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ABSTRACT

Computed Atlas of Surface Topography of proteins
(CASTp) provides an online resource for locating,
delineating and measuring concave surface regions
on three-dimensional structures of proteins. These
include pockets located on protein surfaces and
voids buried in the interior of proteins. The measure-
ment includes the area and volume of pocket or
void by solvent accessible surface model (Richards’
surface) and by molecular surface model (Connolly’s
surface), all calculated analytically. CASTp can be
used to study surface features and functional regions
of proteins. CASTp includes a graphical user inter-
face, flexible interactive visualization, as well as on-
the-fly calculation for user uploaded structures.
CASTp is updated daily and can be accessed at
http://cast.engr.uic.edu.

INTRODUCTION

Protein performs its function through interaction with other
molecules such as substrate, ligand, DNA and other domains of
proteins. The three-dimensional structure of protein provides
the necessary shape and physicochemical texture to facilitate
these interactions. Structural information of protein surface
regions enables detailed studies of the relationship of protein
structure and function. Specifically, characterization of protein
surface regions helps to analyze enzyme mechanism, to
determine binding specificity and to plan mutation studies. It
can also help to identify the biological roles of newly solved
protein structures with an unknown function.

CASTp SERVER: VOIDS AND POCKETS OF
PROTEINS

The CASTp web server aims to provide a comprehensive and
detailed quantitative characterization of interior voids and
surface pockets of proteins, which are prominent concave
regions of proteins that are frequently associated with binding
events (1,2). CASTp is based on the alpha shape and the

pocket algorithm developed in computational geometry (2,3).
In CASTp, voids are defined as buried unfilled empty space
inside proteins after removing all hetero atoms that are
inaccessible to water molecules (modeled as a spherical
probe of 1.4A) from outside (4). Pockets are defined as
concave caverns with constrictions at the opening on the
surface regions of proteins. Unlike voids, pockets allow easy
access of water probes from the outside.

CASTp identifies all pockets and voids on a protein structure
and provides detailed delineation of all atoms participating in
their formation. It also measures the volume and area of each
pocket and void analytically, using both the solvent accessible
surface model (Richards’ surface) and molecular surface model
(Connolly’s surface). In addition, it measures the size of mouth
openings of individual pockets, which helps to assess the
accessibility of binding sites to various ligands and substrates.
CASTp computation has been shown to be useful in a number
of biological studies (5-10). The underlying algorithm and
example of applications have been described elsewhere (2,3).

The CASTp server, in its most current release, was updated
in January 2003. The previous version was launched in 1998 at
the University of Minnesota. It is listed in the Research
Consortium of Structural Bioinformatics PDB website at the
San Diego Supercomputing Center (http://www.rcsb.org/
pdb/), a central portal of structural bioinformatics worldwide.
CASTp allows access to information of computed pockets
and voids for structures in the Protein Data Bank (PDB).
The server currently contains characterization of 1322538
pockets and voids that have been computed from 19 161
protein structures from the PDB. The CASTp server is updated
nightly with new PDB entries.

USING CASTp

An intuitive graphic user interface allows querying of the
CASTp server by typing the four letter PDB name of a protein
structure, by keyword searching or by submitting their own
molecular structure in the PDB format. Figure 1 shows the
form for requesting a CASTp calculation. When querying by
keyword, a list of relevant PDB structures are returned as
obtained by redirecting to RCSB’s PDB query site.

For visualization, the user has the choice of using Chime
plug-in developed by MDL Information Systems or Mage
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Figure 1. An intuitive graphic user interface allows users to request a CASTp calculation by typing the four letter PDB name of a protein structure, by keyword
searching or by submitting their own molecular structure in the PDB format. For visualization, the user has the choice of using MDLs Chime plug-in (Windows,
MacOS and IRIX only) or Mage (11) java applet. In addition, users may also elect to have results emailed back as files.

developed in the Richardson laboratory at Duke University
(http://kinemage.biochem.duke.edu) (11). Chime is a browser
plug-in that runs under Windows, MacOS and IRIX. This is a
good choice for Windows 95/98/NT/2000 or IRIX. Mage
is a Java applet that requires only a Java-enabled browser. This
is a good choice for Linux platforms.

Figure 2 shows the binding site pocket on the catalytic
domain of protein kinase A (pdb 2cpk) that is automatically
identified by CASTp. Protein kinase A is an important enzyme
in the signal transduction of vertebrates, participating in
the regulation of glycogen synthesis, fatty acid synthesis, the
oxidation of pyruvate to acteyl-CoA, mobilization of triacyl-
glycerols and other processes. Many functionally important
residues in the catalytic domain are located in this pocket,
including the whole of the glycine rich loop (GTGSFGAV)
starting from residue 50 that anchors ATP to the protein, the
invariant K72 important to the optimum activity of the enzyme,

the stabilizing E91 which forms a salt bridge with K72, residue
E127 known to bind to the pseudosubstrate synthetic inhibitor,
residue K168 in the catalytic loop which neutralizes the local
negative charge of the gamma phosphate of the ATP, residue
N171 which stabilizes the catalytic loop through hydrogen
bonding to the backbone carbonyl of D166 (which is also
identified) and residues D184 and G186 in the well-conserved
triplet of DFG, where D184 is an invariant residue for orienting
the gamma phosphate of MgATP for transfer to the substrate
(12). Additional recent examples showing how CASTp
computations have been used can be found in the literature
(13-17).

Once a protein is loaded in the browser, the user can
interactively interrogate the protein structure. In addition to the
simple manipulations built in to Chime plug-in and
Mage applet (i.e. rotation, translation, zoom in/out), the user
interface also allows selective highlighting of individual
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Figure 2. Visualization of ATP binding pocket automatically identified on the structure of the catalytic subunit of protein kinase A (pdb 2cpk). It is the largest
pocket and contains the following residues: L49, G50, T51, G52, S53, F54, G55, R56, V57, A70, K72, L74, V79, N84, H87, T88, E91, L95, V104, M120,
E121, Y122, V123, E127, D166, K168, E170, N171, L173, T183, D184, G186, F187, G200, T201 and F327. A large number of these residues are known to

be functionally important (see http://www.sdsc.edu/kinases/) (12).

pockets. Summary information of measurement of individual
pocket and void is conveniently displayed in a scrolling menu.
Selection of a specific pocket from this menu also reveals the
wall atoms comprising the pocket in a separate small window.
By typing in the name and number of a residue, the user can
easily identify the pocket or void that contains a particular
residue.

Users may also choose the ‘Email only’ option to obtain
results via email attachment. These include the following files:
summary information of pockets and voids, summary
information of mouth openings of pockets, atomic delineation
of pocket walls, atomic delineation of mouth rims and a
RasMol (18) and a kinemage (11) visualization script.

CASTp also supports on-the-fly calculations of voids and
pockets on a structure uploaded by user. The user only needs to
submit the coordinate file of a structure in the PDB format.

When the calculation is finished, a visualization window will
be opened. The results will also be emailed as an attachment to
the user if requested. An added feature for the calculation of
uploaded structures is that the user can adjust the probe radius
to any values between 0.0 and 10.0 A.

AVAILABILITY

CASTp can be freely accessed on the World Wide Web at
http://cast.engr.uic.edu.
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