3. SA represents the solvent accessible model and MS represents the molecular
surface model. Rashin et al. used structures from earlier PDB entries 1sn3, 1rn3, 2mbn, and 3tln.
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methionine in position 13 with other amino acids,
Richards and coworkers28 investigated the role of
hydrophobic interactions in maintaining the stabil-
ity of the protein. The crystallographic and thermo-
dynamic analysis of the modified proteins does not
show good correlation with overall biophysical param-
eters such as polarizability, volume, and charge. A
key problem in examining the packing interactions
is the presence of small cavities arising in the
modified proteins, some of which accommodate one
or more water molecules. Varadarajan and Rich-
ards28 estimated the volume changes of the cavities
by subtracting mean Voronoi volumes from residue
Voronoi volume at position 13 for all of the mutants.

We computed the size and shape of cavities in the
native and modified S-protein–S-peptide complexes
in order to examine the changes in packing interac-
tions arising from these small cavities. The number
and sizes of cavities computed for these proteins are
listed in Tables III–IX. In the wild-type Rnase (2rns),
where M is at position 13, four cavities are found. All
of them are relatively small (none exceeds 23 Å2 in
MS area and 10.1 Å3 in MS volume).

Structures of the modified proteins show signifi-
cant differences in the number of cavities and their

sizes from those in the native protein. The modified
protein M13L (1rbh) has five cavities, one of which
(cavity 1) is in the vicinity of residue 13 (Table IV).
This cavity also exists in the native protein. How-
ever, its size increases for 10.1 Å3 (MS volume) in the
native to 28.4 Å3 in the modified structure. This
suggests that the branched sidechain of leucine
introduces significant structural changes. On the
other hand, DDG for the M13L mutant is close to
zero. It has been suggested that changes in enthalpic
contributions are compensated by changes in en-
tropic contributions.28

In the modified protein M13A (1rbc) (see Table V),
cavity 1 surrounding residue 13 is present, as in the
native protein. It is enlarged due to the replacement
by the small sidechain in alanine. This modified
protein also displays a change in cavity 5 (cavity 3 in
the native protein), which is surrounded now by
residues D121 and A109, in addition to residue H119
present in the native protein (the native protein has
residues A4, V118, and H119 lining this cavity).
Several additional cavities are also formed. Varadara-
jan and Richards28 observe the presence of a water
molecule in the M13A protein structure.

Fig. 1. Inaccessible cavities in myoglo-
bin (5mbn). Xenon binding sites are labeled.
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Modified protein M13F (1rbe) has seven cavi-
ties, three adjacent to residue 13, as listed in Table
VI. This is rather counterintuitive, since the bulk-
ier phenylalanine replacement introduces more
cavities. It has been suggested that phenylala-
nine substitution induces conformational changes in
its vicinity.28 This changes both the number of
cavities as well as residue make-up of the cavity
walls.

In Table VII, a similar effect is observed in M13G,
where, contrary to intuition, there are fewer cavities.

The total cavity volume, however, is increased in this
modified protein compared to the native protein.

Table VIII shows that the more isochoric substitu-
tion M13I (1rbg) leads to very small changes in the
cavity sizes as compared to the native protein.
Protein M13V (1rbi) has an additional cavity (vol-
ume 32.2 Å3), although not in the immediate vicinity
of residue 13 (Table IX). Such new cavity formation
could affect protein stability.

The variable volumes of cavities formed in these
modified proteins show that replacement at residue

TABLE II. Inaccessible Cavities Computed Using
VOLBL for Myoglobin (PDB Entry 5mbn)†

Cavity
Area Volume Contributing

residuesSA MS SA MS

1 105.2 31.5 6.4 144.6 W7 L72 I75 L76 K79 G80
H82 A134 L135 F138
L137

2 80.1 20.1 3.2 132.5 G25 I28 L29 G65 V68
L69 L72 I107 I111
Hem130

3 41.9 9.4 1.0 67.7 W14 V17 H24 I28 L69
I111 L115

4 48.1 9.4 0.9 82.9 L104 I107 S108 I111
L135 F138 Hem130
R139

5 42.8 10.1 1.4 65.0 L29 L32 F43 H64 V68
I107 Hem130

6 33.0 5.5 0.5 65.4 L9 V10 V13 F123 A127
A130 M131

7 25.6 2.4 0.1 49.9 L89 A90 H93 L104 I142
Y146

8 25.9 4.2 0.4 44.3 W14 L72 L76 I111 M131
L135

9 21.3 1.9 0.1 42.3 A22 G25 Q26 K62 G65
10 11.4 0.3 0.0 24.9 F33 L40 L49 M55
11 14.0 0.4 0.0 29.9 L76 M131 A134 L135
12 10.8 0.2 0.0 26.5 L29 F33 F43 F46 H64
13 11.9 0.4 0.0 25.7 V13 V17 L115 H119
14 7.3 0.0 0.0 18.2 L29 F33 F46 L61
15 8.8 0.0 0.0 20.6 L11 W14 L76 K77
16 7.4 0.0 0.0 18.4 H93 I99 L104 Y146
17 8.1 0.0 0.0 20.0 E109 I112

†Areas are in Å2 and volumes are in Å3. SA represents the
solvent accessible model and MS themolecular surface model.
Residues contributing to the cavities are also listed.

TABLE III. Inaccessible Cavities Computed Using
VOLBL for Ribonuclease (PDB Entry 2rns)†

Cavity
Area Volume Contributing

residuesSA MS SA MS

1 0.1 22.8 0.0 10.1 8F 47V 54V 106I 120F
2 0.0 20.4 0.0 8.6 14D 29M 33R 46F
3 0.0 22.3 0.0 8.9 4A 118V 119H
4 0.0 18.2 0.0 7.3 55Q 115Y 116V

†Areas are in Å2 and volumes are in Å3. SA represents the
solvent accessible model and MS the molecular surface model.
Residues contributing to the cavities are also listed.

TABLE IV. Inaccessible Cavities Computed Using
VOLBL for Modified Ribonuclease S Protein M13L

(PDB Entry 1rbh)†

Cavity
Area Volume Contributing

residuesSA MS SA MS

1 5.3 48.8 0.6 28.4 F8 H12 L13 V47 V54
2 0.6 27.4 0.0 13.0 N34 L35 K37 D38
3 0.0 21.1 0.0 9.0 F8 V47 I106 F120
4 0.0 20.9 0.0 8.9 F8 V47 V54 I106
5 0.1 31.4 0.0 11.5 Q55 Y115 V116

†Areas are in Å2 and volumes are in Å3. SA represents the
solvent accessible model and MS the molecular surface model.
Residues contributing to the cavities are also listed.

TABLE V. Inaccessible Cavities Computed Using
VOLBL for Modified Ribonuclease S Protein M13A

(PDB Entry 1rbc)†

Cavity
Area Volume Contributing

residuesSA MS SA MS

1 25.2 134.9 2.6 83.5 F8 H12 A13 D14 S15
V47 E49 L51 V54

2 0.9 30.6 0.0 14.8 N34 L35 K37 D38
3 0.1 21.8 0.0 9.5 F8 E9 A13 L51
4 0.0 18.2 0.0 7.3 F8 V47 V54 I106
5 0.0 19.4 0.0 7.9 A109 H119 D121

†Areas are in Å2 and volumes are in Å3. SA represents the
solvent accessible model and MS the molecular surface model.
Residues contributing to the cavities are also listed.

TABLE VI. Inaccessible Cavities Computed Using
VOLBL for Modified Ribonuclease S Protein M13F

(PDB Entry 1rbe)†

Cavity
Area Volume Contributing

residuesSA MS SA MS

1 7.7 66.0 0.8 38.1 S21 N27 M30 K31 T36 C95
Y97

2 5.3 50.1 0.6 29.6 F8 H12 F13 V47 V54
3 0.2 25.0 0.0 11.5 F8 V47 V54 I106 F120
4 0.1 20.7 0.0 8.8 T45 I81 I106 F120 S123
5 0.1 29.4 0.0 11.7 S21 K31 T36 C95
6 0.2 23.3 0.0 10.4 D83 K98 T100
7 0.0 21.6 0.0 8.8 V54 I106 V108

†Areas are in Å2 and volumes are in Å3. SA represents the
solvent accessible model and MS the molecular surface model.
Residues contributing to the cavities are also listed.
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13 leads to subtle changes in the conformation and
packing of the protein structure. While relative
deviations from the native structure may not be
significant, modified proteins may contain cavities
which differ both in size and location. Phenomenologi-
cal thermodynamic analysis of protein stability due
to mutations should, therefore, take into account
these changes in cavities. The changes in cavities
may also be counterintuitive to size-based argu-
ments. This is evidenced by the fact that mutation of
methionine to glycine results in elimination of a
cavity. Lacking a sidechain, glycine provides the
flexibility necessary for a conformational change in
the protein backbone.

Bacteriorhodopsin: Cavities and Proton
Pathway

A 3.5 Å resolution structure of the ground state of
the light-driven proton pump bacteriorhodopsin (bR)
has been obtained by Henderson and coworkers from
electron microscopy studies.29,30 The structure re-
veals the presence of a putative channel lined by a
set of polar residues and the Schiff base, through
which a proton can be translocated across the mem-
brane. The role played by several of the proposed
channel residues has been confirmed by mutagen-
esis experiments.31–36 FTIR and fluorescence label-

TABLE X. Inaccessible Cavities Computed by
VOLBL for Membrane Protein Bacteriorhodopsin

2brd†

Cavity
Area Volume Contributing

residuesSA MS SA MS

1 40.3 146.2 10.5 134.0 L97 A98 V101 D102
T107 L111 V151
L152 F154 G155
F171

2 13.9 98.7 2.42 71.2 L13 Y57 M60 I78
R82 T205 F208
M209 D212

3 10.6 101.0 1.31 71.0 L93 L174 V177
T178 W182 A215
F219 I222

4 9.29 73.4 1.25 51.9 Y79 R82 Y83 W86
W189 S193 E194
F208

5 5.79 58.3 0.80 39.9 F42 L100 L223
S226 R227

6 3.70 50.3 0.40 32.4 F27 F42 Y43 T46
L223 R227

7 6.13 71.6 0.56 48.6 M20 P50 A53 V213
K216 V217

8 4.14 53.7 0.49 34.8 S59 Y64 P77 W80
A81

9 3.71 63.6 0.21 35.8 P70 F71 G72 E74
Y79 E194

10 1.81 47.1 0.09 28.5 G122 W137 W138
W189 Ret(C3)

11 2.38 47.8 0.17 28.1 T46 V49 P50 L93
K216 F219

12 2.21 50.7 0.13 28.9 L111 A114 Y147
I148 V151

13 0.31 31.7 0.008 16.6 I45 T46 V49 L93
D96 F219

14 0.82 41.4 0.03 22.4 Y57 M60 R82 D85
W86 D212

15 0.84 46.7 0.019 21.9 V188 I191 G192
V199 L207

16 0.62 34.9 0.025 19.0 W12 L15 L206
M209

17 0.02 26.3 0.000 12.7 L152 F171 L174
R175

18 0.01 26.6 0.000 12.7 N76 Y79 L127
†Areas are in Å2 and volumes are in Å3. SA represents the
solvent accessible model and MS the molecular surface model.
Residues contributing to the cavities are also listed.

TABLE VII. Inaccessible Cavities Computed Using
VOLBL for Modified Ribonuclease S Protein M13G

(PDB Entry 1rbf)†

Cavity
Area Volume Contributing

residuesSA MS SA MS

1 13.8 69.0 2.9 49.0 S21 N27 M30 K31
T36 C95 Y97

2 0.4 26.2 0.0 12.1 N34 L35 K37 D38
3 0.0 20.4 0.0 8.5 T45 I106 F120 S123

†Areas are in Å2 and volumes are in Å3. SA represents the
solvent accessible model and MS the molecular surface model.
Residues contributing to the cavities are also listed.

TABLE VIII. Inaccessible Cavities Computed Using
VOLBL for Modified Ribonuclease S Protein M13I

(PDB Entry 1rbg)†

Cavity
Area Volume Contributing

residuesSA MS SA MS

1 1.1 36.0 0.0 17.1 N34 L35 K37 D38 R39
2 0.7 28.2 0.0 13.6 F8 V47 V54 I106 F120
3 0.0 18.3 0.0 7.4 F8 H12 I13 V47
4 0.0 18.6 0.0 7.5 S21 K31 P93 C95
5 0.0 18.7 0.0 7.5 Q55 Y115 V116

†Areas are in Å2 and volumes are in Å3. SA represents the
solvent accessible model and MS the molecular surface model.
Residues contributing to the cavities are also listed.

TABLE IX. Inaccessible Cavities Computed Using
VOLBL for Modified Ribonuclease S Protein M13V

(PDB Entry 1rbi)†

Cavity
Area Volume Contributing

residuesSA MS SA MS

1 4.8 55.7 0.4 32.1 S21 N27 M30 K31 T36 C95
Y97

2 1.3 32.1 0.1 16.4 F8 H12 V13 V47 V54
3 0.1 23.8 0.0 10.7 F8 V47 V54 I106 F120
4 0.5 26.7 0.0 12.4 N34 L35 K37 D38
5 0.0 21.8 0.0 9.4 S75 S77 M79

†Areas are in Å2 and volumes are in Å3. SA represents the
solvent accessible model and MS the molecular surface model.
Residues contributing to the cavities are also listed.
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ing experiments have shown that the immediate
environment around a number of key residues in the
putative proton transfer pathway change during the
photocycle.37 It has been postulated that a select
number of water molecules in the pathway play an

important role in proton transport.38–44 A quantita-
tive study of cavities which are large enough to
accommodate one or more water molecules in the bR
structure would shed light on possible interactions
between the water molecules and the residues in the
pathway, as well as environmental changes around
key residues during the photocycle. We compute
below the number and sizes of cavities in the ground
state structure of bR. These are calculations from a
recent structure whose coordinates were provided by
Henderson and coworkers29,30 (2brd in PDB files).

We use 1.4 Å as the probe size for a water
molecule. All membrane lipid molecules are removed
for the calculation. The sizes of the computed cavi-
ties, along with the flanking residues, are presented
in Table X. There are 18 cavities in bR which are
inaccessible to bulk solvent and can accommodate
one or more water molecules. The largest of these
cavities (1 and 2) are at the cytoplasmic and extracel-
lular ends of the protein, respectively. They are
capable of accommodating 2–4 water molecules,
which can serve as the proton transfer link to the
bulk electrolyte. In Figures 2, 3, 4, and 5 we present
a model of the protein along with the cavities. As
shown in the figures, the largest cavity (cavity 1),
which lines the proton channel from the cytoplasmic
interior, is encompassed between helices C and G,
with a few contacts from residues on helices B and F.
It is in the vicinity of cavity 13, where Cb from Asp 96
is part of the cavity wall. The hydrophobic environ-
ment around Asp 96 in the ground state has been
postulated on the basis of numerous experiments

Fig. 2. Alpha shape representation of cavity 1 in bacteriorho-
dopsin (2brd). It is larger than the molecular cavity defined by the
molecular surface.

Fig. 3. Alpha shape representation of cavity 2 in bacteriorho-
dopsin (2brd).

Fig. 4. Alpha shape representations of all cavities in bacterior-
hodopsin.
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and it has been suggested that the pKa of Asp 96 in
the bR ground state is as high as 13.45 Our calcula-
tions reveal that wall atoms of both cavity 1 and
cavity 13 are very hydrophobic: 18 out of the 19 wall
atoms of cavity 1 are carbon atoms (except one
oxygen atom from Val 151); whereas all six atoms on
the wall of cavity 13 are carbon atoms. We display
the sidechains contributing to cavities 1, 2, and 13 in
Figure 5. Recent experiments, including the struc-
ture of the M intermediate,46–48 show that during the
photocycle the movement of the F helix changes the
solvation environment around Asp 96. We postulate
that the inaccessible and hydrophobic cavities 1 and
13 in the ground state becomes exposed to the cytosol
in this process, thus exposing Asp96 and bulk water
and altering its pKa. This enables deprotonation of
Asp 96 and translocation of the proton to the Schiff
base.

CONCLUSIONS

We have presented an accurate method for comput-
ing inaccessible cavities in proteins using the alpha
shape method. Molecular and solvent-accessible sur-
face areas and volumes for the cavities can be
computed using our method. In addition to comput-
ing total areas and volumes, our method also pro-

vides information on atoms and residues which
contribute to the cavities. Precise metrics computed
by our method can be used for probing protein
structure and stability, as well as for protein engineer-
ing. Further, the computed cavities also reveal poten-
tial water-binding sites.

We applied our method to obtain cavities in previ-
ously studied proteins. The power of the method is
illustrated by three key applications. In myoglobin,
our computation located all of the cavities which
bind xenon. In ribonuclease S-protein–S-peptide com-
plex, we analyzed the role cavities play in engineered
protein stability. In bacteriorhodopsin, we show that
the two largest cavities line the putative channel
involved in proton transport. The precise computa-
tion of cavities can be quantitated further to analyze
protein thermodynamics and this study is in progress.
Effects of buried surface area/volume in multido-
main proteins and protein–protein complexes is also
underway.

Currently, with our software, VOLBL, we do not
store computed area/volume for pair and triple at-
oms intersection. Such information would be useful
for further detailed analysis of polar–polar, polar–
nonpolar, and nonpolar–nonpolar interactions. Imple-

Fig. 5. The alpha carbons of the seven
helices and the retinal, together with residue
sidechains which contribute to cavities 1, 2,
and 13.
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mentations for accessing such information is also in
progress.
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APPENDIX
Filter of Delaunay Simplices

We repeat the steps in constructing the dual
complex, as described earlier, by connecting atom
centers to obtain simplices other than vertices: edges,
triangles, and tetrahedra. However, we perform the
construction of simplices directly for the Voronoi
regions, rather than the Voronoi regions clipped to be
within the VW molecule, we get the Delaunay trian-
gulation or complex. The dual complex of the Voronoi
dissection of the molecule is a subset of the Delaunay
complex, as it is obtained by the same process but
with a smaller number of regions with less overlap.

Indeed, we can simultaneously grow all balls in
such a way that their Voronoi regions remain invari-
ant and maintain the growing dual complex. This
way we get a nested sequence of dual complexes,
which are all subsets of the Delaunay complex. The
last complex in the sequence is the Delaunay com-
plex itself. To formalize this idea, we parameterize
the growth of balls by a real number a and refer to
the dual complex at time a as the a-complex. The
0-complex is the dual complex of the VW or the SA
model, depending on the choice of radii. Negative
values of a correspond to shrinking the balls. Al-
though growing the balls is a continuous process, we
get a finite sequence of alpha complexes:

k0, k1, . . . , km.

The first complex, k0, is the empty complex and the
last complex, km, is the Delaunay complex. We use
this sequence of alpha complexes to sort the sim-
plices in the Delaunay complex. For each Delaunay
simplex, s, there is a unique rank r 5 r(s) such that
s e kr and s e kr 2 1. The filter is an ordering of the
simplices,

s0, s1, . . . , sn,

so that the rank increases from left to right, that is,
r(sj) # r(sj 1 1) for all j. It can happen that two
simplices have the same rank, in which case we
order vertex before edge before triangle before tetra-
hedron. The relevance of the filter will become clear
shortly when we discuss the computation of inacces-
sible cavities in a molecule.

Representing Inaccessible Cavities

Consider the sequence of alpha complexes: k0,
k1, . . . km, and let I be the index so that kI is the dual
complex of the SA model. Let J be the largest index of
any simplex in the filter with rank r(sJ) 5 I. Hence s0

through sJ belong to k1 and sJ 1 1 through sn do not
belong to kn. We can take advantage of the fact that
the simplices in the dual complex of the SA model are
readily available as a prefix of the filter. All we need
is the homotopy equivalence result proved in Refer-
ence 15: for every void of the SA model there is a
unique corresponding void of kI which contains the
SA void.

A void in kI is triangulated by Delaunay simplices
that are not in kI. We use this set to represent the
void. The set consists of tetrahedra, of triangles
connecting tetrahedra, and of edges connecting tri-
angles. The set is completely determined by its
tetrahedra, and a triangle or edge sj belongs to the
set if and only if j . J and sj is a face of at least one
tetrahedron in the set.

Constructing Inaccessible Cavities

We describe an algorithm that constructs sets of
tetrahedra, where each set corresponds to a void of kI.
The sets are stored in a union-find system, which is a
standard data structure for maintaining a system of
disjoint sets. Any tetrahedron can belong to at most one
set or void. The set system is manipulated through a
sequence of the following types of operations:

ADD(s): Add the tetrahedron s as the only mem-
ber of a new set to the system.

FIND(s): Determine and return the set that con-
tains the tetrahedron s.

UNION(U,V): Let U C V be two sets in the system
and replace them by the union, V ( V.
Specific implementations of the union-find system
can be found in most algorithm texts (see e.g.,
Reference 49). Our implementation takes time O(n
log n) for a sequence of n operations. There are other
implementations that are somewhat faster, but they
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represent sets by trees, which is less convenient than
the lists used in our implementation.

We return to the main problem, namely, construct-
ing the voids. This is done by traversing the filter
backwards, from sn down to sJ 1 1. The tetrahedra
among these simplices are collected in the sets of
the union-find system. The triangles are used to
trigger the union of sets. There is one special
set in the system that collects all tetrahedra out-
side kI. This set does not represent any void but
rather the outside component of the complement.
We initialize the special set to 5s`6, and we think of s`

as the outside or complement of the Delaunay com-
plex.

Initialize the set system to contain only the special
set: 55s`66;
for j :5 n down to J 1 1 do

if sj is a tetrahedron then
ADD(sj)

elseif sj is a triangle then
determine the two tetrahedra s, s8 that share
sj (one can be s`;
U :5 FIND(s); V :5 FIND(s8);
if U C V then UNION(U,V) endif;

endif
endfor.

For the correctness of the algorithm it is important
that when a triangle sj is encountered, its two
tetrahedra, s and s8, have already been added to the
system. The construction of the filter guarantees
that this is indeed always the case. After running the
algorithm, each set but the special one represents a
void of kI. Next we show how such a set of tetrahedra
can be used to compute the volume and the surface
area of the corresponding void in the SA model.

Computing Volume

The method for computing the volume of the SA
void represented by a set V of Delaunay tetrahedra is
based on an inclusion-exclusion formula proved in
Edelsbrunner.15 We just explain the method. The
volume of the SA void is

vol 5 vol0 2 vol1 1 vol2 2 vol3

where the four terms accumulate the volume of four
different types of geometric objects: tetrahedra, sec-
tors of balls, wedges of intersections of two balls, and
halves of intersections of three balls.

vol0 5 S vol (s), where vol(s) is the volume of the
tetrahedron s and the sum extends over all
s e V.

vol1 5 S wy,s ? vol (by ), where s [ V, [ n kI is a vertex
of s, and by is the ball with center y. vol(by ) is
the volume of by and w y, s is the solid angle at y

inside s. The sum extends over all s [ V and
over all vertices y [ kI of s.

vol2 5 S we,s ? vol (vy > bµ), where s [ V, e [ kI is an
edge of s, and y and µ are the endpoints of e,
vol (by > bµ) is the volume of the intersection
of the two balls, and w e, s is the dihedral angle
at e inside s. The sum extends over all s [ V
and over all edges e [ kI of s.

vol3 5 S 1
2 ? vol (by > bµ > bl ), where y, µ, l are

vertices of a tetrahedron s [ V that span a
triangle in kI ? vol (by > bµ > bl) is the volume
of the triple intersection.

All angles, whether solid or dihedral, are measured
in revolutions, so 0 is the empty and 1 is the full
angle. The above expression for the volume of a void
is fairly natural and can easily be seen to be correct if
the balls lining the void overlap at most in triplets.
As proved in Edelsbrunner,15 the expression is exact
no matter how big the balls are and how many of
them form common overlaps.

Computing Area

The above method for volume computation ex-
tends to area. The formula for the area of the SA void
represented by the set V of tetrahedra is

area 5 area1 2 area2 1 area3.

Again, we look at sectors of balls, wedges of intersec-
tions of two balls, and halves of intersections of three
balls.

area1 5 S wy,s ? area (by ), where the notation is the
same as for vol1, except that area (by ) is the
surface area of ball by.

area2 5 S we,s ? area (by > by ), where the notation is
the same as in vol2, except that area (by > bµ)
denotes the surface area of the intersection
of the two balls.

area3 5 S 1
2 ? area (by > bµ > bl ), where the notation

is the same as in vol3, except that area
(by > bµ > bl ) is the surface area of the
common intersection of the three balls.

This method works for arbitrary arrangements of
spherical balls and takes no advantage of properties
of molecules, such as fairly uniform ball size and
limited overlap. The above formulas reduce the
computation to a small collection of primitive ele-
ments. A complete description of the analytic func-
tions used to handle the primitive elements can be
found in Reference 50. Many of the functions are the
same as in Reference 12.
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