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Abstract

Gene array studies can assess the global expression patterns of thousands of genes under multiple conditions. This

technology can provide important insights about the underlying genetic causes of many important biological questions, and can

change our understanding of diseases, ultimately allowing the development of novel chemical entities as potential drug

candidates. The informatics analysis and integration of gene expression pattern are critical for interpreting gene array studies. In

this paper, we discuss the computational analysis of three important tasks: (1) the identification of differentially expressed genes,

(2) the discovery of gene clusters, and (3) the classification of biological samples. In addition, we discuss how gene sequence

and chemical structures can be profitably combined with microarray studies. Detailed examples are given throughout. Programs

written in open source R language for achieving each of these tasks are freely available at gila.engr.uic.edu/genex.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Global gene expression profiling using microarrays

is emerging as a key technology for understanding

fundamental biology of gene function, development,

and for discovering new classes of diseases such as

cancer and for understanding their molecular pharma-

cology. [1–5] Microarray or microchip is a chip made

of glass or other solid material, with an array of tiny

DNA spots placed on it. Each spot contains fragments

of DNA or RNA molecule whose sequence is pre-

defined and corresponds to portions of a particular

gene. The lengths of these fragments may vary from

about 20 nucleotides in oligonucleotide microarrays to

thousands of nucleotides in genome microarrays.

Typical microarray contains several thousand spots

on the surface of a quarter square inch, and a library of

thousands of genes is placed on a single chip. To

probe the global gene expression levels of many genes

in biological samples such as cell lines, tissue extracts,

or laser microdissected cells, messenger RNAs are

first extracted. mRNAs are then reverse-transcribed

into cDNA. The amount of cDNA produced are then

amplified by polymerase chain reactions (PCR), a

standard molecular biology technique that is based
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on primer extension reaction to amplify specific

nucleic acid sequences in vitro. PCR allows a short

stretch of DNA to be amplified up to a million folds,

so that there is enough quantity of specific DNA

molecules to be placed on the microarray chip. In

the amplification process, radioactive or fluorescent

nucleotides are incorporated. Under proper experi-

mental conditions, the concentrations of the cDNA

for a specific gene reflect the amount of expressed

mRNA of this gene in the probe sample. Upon

hybridization to the DNA fragments on a chip, the

labeled probe produces a signal. The expression levels

of individual genes present on the chip can then be

measured quantitatively by laser scanning (fluorescent

probes) or by phosphoimaging (radiolabelled probes)

spots at different predefined locations on the chip. In

another experiment scheme, the extracts from the

sample tissue and a control tissue are marked with

different dyes, and are hybridized simultaneously on

the same chip. This approach provides information

about the relative concentration of expressed RNA in

sample and control tissues. As probe samples col-

lected at different well-designed experimental condi-

tions are applied, the relative expression levels of all

genes on the chip can then be analyzed for changes in

the expression patterns to obtain an integrated global

picture about the underlying genetic networks [6–10].

Microarray studies often generate massive amounts

of data, which are difficult to be exhaustively exam-

ined by hand. Bioinformatics analysis and interpreta-

tion to extract genetic patterns from these data are

therefore essential for gaining biological insights from

experiments. In a recent study [2], a cluster of genes

associated with cell proliferation was identified from

the expressions of 5000 genes in a mammary epithe-

lial cell line under various experimental perturbations

(i.e. varying conditions of TGF-h1, EGF, and IFN-a,

g). This ‘‘proliferation cluster’’ was recapitulated

from analyzing gene expression profiles of human

breast tumors, and was found highly expressed. This

gene cluster contains human homologs of yeast

CDC47 gene, cyclin B1, and antigen Ki-67. The

utility of computational analysis such as clustering,

classification and feature selection is demonstrated by

another recent study, where subtypes of acute myeloid

and acute lymphoblastic leukemia are successfully

discovered without employing any prior biological

knowledge. In addition, samples of leukemia tumor

can be assigned to either of the two subtypes accu-

rately based on the expression patterns of a selected

subset of 50 genes [1].

In this article, we describe computational methods

for several common tasks in microarray studies: (1)

identifying genes that experience significant changes

in expression under different experimental conditions;

(2) clustering of genes to identify groups of genes that

are likely to be co-regulated or participating in related

metabolic and regulatory pathways, (3) predicting and

classifying experimental samples whether they belong

to a particular type of tissue, disease or phenotype

classes, and (4) identification of candidate marker

genes or marker gene clusters indicative of specific

phenotypes. Finally, we discuss how microarray anal-

ysis can be combined with cheminformatic studies and

high-throughput drug screening to draw interesting

inferences on pharmacological mechanism of drugs.

2. Identifying differentially expressed genes

To identify genes differentially expressed under

different conditions from cDNA microarray experi-

ments, a heuristic approach frequently applied is to

examine the ratio of fold increase/decrease of the

expression levels of a gene. If the ratio is above a

predefined cut-off threshold (e.g. three- or five-fold

change), these genes are declared to be differentially

expressed, and are selected for further experimental

validation [10]. Although convenient, this approach is

problematic, because the cut-off value is set rather

arbitrarily, and it is difficult to assess the rate of false

positives (unchanged genes declared differentially

expressed) and rate of false negatives (missed differ-

entially expressed genes). We discuss two statistical

methods that can be used in conjunction with permu-

tation tests to identify differentially expressed genes.

We begin with the lay-out of microarray data. Data

from gene expression experiments can be organized as

a matrix. Here, each row represents the hybridization

results for a single gene across different conditions,

and each column represents the measured expression

levels of all genes for one condition. To draw stat-

istical inference, it is essential to have replicated

samples for each experimental condition [11]. For

identification of differentially expressed genes, we

can test against the following null hypothesis: the
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mean expression levels xi of gene i under conditions 1

and 2 are the same. Here, we assume that there are r1
replicate samples for condition 1 and r2 replicate

samples for condition 2.

t-Test. Student’s t-test is a simple method for test-

ing whether the distributions of two variables are

identical. Provided that gene expression levels under

two different experimental conditions have identical

Gaussian distributions, the statistics

ti ¼ ðx̄2i � x̄1iÞ
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1S
2
1i þ r2S

2
2i

r1 þ r2 � 2

1

r1
þ 1

r2

� �s

follows a Student’s t-distribution, with r1 + r2� 2

degrees of freedom. Here, x̄1i and x̄2i are the mean

expression levels of gene i in the r1 replicated samples

of condition 1 and r2 replicated samples of condition

2, respectively; S1i
2 and S2i

2 are the sample variances of

gene i under these two conditions:

S2i ¼
X

ðxi � x̄iÞ2=r:

If ti exceeds the threshold value for a specific

confidence level (e.g. 95%), the expression levels of

gene i at conditions 1 and 2 will then be considered to

be different.

Although a large ti value indicates that the expres-

sion levels of gene i are different under conditions 1

and 2, one cannot assume the distribution of gene

expression level is Gaussian or the statistic t follows a

t-distribution, and therefore, one cannot obtain direct

estimates of statistical confidence intervals from

standard tables of t-distributions.

With multiplicative samples, permutation tests can

be applied to assess the statistical significance of the

observed t-statistic. Suppose we lost the labels of

conditions and do not know whether an observed

value xi for gene i comes from the samples of

condition 1 or condition 2. We randomly divide the

samples into group 1 with r1 samples, and group 2

with r2 samples. The statistic t can be calculated for

this grouping. Altogether there are
r1 þ r2

r1

� �
such

groupings, and when plausible, we can calculate the t-

statistic, denoted as t*, for each of them. An alter-

native approach is to sample a few thousands of such

groupings. The distribution of calculated t* values can

provide an estimation of the p-value pi* for the

observed value of t. If we let t to be the observed t-

statistic for gene i, tk* the kth permuted sample, R to be

the number of permuted samples, we have the esti-

mated p-value for observing t:

pi* ¼ 2�
min

XR
k¼1

#ðtk*ztÞ,
XR
k¼1

#ðtk*VtÞ
 !

R

See Fig. 1 for an example of permutation t-test.

Fig. 1. Identification of differentially expressed gene by permutation

t-test. This and all subsequent figures are based on expression

profiles of 47 samples from acute lymphoblastic leukemia (ALL)

patients and 25 samples from acute myeloid leukemia (AML)

patients from publicly accessible data set at MIT [1]. The expression

levels of 7129 genes are measured for each sample. Histogram

shows the relative probability distribution of t-statistic values from

3000 permutations of 72 samples. Dotted line shows corresponding

Student’s t-distribution with 70 degrees of freedom. (a) HUMISG-

F3A Homo sapiens transcription factor ISGF-3 mRNA (an

interferon-dependent positive-acting transcription factor that is

cytoplasmically activated) does not show any significant differential

expression among the two types of samples; (b) AB000449 Homo

sapiens mRNA for VRK1 (vaccinia virus B1R kinase related

kinase) shows differential expression with a very high statistical

significance level.
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Wilcoxon test. Student’s t-test is sensitive to

extreme values. It is often safer to use the nonpara-

metric Wilcoxon test when there may be skewness or

contamination in the gene expression data. In this test,

we assume that xi is drawn from a symmetric distri-

bution. We combine the r1 + r2 samples, and rank

them in ascending order by their magnitude, and

assign each sample the ranks 1, 2,. . ., r1 + r2. Next,
we sum up the ranks of samples from condition 1,

which will be our statistic w. To determine the

significance of the p-value, the value of w can then

be compared with the null model of the standard

distribution of Wilcoxon rank sum values, which

can be obtained by the moment generating function

M(t) =Pi = 1
r1 + r2 (e � it + eit)/2 [12], or more conven-

iently, it can be found in look-up tables in statistics

textbooks [13].

With multiplicative samples, the permutation test

again is more applicable to assess the statistical

significance of the observed w statistic. With R

permuted samples, we have the estimated p-value

for observing w:

pi* ¼ 2�
min

XR
k¼1

#ðwkzwÞ,
XR
k¼1

#ðwkVwÞ
 !

R

See Fig. 2 for an example of Wilcoxon test. Fig. 3

shows the correlation of p-values obtained by the

Fig. 2. Identification of differentially expressed gene by Wilcoxon

test. The relative probability distribution of rank sum values from

3000 permutations of 47 ALL samples and 25 AML samples from

the same leukemia data set as in Fig. 1. (a) HUMISGF3A Homo

sapiens transcription factor ISGF-3 mRNA is an interferon-

dependent positive-acting transcription factor that is cytoplasmically

activated. It does not show any significant differential expression

between ALL and AML samples; (b) AB000449 Homo sapiens

mRNA for VRK1, a vaccinia virus B1R kinase related kinase,

shows differential expression with a very high statistical signifi-

cance level.

Fig. 3. Comparison of permutation t-test and Wilcoxon test. The

plot represents p-values for the first 300 genes from leukemia data

set, obtained by 100,000 permutations on 72 samples. p-Values

obtained by Wilcoxon test are, in general, consistent with those

obtained by permutation t-test, although sometimes they can differ

by two orders of magnitude.
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permutation t-test and by the Wilcoxon test. The p-

values obtained by these two methods are in general

agreement, although they can differ by two orders of

magnitude.

3. Pattern discovery: clustering analysis

An important goal in interpreting the large amount

of data from cDNA array experiments is to extract

the fundamental patterns of gene expression, which

are informative of the underlying biology of the

samples. Genes with similar expression patterns

under various conditions may participate in the same

signal pathway or may be co-regulated. As a descrip-

tive tool, clustering of expression patterns can reveal

such relationships. The quantitative expression levels

of n genes under d conditions can be thought as n

points in d-dimensional space. Clustering methods

group points together that are close-by in the d-

dimensional space. Clustering has been shown to be

very effective, in associating gene expression patterns

with the ligand specificity of neurotransmitter recep-

tors (Ach, GABA, glutamate, and 5HT) and their

functional class (ion channel, G-protein-coupled re-

ceptor) [14]. In cancer studies [1,3,15–18], both gene

expression ‘‘signatures’’ for cell types (e.g. T cell)

and ‘‘signatures’’ for biological processes (e.g. pro-

liferation) have been successfully identified by clus-

tering [5].

3.1. Distance and similarity measure

The ‘‘closeness’’ between genes becomes concrete

once a distance measure or similarity measure is

defined to quantitatively describe how similar or

dissimilar the expression profiles of two genes are.

For n genes in the microarray experiment, each pair

(x,y) of the
n

2

	 

pairs of genes can be assessed for

their similarity in the expression levels under d con-

dition. A widely used dissimilarity or distance meas-

ure is the Euclidean distance:

d2ðx,yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i¼1

ðxi � yiÞ2
vuut

Another convenient measure is the correlation coeffi-

cients, which evaluates how correlated the expression

levels of genes x and y under d different conditions:

Rðx,yÞ ¼

Xd
i¼1

ðxi � xÞðyi � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i¼1

ðxi � xÞ2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i¼1

ðyi � yÞ2
vuut

The value 1�R(x,y) can also be used as a dissimilarity

measure.

When distances or correlations for all
n

2

	 

pairs of

genes are calculated, we obtain a n� n distance or si-

milarity matrix, which can then be used for cluster

analysis.

3.2. Agglomerative hierarchical clustering

This method groups genes into a tree or dendro-

gram [19]. At the beginning, each individual gene

forms its own cluster. Starting from n gene clusters,

the two clusters with smallest distance are merged,

and the clustering is updated. This process is repeated

until all clusters are merged into one. The algorithm

can be outlined as [20]:

Algorithm HierarchicalClustering

repeat

find two clusters Ci and Cj

where d(Ci,Cj) =minr p sd(Cr,Cs).

merge Ci,Cj into a single cluster Cq.

replace clusters Ci,Cj with Cq.

update distance matrix of new clusters.

until all genes lie in the same cluster.

In order to update the distance matrix when two

clusters Ci,Cj are merged into a new cluster Cq, the

key question is how to define the distance between the

new cluster Cq and all other existing clusters. In the

single linkage approach, the distance of Cq to another

existing cluster Cs is calculated as:

dðCq,CsÞ ¼ minðdðCi,CsÞ, dðCj,CsÞÞ

where d is the distance or dissimilarity measure used.
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In the complete linkage approach, the distance is

calculated as:

dðCq,CsÞ ¼ maxðdðCi,CsÞ, dðCj,CsÞÞ

In the weighted pair group method average (WPGMA)

approach:

dðCq,CsÞ ¼ ðdðCi,CsÞ þ dðCj,CsÞÞ=2

In the unweighted pair group method average

(UPGMA) approach:

dðCq,CsÞ ¼ ai � dðCi,CsÞ þ aj � dðCj,CsÞ

where ai ¼ ACiA
ACiAþACjA

and aj ¼ ACjA
ACiAþACjA

. An example

of hierarchical clustering using unweighted pair group

average method is shown in Fig. 4.

3.3. k-Means clustering

Another widely used clustering method is k-means

clustering [22]. It has the advantage that no strict

phylogenetic relationship is enforced on every gene,

as is in hierarchical clustering [15–17], which can be

problematic because there is no absolute ancestral

relationship in expression patterns.

In this method, genes are classified as belonging to

one of the k clusters. Cluster membership is determined

by calculating the centers a1,. . ., akaRd for each gene

cluster, and assigning each gene i according to its

expression profile xi to the cluster with the closest

centroid. The goal is to find empirically optimal cluster

centers a1,. . .,ak such that the empirical error

E ¼ 1

n

Xn
i¼1

min
1VjVk

Nxi � ajN
2

Fig. 4. An example of hierarchical clustering analysis where gene clusters are identified. Here, a hierarchical clustering tree is shown for 15

genes experiencing significant changes in mRNA expression level between the AML and ALL leukemia samples. Genes are grouped together in

a tree structure based on their distance in their expression pattern. The distance between two genes is defined as 1�R(x,y). Here, the 15 genes

are chosen from the first 15 of the top 300 genes, which all have the same most significant p-values as estimated by Wilcoxon test for difference

in mRNA expression levels. The hierarchical clustering is based on an agglomerative nesting algorithm using unweighted pair group average

method [21].
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is minimized. This is achieved through an iterative

approach:

Algorithm k-MeansClustering

i: = 0

Assign k initial centers a1
(0)
,. . ., ak

(0)
arbitrarily;

Repeat

cluster genes x1,. . .,xn to k clusters

for xj, ja[1,. . .,n]

if Nxj� amN
2VNxj� alN

2, l pm

Assign xj to the m-th cluster

update cluster centers

a
ðiþ1Þ
m ¼ R

j:xjaC
ðiÞ
m
xj=AC

ðiÞ
m A

i: = i+ 1

Until no changes in the cluster centers.

Fig. 5 shows the results of clustering of 50 differ-

entially expressed genes between AML and ALL

samples into five clusters using k-means clustering.

3.4. Quality control of clustering

An important issue in interpreting clustering results

is to assess the quality of the classification of each

gene. Here, we discuss two approaches: the silhouette

method and the resampling method.

3.4.1. Silhouette method

This method calculates how well a gene lies within

a cluster [23]. Let A denote the cluster to which gene i

belongs, C any other cluster, a(i) the average dissim-

ilarity of i to all other genes in cluster A, and d(i,C) the

average dissimilarity of i to all genes in C. Dissim-

ilarity can be measured for example by Euclidean

distance, or by 1�R if the correlation coefficient R is

used. After computing d(i,C) for all clusters C pA, we
select the smallest of those: b(i) =minC p Ad(i,C). The

cluster B which this minimum is attained is the

second-best choice for gene i. A silhouette value s(i)

for gene i can then be calculated as:

sðiÞ ¼ bðiÞ � aðiÞ
maxðaðiÞ, bðiÞÞ , and sðiÞa½�1,þ 1	

An s(i) value close to + 1 means gene i is well-

classified, a value close to 0 means i lies between

two clusters, and a value close to � 1 means gene i is

badly clustered. By assessing the silhouette value, the

quality of clustering for each gene can be assessed

[21,24]. An example of applying silhouette method

for assessing the quality of clustering is shown in

Fig. 6.

Silhouette method can also be applied to determine

the optimal number of clusters k for the k-means

method. By systematically changing the number of

clusters, the one that maximizes the average s(i) over

the whole set of genes or the set of genes of interest

can be chosen as the number of clusters.

3.4.2. Bootstrap resampling method

In this approach, we first generate a large number

of resampled microarray data from the experimental

n� d data matrix, where n is the number of genes and

d the number of conditions. For example, we can

generate a resampled data matrix by drawing with

replacement n gene rows. The new data matrix may

contain some genes multiple times, some genes one

time, whereas some other genes may be missing.

Fig. 5. Results of k-means clustering. Fifty differentially expressed

genes from the leukemia data set are divided into five clusters. The

data are plotted on two first principal components. Each point on the

plot represents a single gene and bears the number of the cluster to

which the gene belongs.
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Repeat this bootstrap procedure R times, we obtain R

resampled data matrices. After applying a clustering

method to each data matrix, we have a population of R

clusterings of genes.

We analyze the bootstrapped samples as follows.

For gene i and gene j, let cij be the number of times

both i and j belong to the same cluster, and nij the

times both i and j appear in the bootstrapped samples.

The consistency ratio r is:

rij ¼
cij

nij

When rij = 1, genes i and j are well clustered together.

When rij = 0, these genes are never clustered together.

Let A denote the cluster to which gene i belongs, a(i)

the average consistency ratio of gene i to all genes in

cluster A:

aðiÞ ¼
X
jaA

rij=AAA

where AAA is the number of genes in cluster A. The

average consistency ratio of gene i clustered to all

genes in other cluster(s) is:

bðiÞ ¼
X
jgA

rij=ðn� AAAÞ

The resampling quality index q(i) for gene i is defined

as:

qðiÞ ¼ aðiÞ � bðiÞ

When q(i) = 1, gene i is clustered well. When q(i) is

around 0.5, its clustering is questionable. When

q(i) = 0, the clustering of i is very poor.

An important advantage of the bootstrap quality

index q(i) is that it works well regardless of the metrics

and clustering method. Fig. 7 shows the quality indices

for the same 50 genes clustered in Fig. 5.

Bootstrap is a general method that has been applied

in a variety of ways to study microarray expression

data. Additional examples of assessing clustering

qualities using bootstrap methods can be found in

Refs. [25,26]. In Ref. [25], it is assumed that gene

Fig. 6. Silhouette values of 50 genes clustered in Fig. 5. Some genes

from clusters 2, 3 and 4 show low confidence of belonging to these

clusters. There is no silhouette value for gene from cluster 5, as this

cluster consists of only one gene.

Fig. 7. Resampling quality index values of 50 genes clustered in

Fig. 5. Some genes from clusters 2, 3 and 4 show low confidence of

belonging to these clusters.
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expression levels follows a Gaussian distribution, and

resampled data for expression level xij of gene i under

condition j is drawn from a Gaussian distribution

N(xij,sij), where sij is the estimated variation of xij
from replicated samples. Genes that belong to specific

clusters at 95% confidence intervals are identified by

clusterings of bootstrapped samples. In Ref. [26], an

ANOVA (analysis of variance) model is used to

generate the bootstrapped samples. Rather than

assuming Gaussian or other parametric distribution

models for gene expression levels, resampled data

points are generated from independent draws from the

studentized residues [27] from the original fit of an

ANOVA model of the expression level of a gene.

4. Classifying biological samples: predictors and

classifiers

An important application of microarray experiments

is to classify biological samples into known classes of

phenotypes, as exemplified by a large number ofmicro-

array studies in cancer research on tumor classification

[1,5]. This is an important approach that may help

tumor prognosis and diagnosis. For example, B-cell

lymphoma can be classified into two new categories

based on their expression patterns, each with marked

differences in B-cell differentiation and in overall

patient survival rate [5]. This new classification cannot

be obtained using standard clinical parameters [5].

Recall that the expression data are organized as a

n� d matrix containing the expression levels of n

genes under d different conditions. Assuming that

each sample belongs to strictly one of the P pheno-

typical classes P={1,. . .,P}, we seek a function f:

Rn! {1,. . .,P}, that maps sample i to one of the P

classes according to the global expression profile

xiaRn of this sample.

Although in some cases, natural classification of

samples can be identified by unsupervised methods

such as principal component analysis (see Fig. 8 for

an example), in most cases, classification requires

supervised learning where the examples of different

classes are given in a training data set. Among the d

samples, the class identification for a subset of size

dt is known, and these samples serve as the training

set for developing classifier and predictor. The

remaining d� dt samples are the test set whose class

identifications will be predicted by the classifier. The

development of classifier and predictor is an

intensely studied area [22,28,29], and many techni-

ques have been developed. We briefly describe a few

selected classifiers that are commonly used in micro-

array analysis.

4.1. Classifiers based on Gaussian distribution

We begin with a simple parametric model for

describing microarray data. Gaussian distribution is

a convenient model for studying a wide variety of

physical processes. The probability density function

(pdf) of a univariate Gaussian distribution takes the

following familiar form:

pðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � ðx� lÞ2

2r2

 !

where l is the mean and r2 is the variance. Its

generalization is the multivariate Gaussian distribu-

Fig. 8. Class of samples sometimes can be naturally revealed by

unsupervised method such as principal component analysis. Here,

72 leukemia samples, 38 in training set and 34 in test set, are all

plotted on the first two principal components found by the top 100

differentially expressed genes. These 100 genes are selected by

Wilcoxon test from the training data. The AML samples are marked

as M, and the ALL samples are marked as L. The AML and ALL

samples are well separated in PCA space.
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tion N(l,R) where laRd is the mean vector and R is

the covariance matrix:

R ¼ E½ðx� lÞðx� lÞT 	

and its probability density function is:

pðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
ARA1=2

exp � 1

2
ðx� lÞTR�1ðx� lÞ

� �
,

xaRd

When classifying biological samples where each

sample belongs to exactly one of the P classes, we can

evaluate the probability that sample j belongs to a

specific class K:

Pðyj,KÞ ¼ Pðyj j KÞpðKÞ

here, yjaRn is the vector representing the global

expression profile of all n genes from sample j, i.e.

it is a column vector in the n� d data matrix. p(K) is
the prior probability that any given sample belongs to

class K1, and P( yjAK) is the conditional probability of

observing yj from a sample of class K. Assume that

the pdf of P( yjAK) is a Gaussian distribution

N(lK,RK), several classifiers can be developed with

different additional assumptions [20,30].

Quadratic classifier. If we can assess the joint

probability P( yj,K) for the global expression profile

of all n genes in condition j for every class KaP, we

can simply classify sample j into the class with the

highest probability P( yj,K). Technically, it is more

convenient to work with the log transformed discrim-

inant function gK:

gK ¼ ln½PðYj,KÞpðKÞ	

When P( yj,K) follows a Gaussian distribution,

gK ¼ � 1

2
ðx� lKÞ

T
X�1

K

ðx� lKÞ þ lnPðKÞ

þ constant:

The first term on the right hand side is quadratic.

Standard techniques can be applied to calculate this

term, for example, by using Moore–Penrose pseudo-

inverse [31]. Fig. 9 shows an example of applying

quadratic classifier for predicting clinical samples of

AML and ALL leukemia from the MIT data set.

Linear classifier. When all classes have the same

covariance matrix, i.e. Ri =R, the discriminant func-

tion is:

gK ¼ � 1

2
ðx� lKÞT

X�1

ðx� lKÞ þ lnPðKÞ

þ constant:

Here, the quadratic term becomes the same for all

classes, and the boundary between classes becomes

linear [20]. Fig. 10 shows that linear classifier per-

forms very well.

Diagonal classifier. When the covariance matrices

for all classes are the same, and when the expression

levels of all genes are uncorrelated, the covariance

1 For example, the MIT Leukemia data set contains 38 bone

marrow samples, 27 of them are acute lymphoblastic leukemia

(ALL), and 11 are acute myeloid leukemia (AML). The prior

probability for AML is estimated as: p(1) = 27/38 = 0.71, and the

prior probability for ALL is: p(2) = 11/28 = 0.39.

Fig. 9. Classification of clinical samples of AML and ALL leukemia

by a quadratic classifier. After training with an independent set of 27

ALL and 11 AML samples from Ref. [1], the test samples of ALL

(20, marked L) and AML (14, marked M) are classified. Test

samples above the dashed line are predicted as L (ALL), and those

below are predicted as M (AML). Quadratic classifier misclassifies

many clinical samples. Here, we use only 5 informative genes

instead of 50 genes as reported in Ref. [1]. These genes are selected

following method described in Section 5.
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matrices are all diagonal K = diag(r1
2,. . .,rn

2). The

discriminant function in this case is simple:

gK ¼ � 1

2

Xn
i¼1

ðxi � likÞ
2

r2
i

The ‘‘weighted voting scheme’’ developed in Ref.

[1] for classification is a variation of this type of

diagonal linear classifier [30]. Fig. 11 shows that

diagonal linear classifier performs well.

Which of these classifiers is more preferable?

Intuitively, the quadratic classifier is the most sophis-

ticated among the three, and it is provable that it is the

optimal classifier for Gaussian distributions. How-

ever, results shown in Figs. 9, 10 and 11 indicate that

linear and diagonal linear classifiers often outperform

the quadratic classifier. This observation has been

noted before experimentally [30]. This empirical

observation confirms Vapnik’s principle of ‘‘avoiding

solving a more general problem as an intermediate

step for solving a problem with restricted amount of

information’’ [32]. In this case, the construction of the

quadratic classifier involves estimating mean vectors

l1, l2 and covariance matrices R1,R2, altogether

n(n + 3)/2 parameters. Estimating these parameters

with high accuracy is necessary for constructing a

good discriminant rule, because the calculation of the

inverse matrices R1
� 1 and R2

� 1 are often ill-condi-

tioned. Estimating the high-dimensional covariance

matrices requires a large amount of data. In contrast,

simpler classifiers, such as the diagonal linear classi-

fier, require only the estimation of order O(n) number

of parameters.

4.2. k-Nearest neighbor classifier

This is one of the simplest nonlinear classifiers that

has found practical use in many applications. To

classify a biological sample j of unknown phenotype,

we calculate its distance based on its expression

profile yj to all of the dt training set samples, where

classifications are known. We then look for the k

nearest neighbor samples to the dt training set sam-

ples. The class for each of the k nearest neighbors is

then identified, and the unknown sample is assigned

Fig. 11. Classification of clinical samples of AML and ALL

leukemia by a diagonal linear classifier. The training set and test set

are the same as in Fig. 9. Samples above the dashed line are

predicted as L (ALL), and those below are predicted as M (AML).

Using only five informative genes, we achieve good performance in

classification (five misclassifications).

Fig. 10. Classification of clinical samples of AML and ALL

leukemia by a linear classifier. The training set and test set are the

same as in Fig. 9. Samples above the dashed line are predicted as L

(ALL), and those below are predicted as M (AML). Here, we use

only the same 5 informative genes as in Fig. 9 instead of 50 genes as

reported in Ref. [1], and we achieve better performance (three

instead of five misclassifications).
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to the class where the majority of the k neighbors

belong (see Fig. 12).

4.3. Support vector machine

When the expression levels of each gene are

represented as a point xiaRd, the problem of classi-

fication can be viewed as finding the correct label + 1

(‘‘belonging to a class of interest’’) or � 1 (‘‘not

belonging to this class’’) to each point:

xiiyi, yiafþ1,� 1g

The goal of a classifier is to reproduce the mapping

xiiyi. However, this mapping is unknown, and we

can only use the prediction from a classifier f (x,a),
such as the quadratic classifier described earlier. Here,

a denotes the adjustable parameters of the classifier. If

the prediction is wrong, the true label yi and the

predicted label f (xi,a) will be different:

Ayi� f (xi,a)A p 0. By adjusting the parameters a, we

can minimize the rate of prediction error for a set of

training data.

A fundamental question for classification is the

error rate of misclassification for a well-trained clas-

sifier when challenged in the future with unseen data.

Even though a well-trained classifier can have perfect

predictions on the training set, there is no guarantee

that it will perform well and will not make many

mistakes when future unseen samples are presented.

The statistical learning theory developed by Vapnik

and Chervonenkis (also called VC theory) [33,34]

provides theoretical foundation to address this ques-

tion. It also suggests the approach of Support Vector

Machine, an important class of classifiers that general-

ize well for unseen data.

We examine the simplest situation, where two

classes of samples (disease vs. non-disease) are com-

pletely separable by a hyperplane in Rd. This hyper-

plane has the algebraic form: w�x + b = 0, x,waRd. We

may be able to find many such hyperplanes. Among

these, VC theory shows that we need to look for the

hyperplane that maintains the maximum distance (or

‘‘margin’’) to both the closest disease sample point xi,

where the corresponding label yi= + 1, and the closest

non-disease sample point xj, where the corresponding

label yj =� 1. This hyperplane is the unique classifier

that makes the least mistakes when future data are

presented. Using the machinery of Lagrange multi-

plier, such a hyperplane can be found by solving the

following linearly constrained convex quadratic pro-

gramming problem [32]:

Maximize

L(a) =Riai� 1
2Ri, jaiajyiyj�xixj

with constraints

Riaiyi= 0, and aiz 0

Because this is an optimization problem on convex

set, the solution found is automatically guaranteed to

be the global solution. This offers an important

advantage not shared by other classifiers such as the

neural network, where one often encounters the prob-

lem of local optimum in the training phase.

Since the data points xi and xj only enter the opti-

mization problem as the inner product, we can replace

xi�xj with a kernel transformation: K(xi,yj) =/(xi)�/(xj).

Fig. 12. Classification by 3-nearest neighbor method using the top

100 most differentially expressed genes selected as in Fig. 8. The

training set contains 11 AML samples (marked as M) and 27 ALL

samples (marked as L). All are classified correctly by the 3NN

method. Results of classification of the test set are plotted here.

There are 14 AML samples (marked as M) and 20 ALL samples

(marked as L) in the test set. Two samples are misclassified by the

3NN method, and are marked by circles. Samples are plotted by the

first two principle components.
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This amounts to applying a nonlinear mapping / to

the input data and project it to a high-dimensional

space. If kernels are chosen appropriately, non-sepa-

rable data points in the original space will become

separable in the space of / [35]. Frequently used

kernels include the inhomogeneous polynomial ker-

nel, which takes the form of K(xi,xj)=(xi�xj+ 1)p, and
Gaussian radial basis function kernel K(xi,xj) =

exp(�Nxi� xjN
2/(2r2)).

Because a large data set is involved, solving the

quadratic programming efficiently is crucial in devel-

oping an effective SVM classifier. Recent develop-

ment in subset selection [36] methods such as

Sequential Minimal Optimization (SMO) [37] allows

practical implementation of SVM for solving classi-

fication problems involving very large data sets such

as gene array data. In a recent study, Ben-Dor et al.

[38] described successful application of SVM with

linear and quadratic kernels to classify tumor and

normal tissues for colon, ovarian, and bone marrow

samples. Brown et al. [39] tested several SVMs using

different similarity metrics on gene expression data

and found that SVMs have the best performance

among several classifiers in successfully identification

of sets of genes involved in a common biological

function. SVM has also been used for identifying

biologically active chemical compounds as drug can-

didates [40].

5. Identify individual signature genes and groups

of signature genes

Recent studies indicate that there are large sets of

genes displaying coordinated expression in samples of

similar biological phenotype [5]. For example, differ-

ent classes of malignancies can often be segregated

based on the ‘‘signatures’’ of coordinated expressions

of clusters of genes. These signatures reveal different

biological features of the sample. How do we identify

signature genes and gene clusters associated with

specific phenotypes?

5.1. Signature genes

We discussed earlier two methods (t-test and Wil-

coxon test methods) for identifying differentially

expressed genes. If samples are divided into two

groups of different phenotypes, these methods can

also be applied to identify signature genes. Those

genes with significant p-values can be identified as

candidate marker genes. To explore the possibility for

these genes as candidate marker genes for tasks such

as diagnosis, further bioinformatics analysis and pre-

diction of transmembrane helices [41], signal peptide

[42], and subcellular location [43] will be necessary.

Those genes located on membranes may be suitable as

target proteins for antibodies, and those secreted into

serum will be candidate targets for developing diag-

nostic markers.

5.2. Group of signature genes

If a gene cluster contains many more discriminat-

ing genes with p-values significantly different from

the average, this gene cluster can be identified as a

‘‘signature gene cluster’’.

It is possible that several non-correlated genes

collectively may provide strong discriminating sig-

nals. To identify such signature genes, we first choose

a measure to describe how separable data from differ-

ent groups are. To define the (class separability) [20],

we calculate the within-class scatter matrix Sw, which

is the weighted combination of the covariance matri-

ces, S1 and S2, for data of groups 1 and 2:

Sw ¼ p1R1 þ p2R2

where Ri =E[(x� li )(x� li )
T], ia1,2, xagroup i, p1

and p2 are the a priori probability of groups 1 and 2.

We then calculate the mixture scatter matrix Sm:

Sm ¼ E½ðx� lÞðx� lÞT 	, iagroups 1 and 2

where l is the mean of the data after combining

groups 1 and 2. Our class separability is defined as

[20]:

J ¼ traceS�1
w Sm

This is a generalization of the commonly used Fish-

er’s discriminant ratio, which is in turn similar to the

t-statistic. J is large when samples are well clustered

around their mean within each class, and the clusters

of the different classes are separated well.

We can use a simple heuristic sequential forward

seletion method to select a subset of k genes. Our goal
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is to maximize class separability J. We initially

calculate the J value for each individual gene. After

selecting the best gene x1 with the largest J value, we

form all possible pairs that contain x1 and another

gene, and calculate their J values. We pick the win-

ning pair (x1, x2) which has again the better J value.

This process is repeated until we have found k genes.

The five most informative genes for distinguishing

ALL and AML samples in our study (Figs. 9, 10 and

11) are chosen using this approach.

6. Beyond gene expression profiles

Gene expression profiling experiments can provide

additional biological insight when further integrated

and interpreted with other bioinformatics analyses. In

this section, we briefly discuss how expression profil-

ing and genomic sequence analysis can help to iden-

tify transcription factor binding sites, a fundamental

problem in developmental biology and cancer biol-

ogy. We then discuss how gene expression profiling

can help to suggest and clarify mechanisms of drug

actions when analyzed in conjunction with drug

activity profiling experiments and cheminformatics

studies of chemical compounds.

Motif detection of upstream regulatory region. For

genes clustered together that share the same expres-

sion patterns, it is important to further investigate

whether they share the same control elements such

as transcriptional regulatory sites in the upstream

regions. Genes sharing control elements will likely

respond similarly to developmental change and envi-

ronmental stress. Knowledge of genes controlled by

the same transcription factor therefore is critical in

understanding the regulatory and metabolic genetic

networks.

A basic approach to identify simple control ele-

ments in the upstream regions is to enumerate all

possible candidate motifs and evaluate statistical sig-

nificance of their occurrence against a null or random

model. In a recent study of yeast genome [44], the

observed frequencies of all possible oligonucleotides

up to length of 9 were compared to the frequencies

expected from a null model, and candidate motifs

were identified based on estimated statistical signifi-

cance. In this study, all sequences in the non-coding

region were used to estimate the expected frequencies

Fe(b) of the null model for each possible oligonucleo-

tide b. The number of expected occurrences for each

oligonucleotide b under this null model is: Fe(b)�T.
Here, T is the total number of possible matching

positions for an oligonucleotide of length w, across

both strands of a set of upstream sequences. Assuming

that there are S upstream sequences and all are of the

same length L, then for each sequence, there are

L�w + 1 possible matching positions in one of the

two directions, and therefore: T= 2�S�(L�w + 1). The

statistical significance can be evaluated using a bino-

mial model. The probability of observing n occurren-

ces of b is:

Pðb,occur ¼ nÞ ¼ T !

ðT � nÞ!n! FeðbÞnð1� FeðbÞÞT�n

and the probability to observe n or more occurrences

of b is:

Pðb,occurznÞ ¼ 1�
Xn�1

j¼0

Pðb,occur ¼ jÞ

Over-represented oligonucleotides in the yeast

genome detected by this method are frequently found

to be regulatory sequences previously confirmed by

experiments. For example, the motif CGTTCC is

found to be a control element of the YAP gene family,

whose expression levels are induced more than two-

fold by the controlled expression of the Yap1p gene in

a cDNA microarray study [10]. This approach is very

effective in discovering short motifs with a highly

conserved core. It has been extended to detect motifs

that consist of two trinucleotides separated by a gap

[45].

The above approach does not perform well when

control elements are long and have higher internal

variation. Motif detection algorithms such as those

based on Gibbs sampler can be applied to detect more

complex control elements. Developed originally for

multiple sequence alignment [46–49], different var-

iations have been shown to be successful in detecting

complex motifs of control elements of co-expressed

genes studied in microarray experiments [50–52]. We

refer to Refs. [53,54] for details of Gibbs sampler and

general Markov Chain Monte Carlo methods applied

in sequence analysis.
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Microarray studies and drug discovery. Another

important area of microarray research is to combine

gene expression profiling with chemical and pharma-

cological studies such as drug response profiling

studies pioneered by researchers at National Cancer

Institute (NCI). The goal is to discover novel pharma-

cological mechanism, and to understand and suggest

novel hypotheses of toxicity of chemical compounds,

which are critical problems of drug development.

A useful resource is the National Cancer Institute

(NCI) compound-cell line database. NCI has screened

a large number of chemical compounds to identify

potential anticancer drugs. The profiles of sensitivities

of 60 cell lines to 70,000 different compounds have

been collected and made available publicly. These 60

cell lines are derived from many different types of

cancer, and the NCI data therefore provide important

information about the mechanism of drug action,

resistance and modulation [55].

To analyze the patterns of drug actions, clustering

algorithms can be applied to the profiles of drug

activities for the 60 cell lines. Strong groupings often

were observed for cell lines from different tissue

origins. This is different from clustering by gene

expression profiles, where samples from the same

tissues are usually clustered together. This difference

reflects that only the activities of a subset of genes

important to drug sensitivity and resistance are rele-

vant. For example, cell lines from different tissues

expressing the multi-drug resistance gene MDR1 all

have similar drug activity profiles [55].

Clustering by drug activity profiles can reveal

different drug mechanisms. For example, drugs inhib-

iting tubulin monomer polymerization and drugs

inhibiting tubulin depolymerization are found to

belong to two different clusters. It can also suggest

new mechanisms of drug activity. Fore example, 5-

fluorouracil (5-FU) is an antimetabolite to treat color-

ectal and breast cancer. It can act on both DNA and

RNA, but the clustering with RNA synthesis inhib-

itors suggests that its dominant mechanism is likely to

be inhibition of RNA synthesis.

The gene expression profiles of the 60 cell lines

[55] can be analyzed together with profiles of drug

activities, with the goal to relate changes in gene

expression to drug sensitivities. For each pair of

chemical compound and gene from the set of n genes

and the set of m chemical compounds, the correlation

of drug activity profile across the 60 cell lines and the

gene expression profile across the same 60 cell lines

can be assessed. For each compound, there are n such

drug–gene correlation coefficients. These correlation

coefficients can be used to cluster the m compounds.

Such combined drug activity and gene expression

profile analysis can suggest a causal relationship

between gene and drug. In the case of 5-FU and

dihydropyrimidine dehydrogenase (DPYD), strong

causal relationships are suggested based on consider-

able experimental evidence and significant negative

correlation between the expression of DPYD and the

potency of 5-FU against the 60 cell lines, accumulated

experimental knowledge [55]. Another causal rela-

tionship suggested is the lack of expression of aspar-

agine synthetase (ASNS) and sensitivity of cell lines

to exogenous L-asparaginase [55].

Microarray gene expression and drug response

profiling can be further combined with cheminfor-

matics studies. The molecular structures of low

molecular weight compounds are used to generate

molecular descriptors that are then used to predict the

physicochemical properties and drug activities of

compounds. The mix of gene expression studies, drug

response studies, and the computation of molecular

structures is a very useful approach of great promise.

More details of research on this line can be found in

Refs. [56–60].

Outlook. Microarray-based gene expression profil-

ing experiments allow the monitoring of global

changes of gene transcripts of cells. It already has

had a profound impact in diverse fields of biomedical

research such as pathology, cancer biology, diagnosis

and developmental biology. With the gradual adoption

of the practice of repeated experiments using multi-

plicative samples by practitioners, computational

analysis of microarray data can provide more bio-

logical insights and generate more interesting hypoth-

eses. To a large extent, the utility of microarray studies

will depend on the experimental design: what bio-

logical question can be studied with what available

biological samples using what biological techniques

under what perturbation. As an example, a challenge

in microarray studies is the heterogeneity of biological

samples from different tissues. Although laser micro-

dissection can provide a more homogeneous source of

cells, the number of cells that can be harvested

remains small, and experimental linear amplification
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techniques so far have not been rigorously validated.

In this context, clever design strategy such as the

application of various tissue specific inhibitors may

prove to be useful.

Another major bioinformatics challenge of micro-

array analysis is the global integration of microarray

studies of different tissues and cell lines under various

different conditions from different investigators. Yet

another challenge is to integrate microarry expression

profiles with other bioinformatics analyses, for exam-

ples, the detection of membrane proteins as potential

markers, the discovery of previously unknown bio-

logical roles by combining expression studies and the

detection of sequence/structure function motifs, as

well as integration with pharmacological and chem-

informatics studies. Ultimately, the integration of gene

expression under various conditions with the analysis

of multiple bioinformatics tools will help to tease out

various components of regulatory and metabolic

genetic networks of cells.
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