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We describe a novel approach for inferring functional relationship of
proteins by detecting sequence and spatial patterns of protein surfaces.
Well-formed concave surface regions in the form of pockets and voids
are examined to identify similarity relationship that might be directly
related to protein function. We first exhaustively identify and measure
analytically all 910,379 surface pockets and interior voids on 12,177 pro-
tein structures from the Protein Data Bank. The similarity of patterns of
residues forming pockets and voids are then assessed in sequence, in
spatial arrangement, and in orientational arrangement. Statistical signifi-
cance in the form of E and p-values is then estimated for each of the
three types of similarity measurements. Our method is fully automated
without human intervention and can be used without input of query pat-
terns. It does not assume any prior knowledge of functional residues of a
protein, and can detect similarity based on surface patterns small and
large. It also tolerates, to some extent, conformational flexibility of func-
tional sites. We show with examples that this method can detect func-
tional relationship with specificity for members of the same protein
family and superfamily, as well as remotely related functional surfaces
from proteins of different fold structures. We envision that this method
can be used for discovering novel functional relationship of protein sur-
faces, for functional annotation of protein structures with unknown bio-
logical roles, and for further inquiries on evolutionary origins of
structural elements important for protein function.
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Introduction

With rapid progress in the determination of
protein structures,1,2 protein structural analysis
has become an important source of information
for understanding functional roles of proteins.3 – 7

Conservation of protein structures often reveals
very distant evolutionary relationships, which are
otherwise difficult to detect by sequence analysis
alone.8 Analysis of protein structure can provide
insightful ideas about the biochemical functions
and mechanisms of proteins (e.g. active sites,
catalytic residues, and substrate interactions).9 – 11

An important approach of studying protein

structures is fold analysis.3 – 7 Identifying the correct
tertiary fold of protein is often helpful for inferring
protein function. In many cases, fold assignment
alone can provide valuable functional inference.12

Nevertheless, the relationship between protein
fold and protein function in general is complex.8

A protein fold can adopt many different
functions,13 while a biological function can have
many different structural supports.14 This complex
relationship is lucidly illustrated for a subset of
proteins, whose functional roles can be explicitly
described by Enzyme Classification (E.C.)
labels.10,15 – 17 It was found that functional inference
between a pair of enzymes becomes difficult when
sequence identity drops below 40%.16 Jaroszewski
and Godzik18 further demonstrated that if descrip-
tions other than the secondary structures are used,
unexpected structural similarities can be found
between proteins of different structural classes.
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They showed the example of tenascin (1ten, all b)
and phosphotransferase (1poh, a þ b), which are
of different folds but have strong similarity in the
geometry of their backbone traces. These results
imply that different classification systems of
protein structures other than current fold classifi-
cation would also be possible.

Proteins fulfill their cellular roles by interacting
with other molecules. A fundamental challenge in
identifying protein function from sequence is that
the functional surface of a protein often involves
only a small number of key residues. These inter-
acting residues are dispersed in diverse regions of
the primary sequences and are difficult to detect if
the only information available is the primary
sequence. Discovery of local spatial motifs from
structures that are functionally relevant is therefore
an important task.

Several methods have been developed for
analyzing local spatial patterns in proteins.
Artymiuk et al. developed an algorithm based on
subgraph isomorphism detection.19 By representing
residue side-chains as simplified pseudo-atoms, a
molecular graph is constructed to represent the pat-
terns of side-chain pseudo-atoms and their inter-
atomic distances. A user defined query pattern can
then be searched rapidly against the Protein Data
Bank for similarity relationship. Another widely
used approach is the method of geometric hashing.
By examining spatial patterns of atoms, Fischer et al.
developed an algorithm that can detect surface simi-
larity of proteins.20,21 This method has also been
applied by Wallace et al. for the derivation and
matching of spatial templates.22 Russell developed a
different algorithm that detects side-chain geometric
patterns common to two protein structures.23 With
the evaluation of statistical significance of measured
root mean square distance (RMSD), several new
examples of convergent evolution were discovered,
where common patterns of side-chains were found
to reside on different tertiary folds. Further develop-
ment of an elegant parametric model for assessing
significance of matched side-chain patterns can be
found in Ref. 24. Schmitt et al. recently described a
method that detects similar surface cavities using
descriptors generated from pre-computed cavities
and a clique detection algorithm.25

Several studies combine protein structural con-
text information with conserved sequence patterns
to identify distantly related members of a protein
family, or to infer protein functions. Yu et al.
developed a protein surface similarity measure for
WD protein family by combining structural infor-
mation of beta propeller encoded in a hidden
Markov model with sequence profiles of two maxi-
mally conserved sequence regions.26,27 The idea is
that protein surfaces are more functionally
diagnostic than the full protein sequence, because
strong hydrophobicity and size constraints for
protein interior, similarity due to internal buried
residues between proteins can be misleading in
inferring functional similarity. This similarity
measure was successfully applied for subfamily

clustering of WD proteins for function prediction.26

Zvelebil and Sternberg developed a method to
predict catalytic residues that combines sequence
and spatial local averages of residue conservation
derived from multiple sequence alignment.28 This
idea is further expanded by Ota et al., where
additional geometric information and destabilizing
mutation data are incorporated for predicting
functionally important catalytic residues of
enzymes.29

In this study, we describe a novel approach for
detecting similar patterns of local motifs of protein
structures. Because protein functional surfaces are
frequently associated with surface regions of
prominent concavity,30,31 we focus on surfaces of
pockets and voids on a protein structure. We do
not assume prior knowledge of functional site
residues, and do not require any similarity in
either primary sequence or backbone fold struc-
tures. In addition, our method has no limitation in
the size of the spatially derived motif and can
successfully detect patterns small and large. Our
method is also different from previous efforts to
embed functional patterns into protein structural
context. Instead of using general fold or architec-
tural information, we obtain direct structural
information of protein surfaces in the form of
geometrically computed pockets and voids.
Currently, our method cannot detect similar sur-
face patterns whose underlying primary sequences
have different order, such as those seen in the cata-
lytic triad found in some examples of serine
protease.

We first compute the alpha shapes of 12,177
protein structures in the PDB databank,32 – 35 and
exhaustively identify all surface pockets and
interior voids for each of the protein structures.33,34

For each pocket and void, the residues forming
the wall are then concatenated to form a short
sequence fragment of amino acid residues, while
ignoring all intervening residues that do not par-
ticipate in the formation of the wall. Two sequence
fragments derived from pocket surface residues
are then compared using dynamic programming.
The similarity score for any observed match is
assessed for statistical significance using an empiri-
cal randomization model constructed for short
sequence patterns. Results from database search
indicate that such short surface patterns of pocket
and void residues are informative and often dis-
criminating. In addition, we further assess the
shape similarity of two pocket or void surfaces in
Euclidean space, as well as in relative orientation
using a new approach inspired by the work of
Kedem et al.36 We show examples of detection of
similar functional surfaces among proteins of the
same fold but low sequence identities, and among
proteins of different fold. An all-against-all data-
base search of all PDB structures reveals global
pictures of surface similarity of currently known
protein structures. We discuss how our method
can be used in exploring protein structure–func-
tion relationship.
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Matching Spatial Surface Patterns

Surface pockets and interior voids in proteins

Proteins are tightly packed. Their packing
densities are comparable to that of crystalline
solids.37 –39 Yet there are numerous packing defects
in the form of pockets and voids in protein
structures with broad size distributions.40 For
example, the volume v and area a of proteins do
not scale as v , a3=2; which would be expected for
models of tight packing. Rather, v and a scale line-
arly with each other.40 This and other scaling
studies of geometric parameters of real proteins
and off-lattice near-compact chain polymers as
generated by sequential Monte Carlo indicate
that proteins pack like random polymers41 under
loose compactness criterion.42,43 Furthermore, the
interior of proteins is more like Swiss cheese
with many holes than tightly packed jigsaw
puzzles.40

In this study, we follow31,33,40 and define a pocket
as an empty concavity on a protein surface into
which solvent can gain access, i.e. these concavities
have mouth openings connecting their interior
with the outside bulk solution. A void is an interior
unoccupied space that is not accessible to the
solvent probe. It has no mouth openings to the
outside bulk solution. Protein pockets and interior
voids are computed using the weighted Delauney
triangulation and alpha shape method developed
by Edelsbrunner and colleagues, as described in
Refs. 31–33,44,45. Detailed descriptions of the
computational techniques can be found in Refs.
32–34. Precomputed pockets and voids of each
protein structure in the PDB databank are con-
veniently organized as the database of Computed
Atlas of Surface Topography of Proteins
(CASTp)†.35

With the criterion that a void or pocket needs to
be large enough to contain at least one water
molecule, we find that there are 910,379 voids and
pockets on 12,177 structures from the Protein Data
Bank. On average, there are 15 voids or pockets
for every 100 residues.40 Figure 1(a) shows the
size distribution of voids and pockets for
the 12,177 protein structures and Figure 1(b) for
1641 proteins from the PDBSELECT database,46

where no two protein structures have more
than 25% sequence identity. The majority of
pockets and voids are formed by 4–20 amino acid
residues.

Compared to the full length primary sequences
of proteins, the amino acid residues forming
pockets and voids are compositionally different
(Figure 2(a)). Figure 3(a) shows the ratio of com-
position for each of the 20 amino acid residues in
pockets and voids and in the full primary
sequences. We find that aromatic residues (F, W,
and Y) are favored to be located in pockets and

voids. We also compare the composition of surface
residues and buried residues (Figures 2(b) and
3(b)). As expected, ionizable residues and polar
residues are favored on protein surfaces, hydro-
phobic residues are favored in the interior.
Residues located in pockets and voids show
similar patterns when compared with interior
buried residues (Figures 2(c) and 3(c)). For surface
residues with .0.0 solvent accessibility that are
not located in pockets or voids, similar patterns
are found (Figures 2(d) and 3(d)). The bias in
amino acid residue usage for pockets and voids is
further demonstrated in Figures 2(e) and 3(e),
where we compare surface residues that are
located in pockets or voids with the rest of surface
residues. We find that aromatic residues (F, W,
and Y), residues often known to be functionally
important (R and H), as well as branched hydro-
phobic residues (L, I, and V) have higher propen-
sity to be in pocket or voids. This is consistent
with the observation that H and W residues have
high catalytic propensity for enzyme reactions.47

Similar bias persists when we compare the
composition of residues in pockets and voids con-
taining functionally annotated residues by Swis-
sProt with the composition of the full sequence of
the proteins (Figure 2(a)).

 

 

Figure 1. Size distribution of pockets and voids from
(a) all 12,177 PDB structures studied and (b) 1641 struc-
tures from the PDBSELECT database (,25% sequence
identity).

† http://cast.engr.uic.edu
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Comparison of sequence patterns of surface
pockets and voids

We derived a set of protein surface patterns from
the residues forming the walls of both pockets and
voids as shown in Figure 4. We call these “pocket

and void surface patterns of amino acid residues”†
(pvSOAR patterns). The sequences of these

Figure 2. The composition of amino acid residues for PDB structures used in this study. (a) Fractions of different
types of amino acid residues for the full sequence of the protein, for all pockets and voids, and for pockets and voids
with functional annotation by SwissProt. (b) Fractions of different types of amino acid residues for the full sequence
of the protein, for residues with .0.0 Å2 solvent accessibility, and for residues that are buried with 0.0 solvent
accessibility. (c) Fractions of different types of amino acid residues for the full sequence of the protein, for residues
located in pockets or voids with .0.0 solvent accessibility, and for residues that are buried with 0.0 solvent accessi-
bility. (d) Fractions of different types of amino acid residues for the full sequence of the protein, for surface residues
not located in pockets or voids but with .0.0 solvent accessibility, and for residues that are buried with 0.0 solvent
accessibility. (e) Fractions of different types of amino acid residues for the full sequence of the protein, for residues
located in pockets or voids with .0.0 solvent accessibility, and for other amino acid residues with .0.0 solvent
accessibility but are not located in a pocket or a void.

† A web server of pvSOAR can be accessed at http://
pvsoar.engr.uic.edu
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patterns can be used to assess the similarity
relationship among protein surfaces. Figure 5 pro-
vides an illustrative example. The catalytic sub-
units of cAMP-dependent protein kinase (1cdk)
and tyrosine protein kinase c-src (2src) both bind
to AMP or AMP analogs. The overall sequence
identity between their primary sequence is low
(16%). However, the AMP binding sites have simi-

lar shape and chemical texture as identified geo-
metrically (Figure 5(a),(b)). In both cases, the
residues participating in the formation of pocket
walls come from diverse regions in the primary
sequences (Figure 5(c)). When these residues are
concatenated, the shorter sequences of binding site
residues have much higher sequence identity
(51%, Figure 5(d)).

Figure 3. Ratio of amino acid residue compositions in all 12,177 PDB structures. Similar patterns are seen for proteins
in PDBSELECT. (a) Ratio of composition of amino acid residues located in a pocket or a void versus composition of
residues from the full sequence of the protein. (b) Ratio of composition of amino acid residues with .0.0 solvent
accessibility versus composition of all amino acid residues that are buried with 0.0 solvent accessibility. (c) Ratio of
composition of amino acid residues located in pockets or voids versus composition of all amino acid residues that are
buried with 0.0 solvent accessibility. (d) Ratio of composition of surface amino acid residues not located in pockets or
voids but with .0.0 solvent accessibility versus composition of all amino acid residues that are buried with 0.0 solvent
accessibility. (e) Ratio of composition of amino acid residues located in pockets or voids with .0.0 solvent accessibility
versus composition of other surface amino acid residues with .0.0 solvent accessibility but are not located in a pocket
or a void.
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This approach is applicable to the sequences of
any two surface patterns of pockets or voids. By
concatenating wall residues of a pocket or void on
the same polypeptide chain, a sequence pattern of
surface residues is compiled for each protein
pocket and void in CASTp database. Collecting
the pocket sequences of all 910,379 pockets and
voids on 12,177 PDB structures, we constructed a
database called pvSOAR database. We then used
the Smith–Waterman algorithm as implemented
in SSEARCH by Pearson48 to compare the simi-
larity of two pocket sequence patterns. In this
study, we use BLOSUM50 as default scoring
matrix,49 and concatenate only wall residues that
are on the same polypeptide chain.

Statistical significance

When two sequences of pocket surface
patterns are found to be similar, it is essential to
assess the significance of detected similarity to aid
in biological interpretation. For gapless local
sequence alignment, the theoretical model of
extreme value distribution (EVD) provides
accurate description of alignment scores of random
sequences.50 This allows rapid assessment of
statistical significance in the form of p and
E-values.48,51

Assessment of statistical significance of matched
sequences of pocket surface patterns is more
challenging. First, pocket sequences are usually
short. Unlike alignment of protein sequences
where a peptide chain frequently has hundreds of

residues, the majority of pocket patterns have
between 5–20 amino acid residues. Second, the
composition of pockets is biased and is different
from that of the full chain sequences (Figure 2).
Third, two pocket sequence patterns frequently
have different number of residues, therefore the
introduction of gaps in alignments is necessary.
Although recent work has obtained analytical
results for local alignment with gaps using selected
scoring systems†,52 no exact theoretical models are
known in general for local sequence alignment of
very short sequences with gaps. As an example,
Figure 6(a) shows that the distribution of Smith–
Waterman scores for querying randomly shuffled
pocket sequences with a sequence pattern of the
ANP binding pocket in tyrosine protein kinase c-
src (2src) is very different from that of an EVD
model.

We found that once the largest peak in the low-
score region of the distribution of alignment scores
of random short sequences is removed, the remain-
ing distribution frequently follows an EVD. We
have developed a heuristic approach for assessing
statistical significance of matched similarity by
exploiting this observation. Specifically, a query
sequence of a surface pocket is first searched
against all pocket sequences in the pvSOAR data-
base, which contains Nall ¼ 910; 379 pocket
sequences. Pocket sequences with Smith–
Waterman scores below 20 are then removed, with
Nt pocket sequences remaining. Pocket sequences

Figure 4. Protein surface sequence pattern is created by concatenating residues forming the wall of a pocket. For
cAMP-dependent protein kinase (1cdk, chain A), the pocket residues of the protein structure and visualization as
accessed through CASTp35 is shown in (a). These residues are highlighted in the primary sequence (b), and are
extracted (c), and concatenated (d) to from a sequence of pocket and void surface pattern.

† citeseer.nj.nec.com/bundschuh99analytic.html
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removed typically contained only one or two
aligned residues (as are alignments generating the
peak in Figure 6(a)). Next, we randomly select
200,000 pocket sequences from the set of Nt pocket
sequences, or all of them if Nt , 200; 000: These
sequences are randomly shuffled, and the query
pattern is searched against this shuffled database
(Figure 6(b)). The Smith–Waterman scores of the
search are then collected. The goodness-of fit of
theses scores to an EVD distribution is then
evaluated using the non-parametric Kolmogorov–
Smirnov test, which is provided as part of the
SSEARCH tools.53

If the observed Kolmogorov–Smirnov statistic
indicates that the random scores are not inconsist-
ent with an EVD distribution, we further estimate
the significance level p of the detected similarity. p
value represents the probability of obtaining the
same or better score Z . z by chance, where z is
the observed score when searching the query
pattern against pvSOAR database. It is calculated
as z ¼ ðS 2 mÞ=s; where S is the similarity score, m
the mean of random scores, and s the standard

deviation. For EVD, p-value can be estimated from
the z score match:48

pðZ . zÞ ¼ 1 2 expð2ez·p=
ffiffi
6

p
2G0ð1ÞÞ ð1Þ

¼ 1 2 expð2e21:282z20:5772Þ ð2Þ

E-value represents the number of random pocket
sequences with the same or better score that
would be matched by random chance. It is calcu-
lated as:

E ¼ p £ Nt

We use the estimated E-value to exclude matched
pairs of pocket sequences that are unlikely to have
biological significance.

Comparison of shapes of surface pockets
and voids

Alignment of sequence patterns from pvSOAR
database identifies residues that are conserved
between two geometrically well-defined pockets

Figure 5. Comparison of sequence patterns of the catalytic site of two kinases. (a) Active site of the catalytic subunit
of cAMP-dependent protein kinase (1cdk, CASTp id ¼ 104, chain A), and (b) of tyrosine protein kinase c-src (2src,
CASTp id ¼ 51). Both kinases bind to AMP or AMP analogs and their binding sites are similar. (c) The residues form-
ing the geometrically defined pockets (colored in red) are well dispersed throughout the primary sequence. The overall
identity between the primary sequences of these two kinases is low (at 16%), but (d) the identity of their surface
sequence patterns have much higher sequence identity (51%).
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or voids, and provides an equivalence relationship
between pocket residues of the two proteins. It is
often informative to further compare the shapes of
the subset of equivalent pocket residues to further
assess their geometric similarity.

cRMSD

A simple method for measuring geometric dissim-
ilarity is to calculate the coordinate RMSD (cRMSD)
between the subset of equivalent residues. We only
need to find the optimal superposition of a subset of
pocket residues from one protein to a subset of
pocket residues from another protein. Such optimal
structural alignment can be found following the
method of Umeyama,54 which is based on singular
value decomposition (SVD) of the correlation matrix
of the coordinates of the sets of points.55 This method
provides the least square rotational matrix and trans-
lational vector, as well as the cRMSD values. It is
similar to that of McLachlin56 and Kabsch.57 Here,
the structural alignment is based on optimization
for least RMSD at the residue level. We use one
point to represent a residue. When multiple atoms
from the same residue contribute to the wall of a
pocket or void, the geometric center of these atoms
is used.

oRMSD

cRMSD is useful for assessing structures that are
very similar, but this measure is very sensitive to

outliers, namely, a few outlier residues in the two
sets of pocket residues that would otherwise be
very similar will dominate the cRMSD value.58 In
addition, cRMSD between two structures increases
as the number of aligned residues increases.

An elegant alternative measure of dissimilarity is
the unit vector RMSD (uRMSD), originally devel-
oped in Ref. 36 where the unit vectors connecting
consecutive Ca atoms are mapped to a unit sphere
S2, and the dissimilarity of the backbones of two
proteins are measured by calculating the RMSD
between the two series of unit vectors from the
two proteins on S2.

We modify this method for measuring geometric
dissimilarity of two protein pockets and voids.
First, we place a unit sphere S2 at the geometric
center of the pocket x0 [ R3: Second, the location
of each residue x ¼ ðx; y; zÞT is then projected onto
the unit sphere along the direction of the vector
from the geometric center: u ¼ ðx 2 x0Þ=kx 2 x0k:
The projected pocket is represented by a collection
of unit vectors located on S2 and the original orien-
tation of residues in the pocket is preserved (for
example see Figure 7). Third, we measure the
RMSD of the two sets of unit vectors derived from
the two pockets, which we call oRMSD for “orien-
tation RMSD” to distinguish from the original
uRMSD. uRMSD was derived naturally from con-
secutive Ca atoms along the backbone of a protein,
and is not affected by possible bias introduced by
placing the centers of the unit sphere to the geo-
metric center of pocket residues. The orientational
relationship between the two sets of residues on
S2 is used for further discrimination.

Statistical significance of matched shapes

To evaluate the significance of shape similarity
detected by either cRMSD or oRMSD between two

Figure 6. Distribution of Smith–Waterman scores for the
ANP binding pocket (CASTp id ¼ 51) of tyrosine protein
kinase (2src). (a) The distribution of random scores as cal-
culated using FASTA is very different form an extreme
value distribution model (dotted line). (b) Distribution of
Smith–Waterman scores of random pocket sequences
after removing those with Smith–Waterman scores #20.
Kolmogorov–Smirnov test statistic for goodness-of-fit is
0.0195, indicating that the observed data is not inconsistent
with an EVD distribution.

Figure 7. Unit sphere transformation of the geldana-
mycin binding pocket (CASTp id ¼ 33) of human heat
shock protein 90 (HSP90) (PDB id ¼ 1yes). The location
of each residue is projected onto the unit sphere S2

where the center is the geometric center of the pocket.
The resulting structure is a collection of unit vectors on
S2.
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surface spatial patterns, we estimate the prob-
ability p of obtaining a specific cRMSD or oRMSD
value for nres matched positions from a set of
randomly generated surface pockets and voids.
This is similar to that of Reference 23. We choose
two pockets at random from all 910,379 pockets
with the criterion that each has at least nres resi-
dues. For each residue contained in a pocket, we
calculate the coordinates of the geometric center of
those atoms appearing on the wall of the pocket
or void, and use the geometric center to represent
this residue. For each pocket, we choose Nres resi-
dues randomly. The cRMSD values are then calcu-
lated for the nres residues from the selected two
random pockets. This process is repeated with dif-
ferently chosen random pockets and differently
chosen random nres residues for oRMSD measure-
ment. We collect about 38 million cRMSD values
and separately oRMSD values for nres ¼ 3; and
about one million cRMSD and oRMSD values for
nres ¼ 100: The p-value for a specific cRMSD or
oRMSD value can then be assessed by finding the
closest value of the rank order statistic in the ran-
domly collected cRMSD or oRMSD data for nres

residues, respectively. When nres is small (e.g. 3–5
residues), we can have estimated p-value down to
1028. When nres is large (e.g. 50 residues), we can
have estimated p-value down to 1026.

Because exact p-values in the tail region of p ,
1028 cannot be assessed, we do not calculate
E-value of observed cRMSD and oRMSD for
matched spatial surface patterns.

Data selection

To evaluate results from all-against-all searching
of large databases with nearly a million entries,
we use heuristics to prune the data for identifying
biologically interesting similarity relationships. We
noted that many surface pockets with more than
100 residues are typically protein–protein inter-
faces. Although important in their own right, in
this study we focus on smaller functional surfaces
that are more likely to be involved in ligand and
substrate binding. Therefore we exclude large sur-
face pockets with more than 100 residues.

Because of the uneven distribution of structures
in the Protein Data Bank, a large number of
matched pocket patterns with significant E and p-
values come from proteins with identical or
strongly homologous sequences. We exclude these
relatively easy cases. First, we mark proteins in
the pvSOAR database with hierarchical structural
classification label as extracted from the CATH4

and the SCOP3 databases. Every residue on a
pocket or void is labeled by either a SCOP or a
CATH label. We exclude pockets without simul-
taneously both classification labels. Second, we
exclude matched pair of pocket sequences if the
full primary sequence identity of the two proteins
exceeds 30% as measured by SSEARCH, because
these similarity relationships can be easily detected
by other methods such as PSI-BLAST.59

In the random model used for estimating
E-values for pocket sequence alignment, we
assume that each residue appearing in a pocket is
drawn from a random position of the sequence.
We therefore further select only matched pocket
sequences from residues that are not all contiguous
sequence neighbors. We use the following
sequence separation measure ds :

ds ¼

P
i[Pni 2 ni21

lPl2 1

where P is the set of matched pocket residues,
which has a total of lPl residues, and i is the ith
matched pocket residue after ordering them by
sequence number ni. The number ni21 is the
sequence number of the preceding residue. If ds ,
2 for the set of aligned residues in a matched pair
of pocket sequences, this pair of matched sequence
fragments is excluded from analysis. To further
ensure that similar surface patterns are statistically
significant and to allow cRMSD and oRMSD to be
calculated, we require that a matched surface
pattern contain at least four residues.

Results

We begin discussion of results with three types
of examples. First, we describe the detection of
similar functional surfaces from members of the
same protein family. Examples are given for acetyl-
cholinesterase, where matching of functional
pocket surface pattern is shown to be specific,
namely, all proteins containing significantly
matched surface patterns are members of the
acetylcholinesterase family. Second, we describe
the detection of functionally related binding
surfaces among proteins of the same tertiary fold
but from different protein families with overall
low sequence identity. For this, we discuss alpha-
amylases in detail. Third, we describe detection of
related functional surface between proteins not
only of overall low sequence identity but also of
different tertiary fold or class. We discuss the
example of HIV-1 protease and heat shock protein-
90 in some detail. We further describe an intriguing
similarity between functional surface of aromatic
aminotransferase and 17-b-hydroxysteroid
dehydrogenase, which are again of different class
and fold. We conclude with a preliminary statisti-
cal summary of results from a global all-against-
all search of all surface pockets and voids of
protein structures in the pvSOAR database, which
represent most structures in the Protein Data Bank.

Functional surfaces from the same protein
family: acetylcholinesterase

Acetylcholinesterase is a serine hydrolase that
belongs to the esterase family. Its function is to
catalyze the hydrolysis of the neurotransmitter
acetylcholine by transferring the acetyl group to
water, forming choline and acetate.60 It acts to stop
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neurotransmission at cholinergic synapses fre-
quently found in the brain. It is an a/b protein
(CATH code 3.40.50.950, SCOP code c.69.1.1). The
active site contains a catalytic triad (S200, H440,
and E327), which is located in the “aromatic
gorge” heavily lined with aromatic residues. Two
of the catalytic residues on the structure of 2ack,
S200 and H440, are located in a prominent surface
pocket identified by CASTp (pocket id ¼ 68,
solvent accessible surface area 352 Å2, volume
180 Å3). In addition, this pocket contains six G resi-
dues (residue number 117–119, 123, 335), five Y
(70, 121, 130, 334, 442), four F (282, 288, 290, 330,
331), four S (81, 122, 200, 286), three W (84, 233,
279), two L (127, 282), two I (287, 444), and one for
each of R, D, E, H, N, Q, and P residues. The third
residue E327 of the catalytic triad is not directly
located in this pocket, but is located in another
pocket that opens up in an opposite direction
(id ¼ 66, area 44 Å2, volume 11 Å3) and is immedi-
ately behind S200 and H440 in the structure of
2ack.

Results of searching the pvSOAR database with
the sequence pattern of the pocket containing S200
and H440 on 2ack are shown in Table 1. For this
highly conserved functional surface, all significant
hits at the level of E , 0:1 are surface patterns
from members of the same acetylcholinesterase-
like family. Many proteins in this family have
strong overall sequence identity with the query
protein. The lack of matches with proteins from
any other families indicates that acetylcholinester-
ase proteins exhibit significant similarity in the
surface pattern of the active site, and this pattern
is unique to the acetylcholinesterase protein family.
This example demonstrates that in some cases
functionally related surfaces can be identified with
specificity.

Similar functional surfaces from different
protein families

We discuss detecting functionally related bind-
ing surfaces from proteins of different families but
of the same superfamily with varying overall
sequence identities. Alpha amylase is an enzyme
that catalyzes the breakdown of amylase and
amylopectin through hydrolysis at 1–4 glycosidic
bonds (E.C. 3.2.1.1). Alpha-amylase from Bacillus
subtilis (1bag) contains two domains: an a/b TIM
barrel domain (CATH code 3.20.20.80, SCOP code
c.1.8.1) and a b sandwich domain (CATH code
2.60.40.1180, SCOP code b.71.1.1). Its substrates are
starch, glycogen and polysaccharide, and the
product of the enzyme reaction is oligosaccharide.
The substrate binding site (CASTp id ¼ 60) for
1bag is located on the TIM barrel domain, and is
formed by four L residues (141, 142,144, 210),
three H (102, 180,268), two Y (59, 62), two D (176,
269), two Q (63, 208), and one each of R (174), K
(179), N (273), W (58) and A (177) residues. It is
the largest pocket on the protein, with solvent
accessible area of 181 Å2 and volume of 137 Å3.

This enzyme belongs to the glycosidase homo-
logous superfamily within the TIM barrel topology
(CATH code 3.20.20.80.25).

Results of searching the pvSOAR database with
the sequence of the substrate binding site are
partly shown in Table 2. There are 46 hits with sig-
nificance value of E , 0:01; several of which have
overall sequence identity with 1bag below 25%, as
measured by sequence alignment using SSEARCH.
These include structures of orthologous alpha
amylase proteins from other species, as well as
other members of the amylase family with related
function. For example, the alpha amylase from
Bacillus stearothermophilus (1qho, CATH label
3.20.20.80.14) takes glucan as substrate and pro-
duces alpha-maltose, a smaller molecule than
oligosaccharide produced by alpha-amylase from
B. subtilis. The matched pocket (CASTp id ¼ 96 on
chain A) contains many residues that are in the
substrate-binding site. If we only had access to
primary sequence information of these two
proteins, a Smith–Waterman alignment will not
provide convincing evidence with an E-value
3.4 £ 102 (from SSEARCH48) that these two proteins
are functionally related, since their overall
sequence identity is about 23%, well below the
30–40% threshold when functional inference
becomes difficult.11 The alignment of the sequences
of the two pocket surface patterns (Figure 8) shows
a 60% sequence identity, corresponding to a signifi-
cant E-value of 0.00042. Structural comparison
between the pockets (Figure 8(e)) shows that the
11 conserved residues superimpose nearly per-
fectly with an cRMSD of 1.44 Å and a p-value of
9.3 £ 1028. The only positional difference in the
structural alignment is between N273 from 1bag
and N371 from 1qho.

In addition to alpha amylases, several structures
(e.g. 1cgw, 1cgv, 2dij) of cyclodextrin/cyclomalto-
dextrin glycosyltranferase (E.C. 2.4.1.19) are also
found to have similar functional surfaces. These
proteins degrade starch to cyclodextrins by for-
mation of a 1,4-alpha-D-glucosidic bond. They are
members of the glycosyltransferase sequence
family, a different branch of the glycosidases
superfamily as annotated by CATH.4 Although
their overall sequence identity to alpha amylase
(1bag) are low (22% for 1cgw and 1cgv, 25% for
2dij), both are detected by matching sequence of
surface patterns with significant E-values
(E ¼ 1:1 £ 1024 and E ¼ 1:8 £ 1023 for 1cgw and
1cgv, respectively). The shapes of these two
pockets are also conserved (cRMSD p-
value ¼ 3.1 £ 1024, 5.7 £ 1024 for 1cgw and 1cgv,
respectively).

Similar functional surfaces from different
protein fold and class

Proteins of different overall fold can also have
similar biological function, but such cases are con-
siderably more difficult to detect. We describe
here examples of inferring remotely related
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biological functions by detecting similar binding
surfaces on the structures of HIV-1 protease and
HSP-90, and on aromatic aminotransferase and
17-b-hydroxysteroid dehydrogenase.

HIV-1 protease and heat shock protein-90

Human immunodeficiency virus type-1 protease
is a member of the retroviral protease family
(SCOP label b.50.1.1). It is an all-b dimer protein
with identical single domain-chains, each contain-
ing a (6,10) barrel. The active site of HIV-1 protease
is located at the dimer interface. On the structure of
HIV-1 protease complexed with substrate-based
inhibitor acetylpepstatin (5hvp),61 the active site is
the largest pocket on the protein (CASTp id ¼ 21,
solvent accessible area ¼ 529.9 Å2, volume ¼ 415.0

Å3). It has two mouths and its wall is formed by a
series of loops and gaps in the flexible region of
the protein. The inhibitor acetyl-pepstatin
(isovaleral-Val-Val-Sta-Ala-Sta) interacts with the
protein through both hydrogen bonding and
hydrophobic interactions. Of the ten residues that
participate in hydrogen bonding with the inhibitor,
nine are located within the pocket.

An unexpected similar pocket surface pattern
was identified on the structure of human heat
shock protein 90 (HSP90, SCOP classification
d.122.1.1, PDB id ¼ 1yes) complexed with geldana-
mycin. HSP90 is of different fold from that of
HIV-1 protease, and is a molecular chaperone par-
ticipating in the conformational maturation of
nuclear hormone receptors and protein kinases, as
well as functioning in cellular stress response.62

Table 1. Search results with the sequence of the surface pattern of the functional pocket (CASTp id ¼ 68) forming the
catalytic triad from acetylcholinesterase (2ack)

PDB
code

CASTp
id

Chain
id E-value CATH id

SCOP
id Structure

Backbone
seq. id

Aligned
residues cRMSD p-value

1efj 64 A 8.10 £ 10220 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.61 1.6 £ 10211

2ace 62 0 8.10 £ 10220 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.66 3.2 £ 10211

1ax9 71 0 8.10 £ 10220 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.36 3.0 £ 10213

1qie 79 A 1.50 £ 10218 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.51 3.5 £ 10212

1qii 83 A 1.50 £ 10218 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.60 1.3 £ 10211

1ea5 79 A 1.80 £ 10218 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 31 0.53 3.0 £ 10212

1acl 50 0 1.80 £ 10218 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 31 0.66 2.2 £ 10211

1som 70 A 2.50 £ 10218 n/a c.69.1.1 Acetylcholinesterase 1.000 33 0.60 1.4 £ 10211

1qih 80 A 4.90 £ 10218 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 32 0.51 5.6 £ 10212

1qim 84 A 2.80 £ 10217 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.69 5.2 £ 10211

1qif 74 A 2.80 £ 10217 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.56 7.4 £ 10212

1qig 78 A 2.80 £ 10217 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.58 1.0 £ 10211

1qij 84 A 2.80 £ 10217 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.65 2.8 £ 10212

1maa 286 D 5.30 £ 10217 3.40.50.950 c.69.1.1 Acetylcholinesterase 0.590 32 0.82 4.7 £ 10210

1maa 285 A 5.30 £ 10217 3.40.50.950 c.69.1.1 Acetylcholinesterase 0.590 32 0.80 3.3 £ 10210

1oce 63 0 8.90 £ 10217 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 32 0.63 3.5 £ 10211

1qik 83 A 9.20 £ 10217 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 32 0.66 4.9 £ 10211

1vxr 76 A 5.10 £ 10216 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 28 0.67 7.2 £ 10213

1eve 73 0 6.10 £ 10216 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 31 0.61 9.3 £ 10212

1qid 73 A 6.30 £ 10216 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 31 0.54 3.6 £ 10212

1vxo 85 A 7.80 £ 10216 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 31 0.59 7.6 £ 10212

1amn 78 0 8.70 £ 10216 3.40.50.950 c.69.1.1 Acetylcholinesterase 0.991 33 0.60 1.3 £ 10211

1dx6 75 A 1.00 £ 10215 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 31 0.69 3.3 £ 10211

1vot 57 0 2.80 £ 10215 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 32 0.65 4.1 £ 10211

1fss 73 A 4.60 £ 10215 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 32 1.10 1.3 £ 10208

1qti 69 A 9.50 £ 10215 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 28 0.81 8.6 £ 10212

1c2o 318 C 2.00 £ 10213 n/a c.69.1.1 Acetylcholinesterase 0.590 31 0.88 4.6 £ 10210

1c2b 87 A 2.00 £ 10213 n/a c.69.1.1 Acetylcholinesterase 0.590 31 0.88 4.6 £ 10210

1c2o 319 A 2.00 £ 10213 n/a c.69.1.1 Acetylcholinesterase 0.590 31 0.88 4.6 £ 10210

1acj 79 0 8.30 £ 10213 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 33 0.89 6.6 £ 10210

1f8u 97 A 1.80 £ 10212 n/a c.69.1.1 Acetylcholinesterase 0.574 25 7.39 3.2 £ 10201

1b4l 104 A 2.80 £ 10212 n/a c.69.1.1 Acetylcholinesterase 0.578 27 7.52 3.4 £ 10201

1e3q 83 A 5.20 £ 10212 3.40.50.950 c.69.1.1 Acetylcholinesterase 1.000 31 2.10 4.1 £ 10205

1mah 107 A 5.70 £ 10212 n/a c.69.1.1 Acetylcholinesterase 0.590 30 0.87 2.3 £ 10211

1maa 288 C 2.30 £ 10211 3.40.50.950 c.69.1.1 Acetylcholinesterase 0.590 30 3.16 6.2 £ 10203

2dfp 78 A 1.20 £ 10210 3.40.50.950 c.69.1.1 Acetylcholinesterase 0.998 28 1.50 8.2 £ 10208

1maa 287 B 2.00 £ 10210 3.40.50.950 c.69.1.1 Acetylcholinesterase 0.590 27 2.80 4.8 £ 10203

1qo9 86 A 2.10 £ 10206 3.40.50.950 c.69.1.1 Acetylcholinesterase 0.370 21 4.24 8.5 £ 10202

1c2o 326 D 5.70 £ 10206 n/a c.69.1.1 Acetylcholinesterase 0.590 24 4.66 1.5 £ 10201

1qon 86 A 1.30 £ 10203 3.40.50.950 c.69.1.1 Acetylcholinesterase 0.370 18 1.77 1.7 £ 10204

1c2o 326 B 1.30 £ 10203 n/a c.69.1.1 Acetylcholinesterase 0.590 24 4.63 1.4 £ 10201

1dx4 76 A 5.30 £ 10202 3.40.50.950 c.69.1.1 Acetylcholinesterase 0.370 18 2.89 1.9 £ 10202

This Table gives the PDB code, the pocket identification number generated by CASTp, the chain identification, pvSOAR sequence
alignment E-value, structural classification labels from both CATH and SCOP, name of the protein, sequence identity of primary
sequence as obtained by SSEARCH alignment, length of alignment of pocket sequences, cRMSD value and associated p-value. The
symbol “n/a” indicates that no information was available at the time of calculation.
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HSP90 consists of nine helices and an anti-parallel
b sheet of eight strands that fold into an a/b sand-
wich. A deep binding pocket is formed by three
helices, a loop, as well as b-sheets forming the bot-
tom. This binding pocket is also the largest pocket
on the protein (CASTp id ¼ 33, solvent accessible
surface area ¼ 322.0 Å2, volume 252.5 Å3).

Experimental data suggested that this pocket is a
substrate-binding site that shares extensive simi-
larities to a typical enzyme active site. The sub-
strate is a segment of protein whose maturation
and refolding is regulated by HSP90.62 Substrate
geldanamycin in the structure of lyes is highly

compact and differs from the conformation of free
geldanamycin. Its ansa ring is very similar to a
penta-peptide in a turn conformation, and the car-
bamate group may serve as a mimic of a Trp resi-
due in the biological substrate peptide.62

The alignment of sequences of the pocket surface
pattern is shown in Figure 9. The sequences of sur-
face pattern from HIV-1 protease and HSP90 are
aligned with an E-value of 8.3 £ 1023. They super-
impose with an cRMSD of 7.21 Å, with an insignifi-
cant p-value of 7.9 £ 1021 (Figure 9(e)). However,
the oRMSD between the two surface patterns on a
unit sphere is 0.73 Å with a significance level of

Table 2. Results of searching against the pvSOAR database with the sequence pattern of the substrate binding pocket
(CASTp id ¼ 60) of alpha-amylase from B. subtilis (1bag)

PDB code CASTp id Chain id E-value Name
Backbone

seq. id.
Aligned
residues cRMSD p-value

1jae 57 0 8 £ 10209 Alpha-amylase 0.244 14 0.48 1.686 £ 10207

1b2y 80 A 9.8 £ 10209 Alpha-amylase 0.237 14 0.49 1.686 £ 10207

1kgu 77 A 1.1 £ 10207 Alpha-amylase, pancreatic 0.244 15 1.88 3.621 £ 10203

1jfh 81 0 1.8 £ 10207 Alpha-amylase 0.233 14 0.43 1.686 £ 10207

1kgw 63 A 5.6 £ 10207 Alpha-amylase, pancreatic 0.244 14 0.52 1.686 £ 10207

2cpu 70 A 1.5 £ 10206 Alpha-amylase 0.235 11 0.41 9.257 £ 10208

1pif 75 0 5.2 £ 10206 Alpha-amylase 0.239 14 1.98 5.211 £ 10203

1pig 85 0 5.4 £ 10206 Alpha-amylase 0.239 14 0.44 1.686 £ 10207

1ose 82 0 5.4 £ 10206 Porcine alpha-amylase 0.233 14 0.50 1.686 £ 10207

1cpu 84 A 9.6 £ 10206 Alpha-amylase 0.237 14 1.17 1.383 £ 10205

3cpu 68 A 1.1 £ 10205 Alpha-amylase 0.235 12 0.66 1.135 £ 10207

1hx0 82 A 1.4 £ 10205 Alpha-amylase (Ppa) 0.236 13 0.42 1.385 £ 10207

1ppi 81 0 1.4 £ 10205 Alpha-amylase
(Ppa)(E.C.3.2.1.1)

0.236 13 0.45 1.385 £ 10207

1c8q 70 A 1.6 £ 10205 Alpha-amylase 0.239 14 2.24 1.919 £ 10202

1hny 82 0 2.3 £ 10205 Human pancreatic
alpha-amylase

0.237 10 3.59 6.797 £ 10201

1jxk 77 A 3.8 £ 10205 Alpha-amylase, salivary 0.242 10 3.65 7.644 £ 10201

1smd 86 0 4.0 £ 10205 Amylase 0.239 10 3.58 6.662 £ 10201

1b0i 73 A 4.4 £ 10205 Alpha-amylase 0.254 14 0.53 1.686 £ 10207

1e3z 70 A 4.6 £ 10205 Alpha-amylase 0.228 11 2.26 1.154 £ 10202

1bli 67 0 4.6 £ 10205 Alpha-amylase 0.235 11 2.44 2.536 £ 10202

1e3z 70 A 4.6 £ 10205 Alpha-amylase 0.228 11 2.26 1.154 £ 10202

1hvx 69 A 4.6 £ 10205 Alpha-amylase 0.235 11 2.37 1.881 £ 10202

2dij 90 0 4.8 £ 10205 Cyclodextrin glycosyltransferase 0.221 11 1.41 7.109 £ 10205

1g94 66 A 5.3 £ 10205 Alpha-amylase 0.254 11 0.33 9.257 £ 10208

1bsi 69 0 5.6 £ 10205 Alpha-amylase 0.237 13 1.83 1.854 £ 10203

2cxg 85 0 7.8 £ 10205 Cyclodextrin glycosyltransferase 0.221 11 1.43 8.238 £ 10205

1kck 91 A 7.8 £ 10205 Cyclodextrin glycosyltransferase 0.223 11 1.53 1.774 £ 10204

1aqh 71 0 8.5 £ 10205 Alpha-amylase 0.254 13 0.51 1.385 £ 10207

1aqm 69 0 8.5 £ 10205 Alpha-amylase 0.254 13 0.43 1.385 £ 10207

1cgw 93 0 0.00011 Cyclomaltodextrin
glucanotransferase

0.223 11 1.61 3.070 £ 10204

7taa 82 0 0.00018 Taka amylase 0.249 11 1.13 4.628 £ 10206

1qho 96 A 0.00042 Alpha-amylase 0.220 11 1.44 8.896 £ 10205

1qhp 101 A 0.00045 Alpha-amylase 0.220 11 1.40 6.563 £ 10205

1e40 67 A 0.00093 Alpha-amylase 0.228 10 1.72 5.222 £ 10204

1e43 61 A 0.00093 Alpha-amylase 0.228 10 1.79 7.970 £ 10204

1e3x 68 A 0.00093 Alpha-amylase 0.228 10 1.92 1.669 £ 10203

1jxj 77 A 0.001 Alpha-amylase, salivary 0.237 9 2.58 2.924 £ 10202

1cgv 77 0 0.0018 Cyclomaltodextrin
glucanotransferase2

0.221 11 1.70 5.651 £ 10204

5cgt 88 0 0.002 Cyclodextrin glycosyltransferase 0.232 10 2.39 1.668 £ 10202

1cxh 84 0 0.0024 Cyclodextrin glycosyltransferase 0.221 11 1.61 3.070 £ 10204

1kcl 88 A 0.0024 Cyclodextrin glycosyltransferase 0.221 11 1.67 4.627 £ 10204

1i75 149 A 0.0027 Cyclodextrin glycosyltransferase 0.240 11 1.65 4.037 £ 10204

1dtu 84 A 0.0049 Cyclodextrin glycosyltransferase 0.225 10 2.30 1.125 £ 10202

1cgt 91 0 0.007 Cyclodextrin glycosyltransferase 0.234 11 5.19 3.961 £ 10201

1cgy 76 0 0.0096 Cyclomaltodextrin
glucanotransferase

0.221 9 1.79 6.476 £ 10206

The list contains many significant hits from proteins with sequence identity below 25%. These include orthologous alpha-amylase
proteins as well as other members of the amylase family.
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p-value ¼ 6.3 £ 1026 (Figure 9(h)). This suggests
that the relative positions of conserved residues in
these two active sites are similar.

Although the cRMSD between the binding-site
surface patterns is large, it is not inconsistent with
the suggestion that HIV-1 protease and HSP90
protein have similar functional surfaces. There are
other examples where related functional surfaces
of proteins have large cRMSD. For example,
querying against the pvSOAR database using the
sequence pattern of the functional site of acetyl-
cholinesterase 2ack found several hits with signifi-
cant E-values (e.g. 1b41 and 1f8u, Table 1). The
p-values associated with cRMSD for these hits are
all in the order of 1021. This indicates that the
active site pocket of acetylcholinesterase may
experience some conformational change, and
searching by spatial similarity alone would have
missed these hits.

The large cRMSD between the two pockets
of HIV-1 protease and HSP90 is not surprising.

HIV-1 protease undergoes substantial confor-
mational change upon ligand binding. For HSP90,
the size and accessibility of the active site pocket
are also altered with conformational change.62 This
example again shows that shape similarity
measured by cRMSD is not so informative for
proteins experiencing functionally important con-
formational change, and in some cases oRMSD
provides better assessment.

There are ten matched residues out of the 15
aligned residues between the two pocket
sequences: K58, I91, D93, G97, D102, G132, G135,
V136, G137, F138 from HSP90 (1yes) and R207,
L223, D225, G227, D229, G248, G249, I250, G252,
F253 from HIV-1 protease (5hvp). The key pocket
residues from HIV-1 protease involved in substrate
binding are all conserved in HSP90. Among these,
D229, G227, D225 in the body of HIV-1 protease
and residue G248 in the gap region form hydrogen
bonds with the peptide inhibitor. Corresponding
residues from HSP90 (D93, G97, D102, G132) are

Figure 8. The pvSOAR alignment of the substrate binding site (CASTp id ¼ 60) of alpha-amylase from B. subtilis
(1bag) (a) to the substrate binding site of alpha-amylase from B. stearothermophilus (1qho, CASTp id ¼ 96 on chain A)
(b). The conserved residues in the pocket of (c) 1bag and (d) of 1qho are shown in red. Their superposition is shown
in (e), where conserved residues are colored in yellow for 1bag and green for 1qho. The alignment of unit vectors on
the unit sphere for oRMSD calculation for 1bag (e) and 1qho (f) is shown in (h).
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also known to be involved in substrate binding. A
key residue in substrate binding of HSP90 is D93,
which provides a strong hydrogen bond network
with geldanamycin. G97 participates in hydrogen
bonding, and residue D102 is involved in van der
Waals interactions with geldanamycin. The critical
role of these aligned residues in substrate binding
offers some explanation for the detected similarity
in pocket sequence and in oRMSD measurement.
These two active sites both bind polypeptide sub-
strates, despite the fact that they have structural
supports of different protein folds and belong to
different protein class.

Aromatic aminotransferase and 17-b-
hydroxysteroid dehydrogenase

Aromatic amino acid transferase (AroAT) from
P. denitrificans (2ay5) is a pyridoxal 50-phosphate
(PLP) cofactor dependent enzyme that catalyzes
the transamination reaction. It can take both acidic
and aromatic amino acid residues as substrates.63

A series of aliphatic monocarboxylates attached to
the bulky hydrophobic groups can bind to the
active sites.64 These compounds contain three
moieties: the carboxylic group, an aliphatic chain

of 2–4 carbon atoms, and a functional hydrophobic
probing group. The substrate binding site is found
to be the most prominent pocket on 2ay5 (CASTp
id ¼ 110, solvent accessible area ¼ 797 Å2 and
volume ¼ 514 Å3). It is formed at the dimer inter-
face, but the majority (45 residues) of the 51 wall
residues come from chain A.

Results of searching pvSOAR database with the
sequence of pocket surface pattern from chain A
are listed in Table 3. As expected, the highest scor-
ing match is the query pattern itself, as well as
sequence patterns from other PDB structures of
aromatic amino transferase (not listed). Additional
high scoring matches include many surface pat-
terns from structures of aspartic amino transferase.

A surprising match is 17-b-hydroxysteroid
dehydrogenase (17-b-HD (1fdw)) at significant
E-value of 2.1 £ 1024. 17-b-HD belongs to the
NADP-binding Rossman fold, which is different
by SCOP from that of aromatic amino transferase
(which is PLP-dependent transferase fold). A key
enzyme in the estrone metabolic pathway, it cata-
lyzes the conversion of estradiol-17-b to estrone.
This is a different chemical reaction than that cata-
lyzed by aromatic amino transferase. The substrate
binding site of 17-b-HD is located at the most

Figure 9. The pvSOAR alignment of the substrate binding site (CASTp id ¼ 33) of human heat shock protein 90
(HSP90) (1yes) (a) to the substrate binding site (CASTp id ¼ 21) of Human immunodeficiency virus type-1 protease
(HIV-1) (5hvp) (b). The structural alignment of the conserved residues (shown in red) in the pockets for 1yes (c) and
5hvp (d) is shown in (e). The alignment for the pocket unit sphere for 1yes (e) and 5hvp (f) is shown in (h).
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prominent pocket on 1fdw (CASTp id ¼ 39,
solvent accessible area ¼ 818 Å2 and volume ¼ 844
Å3). This binding site pocket contains 59 residues.
When searching pvSOAR database with the
sequence pattern from 1fdw, the strongest matches
are surface patterns from other structures of 17-b-
hydroxysteroid dehydrogenase, as expected. But
structures of aromatic amino transferase are also
detected at significant levels (E-value ¼ 5.3 £ 1024

for the structure with the highest matching scores
of AroAT, Table 4). The success of bi-directional
search using both surface patterns of substrate-
binding sites from AroAT and 17-b-hydroxysteroid
dehydrogenase as query in identifying the other
indicates that the similarity relationship between
the functional surfaces of these two proteins can
be detected robustly.

The functional roles of the matched residues in
these two patterns provide some rationalization of
the detected surface similarity. The alignment of
the pocket residues for these two proteins is
shown in Figure 10. Among these, 17 residue pairs
are identical or are physico-chemically homo-
logous. G36 and F360 from AroAT interact with

the carboxyl group and the aliphatic group of the
substrate. N142 and T109 recognize the aromatic
groups through van der Waals interactions with
the substrate. K258, G108, T109, S257, and Y225
bind to PLP. All these residues are conserved in
17-b-HD. Conversely, six conserved residues in
the binding site of 17-b-HD interact with the
hydrophobic group of the substrate, S142, P187,
Y218, S222, F226, F259, and E282. The correspond-
ing conserved residues on AroAT are T109, P195,
Y225, S257, F360, Y380, and D384. Altogether, ten
of the 17 conserved residue pairs have clear func-
tional role in binding substrate in either AroAT or
in 17-b-HD, as assessed from the structures of
2ay5 and 1fdw. These results suggest that similar
sequence patterns of the binding surfaces of
aromatic aminotransferase and 17-b-hydroxy-
steroid dehydrogenase may be related to their
shared similar functional role of binding a bulky
and hydrophobic group.

Unlike the example of HIV-1 protease and
HSP-90, the orientational similarity as measured
by oRMSD is not significant (oRMSD ¼ 1.02 Å,
p-value ¼ 9.2 £ 1022). The overall cRMSD measure

Table 3. PDB structures containing pocket surface patterns that are similar to the functional site of aromatic amino-
transferase (2ay5)

PDB code Pocket id Chain id E-value Name Sequence identity

2ay5 110 A 5.1 £ 10226 Aromatic amino acid aminotransferase 1.00
1aam 63 0 1.3 £ 10211 Aspartate aminotransferase 0.46
1asl 125 A 1.1 £ 10205 Aspartate aminotransferase 0.46
2aat 83 0 1.6 £ 10205 Aspartate aminotransferase 0.46
1asn 140 A 1.6 £ 10205 Aspartate aminotransferase 0.46
8aat 127 B 2.2 £ 10205 Aspartate aminotransferase 0.36
1arg 138 A 2.9 £ 10205 Aspartate aminotransferase 0.46
1asm 150 A 2.9 £ 10205 Aspartate aminotransferase 0.46
1ahe 132 B 3.8 £ 10205 Aspartate aminotransferase 0.45
1ajs 112 A 4.3 £ 10205 Aspartate aminotransferase 0.37
1asm 149 B 7.8 £ 10205 Aspartate aminotransferase 0.46
1tas 119 A 1.4 £ 10204 Aspartate aminotransferase 0.36
1art 66 0 1.7 £ 10204 Aspartate aminotransferase 0.46
1arg 139 B 2.1 £ 10204 Aspartate aminotransferase 0.46
1fdw 39 0 2.1 £ 10204 17-Beta-hydroxysteroid dehydrogenase 0.28
1ari 146 A 2.7 £ 10204 Aspartate aminotransferase 0.46
1aka 130 A 3.9 £ 10204 Aspartate aminotransferase 0.36
1ajs 113 B 5.1 £ 10204 Aspartate aminotransferase 0.36
1qir 67 A 6.4 £ 10204 Aspartate aminotransferase 0.46
1ama 52 0 6.5 £ 10204 Aspartate aminotransferase 0.36
1maq 64 0 7.5 £ 10204 Aspartate aminotransferase (Maspat) 0.36
1ahg 150 B 8.6 £ 10204 Aspartate aminotransferase 0.45
1ajr 99 B 8.9 £ 10204 Aspartate aminotransferase 0.36
1ivr 56 A 1.5 £ 10203 Aspartate aminotransferase 0.36
1ari 147 B 1.5 £ 10203 Aspartate aminotransferase 0.46
1tat 136 A 2.7 £ 10203 Aspartate aminotransferase (Maspat) 0.36
1ajr 98 A 3.7 £ 10203 Aspartate aminotransferase 0.36
1oxp 56 0 4.2 £ 10203 Aspartate aminotransferase 0.36
1ams 62 0 4.8 £ 10203 Aspartate aminotransferase 0.46
1yaa 229 D 6.0 £ 10203 Aspartate aminotransferase 0.34
1tat 137 B 7.4 £ 10203 Aspartate aminotransferase 0.36
1yaa 231 B 8.0 £ 10203 Aspartate aminotransferase 0.34
1bhs 30 0 8.6 £ 10203 17-Beta-hydroxysteroid dehydrogenase 0.28

Sequence identity of primary sequence as obtained by SSEARCH alignment are also listed. The hits listed are obtained by querying
pvSOAR database with the pattern obtained from the active-site pocket (CASTp id ¼ 110) on chain A of 2ay5. All hits have significant
E values #0.01. The most significant hit is the query pattern itself. There are 87 hits from structures of aromatic aminotransferase and
aspartic aminotransferase with E-values between 5.1 £ 10226 and 1.1 £ 1025. Only one (1aam) is listed for brevity. All hits with E values
between 1.0 £ 1025 and 0.01 are listed. Two 17-b-hydroxysteroid dehydrogenase structures are identified with significant E values of
0.00021 and 0.0086.
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Table 4. Several structures of aromatic aminotransferase are among the list of hits of proteins with surface patterns
similar to the functional site of 17-b-hydroxysteroid dehydrogenase on 1fdw

PDB code Pocket id Chain id E-value Name Sequence identity

1fdw 39 0 9.2 £ 10230 17-Beta-hydroxysteroid deydrogenase 1.00
1bhs 30 0 9.3 £ 10226 17Beta-hydroxysteroid deydrogenase 0.99
1fdv 158 D 1.4 £ 10222 17-Beta-hydroxysteroid deydrogenase 0.99
1fdu 156 A 3.2 £ 10222 17-Beta-hydroxysteroid deydrogenase 0.99
1equ 82 0 2.2 £ 10221 Estradiol 17-beta-dehydrogenase 0.99
1fdv 161 C 4.9 £ 10220 17-Beta-hydroxysteroid deydrogenase 0.99
1fdu 154 D 5.9 £ 10220 17-Beta-hydroxysteroid deydrogenase 0.99
1fdv 159 A 2.8 £ 10219 17-Beta-hydroxysteroid deydrogenase 0.99
1fdv 160 B 1.1 £ 10218 17-Beta-hydroxysteroid deydrogenase 0.99
1fdu 155 B 4.2 £ 10218 17-Beta-hydroxysteroid deydrogenase 0.99
1a27 31 0 5.2 £ 10217 17-Beta-hydroxysteroid deydrogenase 0.99
1fdt 32 0 4.3 £ 10216 17-Beta-hydroxysteroid deydrogenase 0.99
1iol 42 0 5.6 £ 10215 Estrogenic 17-beta hydroxysteroid dehydrogenase 0.99
1equ 81 0 3.8 £ 10213 Estradiol 17-beta-dehydrogenase 0.99
1dht 35 A 5.6 £ 10212 Estrogenic 17-beta-hydroxysteroid dehydrogenase 0.99
1fdu 156 C 1.5 £ 10211 17-Beta-hydroxysteroid deydrogenase 0.99
1fds 31 0 1.6 £ 10211 17-Beta-hydroxysteroid deydrogenase 0.99
3dhe 43 A 4.3 £ 10211 Estrogenic 17-beta-hydroxysteroid dehydrogenase 0.99
2ay5 110 A 0.00053 Aromatic amino acid aminotransferase 0.27
2ay4 124 A 0.0032 Aromatic amino acid aminotransferase 0.27
2ay8 120 A 0.0084 Aromatic amino acid aminotransferase 0.27

The listed hits all have E value #0.01 and are obtained by querying pvSOAR database with the pattern of functional site obtained
from pocket 39 of 1fdw.

Figure 10. The substrate binding sites of (a) aromatic aminotransferase from P. dentrificans (2ay5, CASTp id ¼ 110)
and (b) 17-b-hydroxysteroid dehydrogenase (17-b-HD) (1fdw, CASTp id ¼ 39). The alignment of the sequences of
these two active sites is also shown, where identical or conserved residues are colored in red. The conserved residues
in the pocket of (c) 1fdw and (d) of 2ay5 are shown in red. Their superposition is shown in (e), where conserved resi-
dues are colored in yellow for 1fdw and green for 2ay5. The alignment of unit vectors on the unit sphere for oRMSD
calculation for 1fdw (e) and 2ay5 (f) is shown in (h).
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(9.58 Å) between the spatial locations of the two
pockets is also not significant ( p-value of
8.2 £ 1021). As seen earlier in the example of acetyl-
choline esterase (Table 1), the active site of a
protein may be flexible and can adopt a number
of different conformations in X-ray crystallo-
graphic structures. In many cases the shape simi-
larity as measured by cRMSD or even oRMSD can
no longer be detected with statistical significance.
For example, 1f8u and 1b41 in Table 1 are both
structures of acetylcholinesterase, as in the query
structure 2ack. The p-values of the measured
cRMSDs to the active site of 2ack are insignificant
(3.2 £ 1021 and 3.4 £ 1021, respectively for 1f8u
and 1b41). However, in both cases, similarity in
sequence patterns reveals close functional relation-
ship of these protein structures. It is to this type of
similar but flexible binding surface that we believe
aromatic amino acid transferase and 17-b-hydroxy-
steroid dehydrogenase belong.

All-against-all comparison of structures in
pvSOAR database

To assess globally the relationship of functional
surfaces on all known protein structures, we
carried out a preliminary all-against-all search of
similar surface sequence and shape patterns for
each pocket and void on each protein structure
contained in the pvSOAR database. We found
numerous examples where pocket surface patterns
alone can detect functional relationship of proteins
from the same family, similar to recently reported
results.25,65 We also examine unusual functional
relationship of protein surfaces, that is, functional
relationship between proteins of different super-
family, different fold, and sometimes different
class, such as the example of HIV-1 protease and
heat shock protein-90, and the example of
aromatic aminotransferase and 17-b-hydroxy-
steroid dehydrogenase. Because of the preliminary
nature of our study, here we have not removed
redundant structures of the same protein from the
data set, nor the structures of highly homologous
proteins.

We restrict ourselves to proteins with known
fold classification. We use the SCOP and CATH
hierarchical classification systems to identify
matched pairs of pocket surface patterns from two
proteins, each of which must have both SCOP or
CATH fold classifications. Only 10,429 protein
structures in a total of 12,177 structures in the
pvSOAR database have both SCOP and CATH
classifications.

Summary results of similar pocket surface
patterns identified from proteins of different
SCOP class, fold, superfamily and family as
obtained from an all-against-all comparison are
listed in Table 5 at various statistical significance
E-values. Similar results organized by CATH class,
architecture, topology, homologous superfamily,
and family classification are also listed in Table 5.
These include many redundant and highly homo-

logous entries in the PDB database, similar to the
example of aromatic aminotransferase and 17-b-
hydroxysteroid dehydrogenase in Tables 3 and 4.
The full details of the results of all-against-all
searches will be available on the web.

The all-against-all comparison identifies a total
of 18,470 and 13,018 surface patterns with 1029 ,
E , 1023 that belong to different SCOP and CATH
class, respectively. As an example, a matched
surface pattern is found between 1cla and 1a28
(Table 6). These two proteins have only 19% overall
full primary sequence identity. For similar surface
patterns from proteins of different SCOP fold
classification, we found a total of 29,085 matches
at significance level of 1029 , E , 1023: Table 6
shows two examples from this search. The
matched surfaces between 1xla and 1esn and
between 1qsl and 1djy have 23% and 24% back-
bone sequence identity, respectively. Similarly, we
have identified matched surface patterns using
CATH classification. For example, the all-against-
all comparison identifies a total of 24,249 surface
patterns with 1029 , E , 1023 that belong to
different superfamilies by CATH classification. As
an example, the matched surfaces between 4rub
and 1de6 are shown in Table 6. These two proteins
have 27% overall backbone sequence identity. The
all-against-all comparison, in addition, identifies a
total of 30,425 surface patterns with 1028 , E ,
1023 that belong to different SCOP families (no sig-
nificant hits are found at 1029 , E , 1028). Table 6
shows a list of matches extracted from the all-
against-all results.

These examples indicate that there exist similar
protein surfaces from different family and some-
times different superfamily, fold, and class, either
by SCOP or by CATH classification. It is likely
that there is sometimes remote relationship in the
biological functional roles of these matched sur-
faces, as elaborated in the examples of HSP90 and
HIV-1, aromatic aminotransferase and 17b-
hydroxysteroid dehydrogenase. More detailed
analysis on these examples will provide additional
information on the global relationship of biological
functions and protein structures.

Discussion

In this study, we describe a new method for
detecting similar patterns of protein structures
that suggests related biological function. This
method is fully automated without human inter-
vention and does not require human input of
query patterns. Our method is similar to other
methods for detecting common local structure
patterns and aims to uncover similarity of a small
spatial region on protein structures.19,22 – 24 These
methods complement fold recognition methods
and provide additional information for under-
standing protein structure and protein function
relationship. Unlike side-chain based pattern dis-
covery methods,19,22,23 our method examines well
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formed surface regions of pronounced concavity in
the form of pockets and voids, which are fre-
quently associated with protein function.30,31

Because proteins play cellular roles through bind-
ing interactions with other molecules, this method
helps to identify similarity relationship of protein
surfaces that might be directly related to protein
function. In addition, because these patterns are
derived from short sequence fragments of pockets
and voids, our method is not overly sensitive to

small conformational changes in functional sites.
Although our method detects order-dependent
sequence pattern, it does not require residues to
be adjacent in primary sequence.

A major challenge in analyzing local spatial
patterns is to assess the significance of detected
similarity. This is of fundamental importance for
unambiguously establishing similarity relationship
that is biologically interesting. We approach this
problem using three different methods. First, we

Table 5. A summary of similar pocket surfaces identified from proteins at different SCOP and CATH classification
levels with various statistical significance E-values

E-value Class Fold Superfamily Family Same N/A Total

SCOP
10 £ 1029 0 0 0 0 36363 11619 47982
10 £ 1028 0 0 0 3 42406 13147 55556
10 £ 1027 2 4 4 15 47683 15884 63582
10 £ 1026 17 31 32 90 58353 21798 80241
10 £ 1025 122 201 202 301 61624 24773 86698
10 £ 1024 1175 1702 1718 1895 67887 31569 101351
10 £ 1023 17163 27147 27529 28121 86040 67191 181352
10 £ 1022 282157 439774 444712 448501 124269 468495 1041265
10 £ 1021 3780513 5802962 5865460 5911283 248929 5439821 11600033

E-value Class Architecture Topology Homologous superfamily Total Same N/A

CATH
10 £ 1029 32 32 35 35 32543 15404 47982
10 £ 1028 54 54 58 58 38140 17358 55556
10 £ 1027 84 85 89 89 43177 20316 63582
10 £ 1026 116 129 146 147 52790 27304 80241
10 £ 1025 253 291 324 328 55828 30542 86698
10 £ 1024 997 1354 1509 1573 60800 38978 101351
10 £ 1023 11482 17449 21060 22019 77137 82196 181352
10 £ 1022 185133 279348 335486 352359 108415 580491 1041265
10 £ 1021 2503177 3732045 4472269 4688335 229803 6681895 1160033

Matches are collected into different groups by the criteria whether the highest level of difference is at class, fold, superfamily, or
family level for SCOP classification, and at class, architecture, topology, or superfamily, for CATH classification. Matches at lower
level of classification automatically includes all matches at a higher level. For example, the 31 pairs of similar pocket surfaces from
proteins of different SCOP fold at 10 £ 1026 will include all 17 cases of similar pairs of pocket surfaces from proteins of different
SCOP class.

The total number (Total column) of significant matches at a specific significance level and the number of matches with identical
CATH or SCOP classification (the Same column) are also listed. Since both SCOP and CATH classifications were used to identify a
difference at the class level, the Total column represents the combined (from SCOP and CATH) number of matches. N/A indicates
the number of matches where at least one protein did not have SCOP or CATH classification.

Table 6. Partial list of significant matches between protein pockets belonging to different SCOP class, SCOP fold,
CATH superfamily, and SCOP family from all-against-all search of similar surface sequence and shape patterns

Query Match PvSOAR alignment ORMSD CRMSD

PDB
code

Pocket
id

Chain
id

PDB
code

Pocket
id

Chain
id E-value

Aligned
residues ORMSD p-value cRMSD p-value

Class
1cla 28 0 1a28 70 B 2.6 £ 10203 7 0.68 3.885 £ 10202 3.98 3.623 £ 10201

Fold
1xla 116 B 1esn 145 A 5.3 £ 10203 7 0.35 6.703 £ 10205 2.30 5.105 £ 10203

1qsl 76 A 1diy 125 B 1.0 £ 10202 7 0.35 6.703 £ 10205 3.68 2.484 £ 10201

Superfamily
4rub 298 A 1de6 227 A 2.6 £ 10203 5 0.75 3.796 £ 10201 2.87 2.397 £ 10201

Family
1qfy 65 A 1ddi 46 A 2.0 £ 10204 12 0.09 1.130 £ 10207 0.83 2.270 £ 10207

1b38 36 A 1qcf 56 A 5.2 £ 10203 21 0.28 5.190 £ 10207 2.45 5.210 £ 10207

1arm 38 0 1obr 40 0 1.9 £ 10203 15 0.11 2.025 £ 10207 0.92 1.016 £ 10206
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examine the significance of matched short
sequences of the surface patterns. Since these
patterns are derived from well-formed concave
pockets and voids on protein structures, they are
characteristic of the protein local surfaces. Because
they are very short and have biased composition,
we develop a heuristic method based on randomiz-
ation test and non-parametric Kolmogorov–
Smirnov test. Second, the relationship between the
spatial arrangement of residues of pockets in
Euclidean space provides further information
about similarity relationship. We use standard
cRMSD measurement to assess this relationship.
Statistical significance of cRMSD value has been
the subject of several important studies.23,24,66 – 68 In
this study, we followed the approach developed in
Reference 23 for side-chain matching and con-
structed a random model by sampling unrelated
surface pockets computationally for the matched
number of pocket residues nres between 3–100 resi-
dues, and derive empirically the p-value of
observed cRMSD values by rank order statistic.

Third, a challenging problem in comparing
spatial patterns of pockets is to identify related sur-
face patterns on proteins that are subject to confor-
mational changes. For these cases, we develop a
method based on a novel measure oRMSD by
assessing the relationship of two sets of equivalent
orientational unit vectors on unit sphere represent-
ing residues from two surface pockets. Preliminary
studies indicate that this method can suggest inter-
esting similarity relationship between protein sur-
faces that do not superimpose well by rigid
motion.

In most cases, the query surface patterns used
for database search can be found automatically.
For a given protein structure, we can first search
against the pvSOAR database using all of its sur-
face pockets and voids. We are then interested in
surface pockets or voids on the query structure
that matches with a pocket or void from another
protein structure in the database with statistically
significant low E-value. The examples discussed
in Results are identified using this approach.
Other strategies for identifying query patterns for
database search are also possible. First, the largest
or the second largest pocket or void is often of
interest because it frequently is the binding site for
enzymes.30,31 Second, we can query with surface
pockets selected by the criterion that they contain
functionally annotated residues as described by
SwissProt or reported in the literature. Third, we
can query patterns that contain residues known to
interact with ligand based on the PDB structure.

An important issue that cannot be addressed
with our method is to detect similar protein surface
patterns with different underlying primary
sequence order. When convergent evolution
occurs, nature discovers the same functional sur-
faces multiple times, as is the case of the catalytic
triad in serine protease. It is likely that there may
be many such examples where proteins with simi-
lar functional surfaces have different underlying

protein core architecture, and specifically, the key
residues important for function may have different
order in primary sequences. Our method currently
cannot detect such similarity. Further development
of methods assessing similarity of order-indepen-
dent surface patterns will be fruitful for studying
this important issue.

There are additional possible further improve-
ments. For detecting the similarity relationship
between pocket sequences, we currently use
BLOSUM50 amino acid substitution matrix for
sequence alignment. We have shown that pockets
and voids on proteins have different amino acid
compositions from the composition of the entire
primary sequences (Figure 2). Because BLOSUM
and another widely used substitution matrix PAM
are all constructed based on overall sequence
similarity,69,70 their use in our method is inconsist-
ent with the goal of identifying surface pockets
and voids that are functionally related. It is unclear
how this would adversely affect our method. A
substitution matrix tailored to the characteristics
of binding surfaces may improve the sensitivity
and specificity of our method. In principle, the
heuristic approach of BLOSUM and PAM can be
applied to develop a similarity matrix based on
pocket sequence patterns, which would provide
better measure for the task of identifying similar
functional surfaces. An alternative approach that
is based on a more satisfactory statistical model
can be found in Ref. 71. In this study, the entries
of the substitution matrix are derived from a
model of continuous time reversible Markov pro-
cess, whose parameters were estimated by
approximate maximum likelihood method from
multiple alignments of over 100 protein families.

In addition, it will be important in the future to
cluster systematically all surface patterns found
on protein structures by similarity in sequence
and shape and to develop a classification system,
such that protein surface pattern can be queried in
an organized fashion, and understood in the con-
text of other proteins with related functional
surfaces.

Our method can be used to analyze details of
protein functional surfaces and compare their
patterns in sequence, spatial distance, and spatial
orientation. Such analysis may be useful for eluci-
dating the structural basis of specificity in binding.
Another application of this method is to discover
previously unknown relationship of protein sur-
faces. The all-against-all search conducted in this
study already indicates that there are such
examples in the existing Protein Data Bank.
Further close examinations are required for under-
standing these examples. Obviously, when the
query protein is a structure with unknown func-
tion, such as those obtained through structural
genomics project, this method may be useful to
identify the biological function of the unknown
protein. Furthermore, when the requirement of
statistical significance is relaxed, our method may
help to detect potential targets of promiscuous
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binding of chemicals such as drugs to unintended
proteins.

The functional relationship suggested by our
method can be enhanced by independent
corroborations, such as Gene Ontology classification
of proteins,72 their metabolic and/or regulatory path-
way relationship, and operon organizational
relationship in the case of bacterial proteins. In
addition, experimental studies such as cross-binding
assay of selected chemical compounds and peptide
modulators will provide ultimate evidence of
suggested functional relationship between protein
surfaces.

One important further application of our method
is to help to study evolution of protein structure
and function relationship. The functional roles of
proteins are results of evolution and natural selec-
tion. Biological functions are carried out through
binding events occurring on the surface regions of
proteins. These functionally important surfaces are
architectured on main-chain folds of proteins. The
relationship between functional binding surface
and main-chain fold, and the way they influence
each other during evolution is therefore fundamen-
tal for understanding the structure–function
relationship of proteins. Extensive study of evol-
ution of protein function and protein fold showed
that a protein fold can have many functions and
that similar functions can have many different
structural solutions.11,14 Our study provides
additional examples of very remote similarity
relationships between protein surfaces involving a
large number of residues that is sometimes inde-
pendent of main-chain fold, as in the case of the
similar active sites of HSP90 and HIV-1 protease,
and the similar binding surfaces of aromatic amino-
transferase and 17-b-hydroxysteroid dehydrogen-
ase. These examples, together with previously
reported common local side-chain patterns,19,23,24

may be results of convergent evolution. It is possible
that preservation of the functional pockets may pre-
date the emergence and maturation of protein fold.
The requirement of these functional surfaces also
puts some constraints on protein conformations. In
this case, an intriguing possibility is to examine the
structural biology of protein evolution not at protein
fold level, but at the level of functional surfaces and
related secondary structures. The existence of such
evolutionary structural units that preserve key
atoms and their spatial orientation to provide favor-
able locations for functional activity may be ancient,
predating the formation of protein fold and domain.
Computational method developed in this study
may help to uncover these evolutionary structural
units.
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