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Non-synonymous single-nucleotide polymorphism (nsSNP) of genes
introduces amino acid changes to proteins, and plays an important role
in providing genetic functional diversity. To understand the structural
characteristics of disease-associated SNPs, we have mapped a set of
nsSNPs derived from the online mendelian inheritance in man (OMIM)
database to the structural surfaces of encoded proteins. These nsSNPs are
disease-associated or have distinctive phenotypes. As a control dataset,
we mapped a set of nsSNPs derived from SNP database dbSNP to the
structural surfaces of those encoded proteins. Using the alpha shape
method from computational geometry, we examine the geometric
locations of the structural sites of these nsSNPs. We classify each nsSNP
site into one of three categories of geometric locations: those in a pocket
or a void (type P); those on a convex region or a shallow depressed region
(type S); and those that are buried completely in the interior (type I). We
find that the majority (88%) of disease-associated nsSNPs are located in
voids or pockets, and they are infrequently observed in the interior of pro-
teins (3.2% in the data set). We find that nsSNPs mapped from dbSNP are
less likely to be located in pockets or voids (68%). We further introduce a
novel application of hidden Markov models (HMM) for analyzing
sequence homology of SNPs on various geometric sites. For SNPs on sur-
face pocket or void, we find that there is no strong tendency for them to
occur on conserved residues. For SNPs buried in the interior, we find
that disease-associated mutations are more likely to be conserved. The
approach of classifying nsSNPs with alpha shape and HMM developed
in this study can be integrated with additional methods to improve the
accuracy of predictions of whether a given nsSNP is likely to be disease-
associated.
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Introduction

Single-nucleotide polymorphisms (SNPs) are the
most common form of human genetic variation.
The coding regions of the human genome contain
about 500,000 SNPs.1 Among these, the non-
synonymous SNPs (nsSNPs) cause changes in the
amino acid residues, and are likely to be an import-
ant factor contributing to the functional diversity of

encoded proteins in the human population.2 There
are well known examples where nsSNPs affect the
functional roles of proteins in signal transduction
of visual, hormonal and other stimulants,3,4 in
gene regulation by altering DNA and transcription
factor binding,5 and in maintaining the structural
integrity of cells and tissues.6 In addition, by affect-
ing drug-target proteins such as G-protein coupled
receptors,7 enzymes,8 ion channels9 and proteins
involved in the detoxification pathways,10 nsSNPs
play important roles in the diverse responses in
efficacy and toxicity of the human population to
therapeutic agents.

nsSNPs can affect human physiology through
many different mechanisms. nsSNPs may inacti-
vate functional sites of enzymes11 or alter splice
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sites and thereby form defective gene products.12

They may destabilize proteins, or reduce protein
solubility.13 To understand the mechanism of
phenotypic variations due to nsSNPs, it is import-
ant to assess the structural consequences of the
alteration of amino acid residue. A classical
example is sickle-cell anemia, the first molecular
disease discovered.14 First studied by Sir John
Kendrew 50 years ago, sickle-cell anemia results
from a single base change and residue V is changed
to E at position 6 of the beta chain of hemoglobin.
This residue is located at the interface of the alpha
and beta chains, and the E6V mutation reduces
the solubility of the deoxygenated form of hemo-
globin markedly. The knowledge of structural role
of this mutation is essential for understanding the
disease mechanism of sickle-cell anemia.

With the advent of high-throughput SNP detec-
tion techniques, the number of known nsSNPs is
growing rapidly, providing an important source of
information for studying the relationship between
genotypes and phenotypes of human diseases. An
important study has shown recently that there is a
strong correlation between disease-associated poly-
morphism and sites of low solvent-accessibility.15

In this study, we introduce new geometric classifi-
cations for characterizing disease associated SNPs.
Here, we attempt to align SNPs to protein surface
pockets and voids that may be potential functional
binding regions.

Results

Many disease-associated nsSNPs are located
in pockets or voids

Compared to control nsSNPs, disease-associated
nsSNPs derived from the online mendelian inheri-
tance in man (OMIM) database are more likely to
be located in well-formed surface pocket or void
locations. Of the disease-associated nsSNPs
derived from OMIM, 88% are located in pockets
or voids (with 95% confidence interval of 77–
100%), while 68% of non-disease control SNPs are
located in pockets or voids (with 95% confidence
intervals of 55–83%). An example of this type of
nsSNP is insulin receptor tyrosine kinase. Its
enzyme activity is essential for insulin-stimulated
glucose transport in adipose, muscle and liver
cells. In the disease-associated database derived
from the OMIM database, several nsSNP variant
alleles of insulin receptor kinase are mutations of
residues A1134 and M1153. Residue A1134 (red)
(PDB code 1ir3, Figure 1(a)) is a highly conserved
residue located in a consensus sequence found
in most tyrosine kinases.16 This residue is
mapped to a large binding pocket (green) for 50-
adenyly-imido triphosphate (ANP, yellow) and
Mg2þ (blue), and is close to both the Mg2þ and the
ANP ligand. Residue M1153 (red) is located in a
smaller pocket (purple) near the ANP binding
site. An M1153 mutation causes a defect in receptor

internalization relative to normal receptors, and
was demonstrated to cause insulin resistance.17,18

There are additional examples of disease-associ-
ated nsSNPs located in pockets or voids. These
examples indicate that when an nsSNP causes a
mutation in an important protein surface pocket,
there is an increased probability that such an
nsSNP may alter protein function, leading to
various disease phenotypes.

Disease-associated nsSNPs on convex regions
and shallow depressed region

If a convex region or a shallow depressed region
of a protein participates in binding with other pro-
tein or membrane, nsSNPs on these regions may
also cause diseases. For example, polycystic kidney
disease (PKD) is an autosomal dominant disorder
leading to renal cysts, liver cysts, intracranial
aneurysm, and hypertension. The PKD1 gene
encodes a membrane protein, polycystin-1, which
is essential for cell–cell interactions. A disease-
associated nsSNP variant allele of the PKD1 gene
was identified as a missense R324L mutation in
exon 5.6 Residue R324 (red) (PDB code 1b4r, Figure
1(d)) is located on a convex region of the surface of
the PKD domain. It is likely that this region is
important for heterodimerization, and the R324L
mutant form of PKD1 is incapable of such oligo-
merization, resulting in the loss of channel activity.
Disease nsSNPs are far less likely to be located in
shallow depressed regions or convex regions
(8.6% versus 27%, at 95% confidence intervals of
4.9–12.9% and 19–36% for disease and non-disease
SNPs, respectively. See Tables 1 and 2).

nsSNPs in buried protein interior

The nsSNPs in our data set are less likely to be
fully buried in the core of the proteins. Only 30
out of 924 OMIM nsSNP sites are located in the
buried interior of the protein. An example is the
estrogen receptor (ER), which is a nuclear receptor.
Breast cancer patients possessing ER typically have
a lower risk of relapse and better overall survival.19

The variant in our database, a C447A mutant of ER,
displayed a dose-response shift for estradiol in
transactivation studies.20 C447 (red) (PDB code
3ert, Figure 1(g)) is located in a tightly packed
region of the protein. It has 30 atomic contacts
with 12 residues, including two ionizable residues
(E443 and E444), two polar residues (S450 and
T485), and one aromatic residue (F445). The substi-
tution of a Cys residue by a short Ala residue pre-
sumably leads to the loss of many favorable
contacts and hence the loss of thermal stability
and binding affinity.

Why are disease-associated nsSNPs observed
infrequently in truly buried sites? One reason may
be that many buried residues are not accessible for
molecular recognition, and mutations on these
sites do not affect the binding events of the protein
directly. In addition, mutations in the protein core
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frequently do not affect the stability of a protein
strongly.21 Theoretical studies of design patterns of
protein folding show that proteins with stable
structures often are tolerant to mutation.22 An
additional reason could be that if a residue in the
protein core is critical for protein folding stability
or for folding kinetic accessibility, it is likely that a
mutation at this site will be fatal and such
genotype may be eliminated early in the stages of
evolution, and hence not observed in current
human population.

SNP locations and conserved residues

In this study, we attempt to provide an evol-
utionary perspective on disease SNPs. We address
this question by introducing a novel technique
using hidden Markov models (HMMs) for classify-
ing SNPs. An important application of HMMs is to
align protein subsequences to conserved HMM
motif regions. For positions in conserved motif
regions (called a match state or an alignment state
in an HMM model), the relative entropy is low.
Regions of a protein that are not well conserved

are aligned to high-entropy positions (called insert
states in an HMM model). One intuitive theory
might suggest that a disease SNP is likely to be
associated with a highly conserved residue, since
evolution may potentially select against frequent
mutations in sites where changes might be harm-
ful. In this study, we attempt to gain an insight
into this question by correlating geometric
locations of disease SNPs and the degree of their
conservation in the protein family.

We divide all SNPs into the following five
categories:

1. SNP amino acid is the same as HMM consen-
sus amino acid in the aligned position (AP)
and the latter is highly conserved;

2. SNP amino acid is the same as HMM consen-
sus amino acid in AP and the latter is not
highly conserved;

3. SNP amino acid is different from HMM
consensus amino acid in AP that is con-
served;

Figure 1. Geometric locations of
nsSNPs. About 88% of the
structural sites of nsSNPs are
located in a pocket or void of the
protein (type P), about 8.6% are on
the rest of the outer surfaces (type
S), which are either convex regions
or shallow depressed regions.
About 3.2% are fully buried in the
interior (type I). Examples of
geometric sites of nsSNPs: (Top
level from left to right) (a) Insulin
receptor tyrosine kinase (1ir3).
nsSNP sites are colored red.
Residue A1134 (red) is located in
the large binding pocket (green) of
ANP ligand (yellow) and Mg ion
(blue). M1153 (red) is in a smaller
pocket (purple) near the ANP
binding site. (b) Alcohol dehydro-
genase (1htb). Residue R47 (red) is
located in the NAD (yellow)
binding pocket (green), and R369
(blue) is near this pocket. (c) Iso-
valeryl-CoA dehydrogenase (1ivh).
G170 (red) is located in a small
pocket (green) away from the FAD
(yellow) and CoA persulfide
binding site. (d) PKD domain from
polycystin-1 (1b4r). R324 (red) is
located on a convex region of the
protein. (e) Fructose-bisphosphate
aldolase (4ald). Residue 128 (red) is
located on a convex region of the
protein surface. (f) Carbonic
anhydrase I (1azm). Residue 253
(red) is at an exposed convex region

away from the substrate binding site. (g) Estrogen receptor (3ert). C447 (red) is located in a tightly packed region of the
protein with 30 atomic contacts with 12 residues.
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4. SNP amino acid is different from HMM
consensus amino acid in AP that is not
conserved;

5. HMM data could not be calculated.

The first category corresponds to our intuition
about disease SNPs, that many disease-associated
SNPs might be highly conserved residues. The bio-
logical reality appears more complex. The second
category includes SNPs that are not located in con-
served positions or SNPs in positions where the
conservation is relatively weak. It is well known
that amino acid residues at many positions can be
substituted and the protein still maintains a given
function. The third category includes SNPs aligned
to relatively conserved positions but the SNP resi-
due is not the same as the conserved residue. This
category is not expected to occur often. Indeed, if
the HMM “decides” to align the pre-mutation

residue to a position where a different and highly
conserved amino acid is usually located, then the
alignment score is decreased as a result. This mis-
alignment can be compensated only by scores
from strong alignment at other positions. The
fourth category is a “noise” category that could be
a result of an incorrect alignment or other features
of the probabilistic model (Tables 1 and 2).

These four HMM-based classifications can be
contrasted and correlated to the geometric struc-
tural locations of SNPs obtained from the alpha
shape calculations. SNPs can be classified into
four groups according to the geometric locations
predicted by the alpha shape: pocket, surface,
interior, and not predicted. The intersection of
these categories generates 5 £ 4 ¼ 20 different
groups. The results for 15 of the 20 groups where
alpha shape calculations are available are summar-
ized in Tables 1 and 2.

Table 1. Sequence conservation and geometric location of disease-associated nsSNP sites

Alpha shape predicted

Category Pocket Surface Interior Totals
After removing

Cat. 5

1. Consensus, conserved 202 (178–226) 23 (14–33) 14 (7–22) 239 (199–281) 28% (23–32%)
22% (19–24%) 3% (2–4%) 2% (0.8–2.4%) 26% (22–30%)

2. Consensus, not conserved 250 (224–276) 26 (17–36) 7 (2–13) 283 (243–325) 33% (28–38%)
27% (24–30%) 3% (2–4%) 0.76% (0.22–1.4%) 31% (26–35%)

3. Not consensus, conserved 261 (234–287) 19 (11–27) 8 (3–14) 288 (248–328) 33% (29–38%)
28% (25–31%) 2% (1–3%) 0.87% (0.32–1.5%) 31% (27–35%)

4. Not consensus, not conserved 48 (35–62) 7 (2–13) 0 (0–1) 55 (37–82) 6.4% (4.3–9.5%)
5% (4–7%) 0.76% (0.21–1.2%) 0.00% (0–0.1%) 6% (4–9%)

5. No HMM alignment 53 (41–68) 5 (1–10) 1 (0–3) 59 (42–81) N/A
6% (4–7%) 0.54% (0.1–1%) 0.11% (0–0.32%) 6% (5–9%)

Totals 814 (712–925) 80 (45–119) 30 (12–53) 924 865
88% (77–100%) 8.6% (4.9–12.9%) 3.2% (1.3–5.7%)

The 95% confidence interval is given in parentheses for each value.

Table 2. Sequence conservation and geometric location of nsSNP sites from dbSNP

Alpha shape predicted

Category Pocket Surface Interior Totals
After removing

Cat. 5

1. Consensus, conserved 39 (27–51) 9 (4–15) 1 (0–3) 49 (31–69) 11% (7–16%)
7% (5–9%) 2% (7–3%) 0.18% (0–0.54%) 9% (6–12%)

2. Consensus, not conserved 54 (42–69) 21 (13–30) 3 (0–7) 78 (55–106) 18% (13–24%)
10% (7–12%) 4% (2–5%) 0.54% (0–1.6%) 14% (10–19%)

3. Not consensus, conserved 149 (129–172) 57 (44–72) 11 (5–18) 217 (178–262) 50% (41–60%)
27% (23–30%) 10% (8–13%) 2% (0.9–3%) 39% (32–47%)

4. Not consensus, not conserved 57 (42–71) 33 (22–44) 4 (1–9) 94 (85–124) 21% (19–28%)
10% (8–13%) 6% (4–8%) 0.72% (0.18–1.4%) 17% (15–22%)

5. No HMM alignment 82 (66–98) 30 (21–40) 8 (3–14) 120 (90–152) N/A
15% (12–18%) 5% (4–7%) 1% (0.54–2.5%) 22% (16–27%)

Totals 381 (306–461) 150 (104–201) 27 (9–51) 558 438
68% (55–83%) 27% (19–36%) 4.8% (2–9%)

The 95% confidence interval is given in parentheses for each value.
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Several interesting observations emerge from
our analysis using HMM models and alpha shape
calculations. First, it appears that for disease-
associated SNPs located in the interior of proteins,
they are more likely to be aligned to the most prob-
able residue of a position in a conserved region of
the HMM model (category 1). It is possible that if
a disease SNP falls within the interior of a protein,
and if it is at a well-conserved location, it is likely
that the damage would be dramatic. Since residues
at most interior positions are unlikely to be
involved in protein function directly, the conserved
residues may be important for protein stability or
folding accessibility, and mutations there are likely
to have severe phenotypic changes and may be
eliminated quickly by evolution. Second, for dis-
ease-associated SNPs located in protein surface
pocket and surface regions, we found that they
are distributed evenly among the first three HMM
categories, and are less likely to be from the fourth
“noise” category. That is, for disease nsSNP located
on pockets and surfaces, there is a significant
fraction of them that do not matched to highly con-
served sites (not category 1). This is in contrast to
our anticipation that the majority of disease SNPs
would align to highly conserved residues. It is
interesting to note, however, that if the SNP and
the consensus residue are different (categories 3
and 4) the position is much more likely to be
conserved.

The data from the control set of nsSNPs that lack
evidence of disease and other significant pheno-
typic changes shows a different pattern. These
nsSNPs are less likely to be located on well-formed
existing protein surface pockets. In addition, it
appears that for all structural classes of non-
disease-associated SNPs, they are most likely to
differ from the consensus residue (categories 3
and 4). After removing SNPs where HMM align-
ments are not available, we find that for non-
disease-associated nsSNPs the percentage of
residues that are not the consensus residues is
70.9%, 49.5% of which are located in a conserved
region, and 33.3% are not located in a conserved
region. In contrast, about 39.7% of disease associ-
ated nsSNPs are not the same as the consensus
residues, of which 33.3% are located in a conserved
region and 6.4% are located in a variant region. The
difference is especially significant for the SNPs
located in the interior of proteins. Where it was
most likely to lie in a conserved position for the
disease-associated SNPs, almost no interior SNPs
are found to be conserved in the control set.

Discussion

In this study, we have described a new approach
for SNP classification. For SNPs that can be
mapped to protein structures, we classify them
into three geometric sites: those in a pocket or a
void, those on a convex region or a shallow
depressed region, and those buried in the interior.

Specifically, we find that the majority of disease-
associated nsSNPs are located in voids or pockets
on proteins, and only a small number of SNPs are
buried completely in the interior (Figure 2). For
disease SNPs on surface pocket or void, there is
no strong tendency for them to occur on conserved
residues. For SNPs buried in the interior, we find
that disease-associated mutations are more likely
to be conserved. This is quite different from the
control set, in which very few interior SNPs are
conserved. Our geometric descriptions and variant
allele information are different from annotations
contained in other database, such as PFAM,23

where fold information from SCOP and active-site
information from SwissProt are provided.

A fundamental challenge in analyzing disease
SNPs is the relative scarcity of alleles that can be
mapped to three-dimensional protein structures.
To gain some understanding of the robustness of
the observed statistics of disease and non-disease
nsSNPs at different geometric location with
different conservation, we employed the bootstrap
technique to assess the 95% confidence intervals.
This allows us to point to some tentative obser-
vation with the safe-guard of statistical evidence
in the form of fairly conservative confidence inter-
vals. Although ultimately large amounts of future
data will be needed to sharpen results obtained in
this study, we believe our analysis provides a use-
ful picture of the molecular structural nature of
disease nsSNPs.

Non-disease-associated nsSNPs are apparently
under different selection pressure. Although in
this study we have not employed detailed phylo-
genetic analysis and a rigorous conclusion cannot
be drawn, we found that nsSNPs not associated
with disease are occurring more frequently in
positions of genes whose wild-type residue is
already different from that of the consensus
residue (categories 3 and 4). That is, if one assumes
that the consensus residue represents the protein
family well, nsSNPs that do not impact phenotypes
occur frequently in sites of genes that have already
diverged from the consensus residue, the latter

Figure 2. The distribution of disease and non-disease
nsSNPs at different geometric locations.
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may be similar to the residue in the ancestral gene.
In contrast, for disease-associated nsSNPs, they are
more likely to be mutations from the consensus
residues (categories 1 and 2), indicating that con-
sensus residues at these sites are phenotypically
important.

Disease nsSNPs are found to be far less likely to
be located in shallow depressed regions or convex
regions of protein. This may indicate that protein–
protein interaction and membrane binding inter-
face is not a great source of disease-causing
nsSNPs. This observation is consistent with current
understanding that generic hydrophobic inter-
actions plays important role in protein–protein
interactions.24,25 Indeed, the number of hot-spot
residues that are critical for stabilizing protein–
protein interactions is small, and the majority of
mutations in the interface have little effects on the
stability of protein–protein interactions.26

The control data set extracted from dbSNP is
important for this study, because it contains mostly
alleles with no evidence of disease-causing or
strong phenotypic changes. Although it is possible
some of the nsSNPs in this set may turn out to be
disease-related if more vigorous biochemical and
clinical studies are carried out, we expect that
alleles contained in dbSNPs are mostly neutral
markers of mutations with little phenotypic
changes. We expect that if a true negative control
data set can be established, that is, if the neutrality
of each of the nsSNPs in such a set can be
established by comprehensive biochemical and
clinical studies, the observations can be made
more significant.

In a recent study,27 a set of generic structure and
sequence-derived features are developed on the
basis of lac repressor and lysozyme mutation data,
and statistical F-test and chi-square test are applied
to identify those that are predictive of functional
effects of mutations. The most discriminating
structural features are found to be solvent accessi-
bility and experimental B-factors: Our study
examines a large number of protein structures
derived comprehensively from the OMIM data-
base, and goes beyond solvent-accessibility
description and introduces geometric features that
are likely to be related to protein functions.28

The integrated structural/sequence method-
ology described in this study can be developed
further into a computational method for predicting
whether any given SNP is likely to be disease-
associated. This prediction requires using a
standard application of Bayes’ Rule in computing
the probability of an SNP being a disease SNP,
given its structural/sequence classification from
the statistics computed here; namely, the con-
ditional probability of structure/sequence class
given disease SNP and the general statistical distri-
bution of disease SNPs and structure/sequence
classes. These statistics must be combined carefully
with the more established statistical analysis of
SNPs with respect to their polymorphism across
different populations.29 As SNP projects proceed

rapidly and sufficient data has been accumulated,
the new structure/sequence methodology
described here promises to provide an improved
diagnostic capability of SNPs to be disease-
associated.

Materials and Methods

Geometric locations of mutation sites

Amino acid residues are located at different geometric
locations. Some of them are located in the interior of a
protein and have zero solvent-accessibility. Others may
be on the outer boundary surface of the protein, or on
the wall surface of an interior void. In this study, we for-
mally classify amino acid residues altered by nsSNPs to
be located at three different geometric sites: (1) in the
interior of proteins (type I); (2) on the wall of a surface
pocket or an interior void (type P); and (3) on the rest of
the boundary surface regions, which are either convex
regions or shallow depressed regions (type S) (Figure 3).
A residue is located in the interior if it is in contact with
many other residues and is buried fully, such that it is
inaccessible to a water molecule (modeled as a probe
ball of radius 1.4 Å). Voids are unfilled spaces inside the
protein that are enclosed fully by atoms. A void is suffi-
ciently enclosed if a solvent probe ball is too large to
escape. Voids are traps for probe balls. Pockets are
caverns that open to the outside of the protein through
mouths that are small relative to cavern dimensions but
big enough that the probe ball has access to the outside
of the molecule. The mouth of a pocket is narrower than
at least one cross-section of the interior of the pocket.
Depressions are concave regions on protein surfaces
that have no constriction at the mouth. From the deepest
part toward the outside, a depression widens monotoni-
cally. Residues in the interior may be part of the folding
core important for structural stability and folding. Sur-
face pockets and interior voids are frequently involved
in molecular interactions. Convex regions and shallow
depressed regions may be involved in protein–protein
and protein–membrane interfaces. These topographic

Figure 3. Any amino acid residue of a protein can be
classified into three geometric locations: those located in
a pocket or a void (type P), those located on a convex
region or a shallow depressed region of protein surface
(type S), and those that are buried completely in the
interior (type I). These locations and their geometric
types are illustrated here. Voids are enclosed completely
and have no access to the outside bulk. Pockets are con-
nected to the outside by narrow neck(s).
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descriptions of the geometric locations of mutant resi-
dues therefore may provide useful information about
the mechanism of nsSNPs affecting the functions of the
protein.

These three types of geometric sites are computed
using the alpha shape method from computational geo-
metry. Alpha shape theory is a powerful geometric con-
cept that formalizes the intuitive notion of “shapes”. It
has been applied in a variety of studies of proteins,
including protein folding, protein packing, enzyme func-
tions, ligand recognition, and protein electrostatics.28,30 – 36

Based on the weighted Delaunay triangulation and the
dual simplicial complex, it provides a mathematical
framework for studying the topological, combinatorial,
and metric properties of molecular shapes. Its theory
and implementations has been described
extensively.28,32,33,37 –40 Here, we use alpha shape software
Delcx, Mkalf, Volbl (downloadable from NCSA†), and
castP‡ to characterize the structural locations of a set of
disease-associated nsSNP. Delcx and Mkalf compute the
Delaunay triangulation and the alpha shape of the
molecules. castP identifies and measures protein voids
and pockets from the alpha shapes, and Volbl is used to
calculate the solvent-accessible surface area.

Selection of disease-associated nsSNPs

We select variant alleles of genes that are known to be
disease-producing or having distinctive phenotypes
from the OMIM database.§ Only variants that are SNPs
are included. Insertions, deletions, and other variant
types are excluded. Because the OMIM database does
not contain explicit sequence information, we further
restrict the data to the subset of variant alleles where
links to corresponding SwissProt Database entries exist.
The positions of the SNPs on a gene in its SwissProt
entry are deduced by measuring the relative distances
in residue numbers between the OMIM alleles, and then
by identifying the corresponding pairs of SNPs in Swiss-
Prot entry with the same relative distances in residue
numbers. The nsSNPs and the full sequences of the
genes are then extracted from the SwissProt database.
Following this procedure, we are able to construct a
data set of 2128 variants on 310 genes from an original
set of 5467 nsSNPs in 1061 alleles from the OMIM
database.

Selection of control nsSNPs

As a control data set, we select variant alleles of genes
that are annotated as nsSNP from dbSNP.41 Since there is
no experimental conformation that none of these nsSNPs
are associated with disease, this is not a perfect control
data set. However, we assume that a smaller fraction of
nsSNPs from dbSNP will be disease-associated when
compared to nsSNPs extracted from the OMIM database,
where each entry contains annotation of disease pheno-
type based on experimental data. We exhaustively search
dbSNP (release 103) for non-synonymous refSNPs with
location information.k

The full sequences of the corresponding genes are
then extracted from the GenBank database. These

sequences are used to search the PDB database to extract
corresponding structural information. BLASTP is used
for this task with the default settings. PDB structures
that match nsSNP containing genes with E-value ,
10250 are considered exact matches, and we select only
the highest-scoring alignment for further consideration.
From an original dataset of 9076 variants on 5049 genes,
we are able to extract structural information for 504 of
genes, which represent 973 variants.

Structural mapping of nsSNPs

It is a challenging task to determine whether a particu-
lar SNP is located on a protein surface region that may
be functionally important. Existing computational
methods such as docking at current stage are not well-
suited for automated high-throughput analysis. The
alpha shape method we introduce here provides a rapid
and objective approach, which allows automatic struc-
tural mapping and provides classification of SNPs to
different geometric sites on protein structures. We follow
the links in the SwissProt entries of the nsSNP genes to
the corresponding Protein Data Bank structures. A semi-
global pair-wise sequence alignment using dynamic pro-
gramming was performed, so the residue number in the
SwissProt entry is mapped to the residue number in the
PDB entry. Not all nsSNP alleles can be mapped, since
there are occasionally residues missing from the PDB
structure.

In the disease-associated dataset, we found that 924
variants in 82 alleles can be mapped to 129 PDB struc-
tures (some SwissProt entries have multiple PDB struc-
tures associated with them). For the control set, we
found that 558 variants in 339 alleles can be mapped to
263 PDB structures. The structural locations of these
nsSNPs are then classified into three categories: those
that are in a surface pocket or an interior void (type P),
those located on the convex regions or depressed regions
of the protein (type S), and those that are mapped to the
buried interior of the protein (type I).36 Among the 924
structural sites where the 2128 OMIM-derived nsSNPs
are mapped, 814 (88%) are located in a surface pocket or
a void (type P), 80 (9%) are located on a convex regions
or a shallow depression of the surface (type S), and 30
(3%) are buried in the interior of the proteins (type I)
(see Table 1). In the control set, out of the 558 structural
sites, 381 (68%) are of type P, 150 (27%) are found to be
type S, and 27 (5%) are type I (see Table 2). All raw data
can be found in the Supplementary Material. Although
there are limitations in experimental resolutions of the
protein structures, alpha shape computation provides
exhaustive, quantitative, and precise identification, as
well as measurement of these geometric sites.28{

Calculating conservation at variant sites

To perform this classification, we use probabilistic
models of protein family derived from HMMs, which
have become a valuable method with wide applications
in protein modeling, homology detection, and functional
classification of putative genes. First introduced for pro-
tein modeling by Krogh et al.42 and Delcher et al.,43

HMMs can be viewed as special cases in the more
general framework of probabilistic Bayesian networks.

† http://www.ncsa.uiuc.edu
‡ http://cast.engr.uic.edu
§ http://www.ncbi.nlm.nih.gov/omim/
k ftp://ftp.ncbi.nih.gov/snp/human/

{These data will be made available at http://gila.
bioengr.uic.edu/snp
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In a typical HMM for a protein family, a residue in a
protein sequence can be in a match state, an insertion
state, or a deletion state. A match state corresponds to a
column in the well-aligned region of a multiple sequence
alignment of members of the protein family, with pos-
ition-specific characteristic probabilities (called emission
probabilities) for each of the 20 amino acid residues. An
insertion state corresponds to highly variable regions in
the multiple sequence alignment. A deletion state corre-
sponds to gaps in a few sequences at a column of the
multiple alignment. An HMM architecture includes a
number of match states, insertion states, and deletion
states, each with connections to other states. The 20
amino acid residues appear in each of these states with
different characteristic probabilities (emission prob-
abilities). Each state has its own probabilities of transit-
ing to another state along the connections in the
architecture (transition probabilities). If a protein
sequence is given, the state to which each residue
belongs is not directly known. That is, the state is hidden
and needs to be computed. The emission probabilities
and the transition probabilities need to be estimated.
Dynamic programming methods, including the Viterbi
algorithm, are well suited to estimate these probabilities
and align a sequence to the states in a protein family
HMM. Introductory overviews of HMMs can be found
elsewhere.44,45

In this study, we systematically examine positions of
nsSNPs in motif regions of proteins. For this purpose,
we use the PFAM database of probabilistic models of
protein domains and families derived using the HMM
method.23 PFAM has been used extensively in many
bioinformatics studies and has played a seminal role in
popularizing the HMM methodology, as well as allowing
the evaluation of the strengths and weaknesses of HMM
as a protein classification device. The specific alignment
architecture featured in the PFAM database has been
described by Bateman et al.46,47 The analysis software
used for our SNP analysis can be obtained by sending
e-mail to kasif@bu.edu

In our study, each entry in both OMIM- and dbSNP-
derived nsSNP databases contains information about
the protein sequence, the position of the nsSNP, the
original amino acid residue at this position (we call it
SNP amino acid), and the amino acid it was mutated to.
We aligned every sequence from each database against
the PFAM HMM database containing a library of protein
family HMMs using HMMER 2.1.1, a hidden Markov
alignment tool, with default parameters. We use an
E-value of 1023 as the significance threshold. To assess
the extent of conservation, we compare the HMM con-
sensus amino acid residue at the position corresponding
to the nsSNP. The consensus residue is that with the
highest emission probability at that position. We define
an amino acid residue to be highly conserved if its
emission probability is 0.5 or greater. In general, on the
basis of the degree of conservation and whether the
SNP residue corresponds to the consensus amino acid
in the alignment, we can define the multiple classifi-
cation categories given above.

Statistical confidence intervals by bootstrap

In order to assess the confidence intervals of
parameters such as percentage of nsSNP at various geo-
metric sites, we used the bootstrap technique.48,49 Let the
true value of the distribution be u. Our estimator T
takes the value t; which is the estimated value for u.

Our goal is to calculate a (1 2 2a) confidence interval
for u. If we sample independently R times from the dis-
tribution with replication, we have a simulated data set
of Yp

1;…;Yp
R: We estimate the parameter of interest from

each of the R samples, and obtain Tp
1 ;…;Tp

R:
A simple approach to estimate confidence intervals of

u is to use the bootstrap estimates of quantiles for T 2 u:
The definition of probability (Pr) implies:

Prða , T 2 u , bÞ ) PrðT 2 b # u # T 2 aÞ

For an equitailed (1 2 2a) confidence interval, we have:

PrðT 2 b # u # T 2 aÞ ¼ 1 2 2a

and the following basic bootstrap confidence limits:

t 2 ðtpððRþ1Þð12aÞÞ 2 tÞ; t 2 ðtpððRþ1ÞaÞ 2 tÞ

In our calculation, R is chosen as 10,000, and a is 2.5 %
for estimation of 95% confidence intervals.
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