
BIOINFORMATICS Vol. 20 no. 17 2004, pages 3080–3098
doi:10.1093/bioinformatics/bth369

Developing optimal non-linear scoring function
for protein design

Changyu Hu, Xiang Li and Jie Liang∗

Department of Bioengineering, SEO, MC-063, University of Illinois at Chicago,
851 S. Morgan Street, Room 218, Chicago, IL 60607-7052, USA

Received on February 29, 2004; revised on June 9, 2004; accepted on June 10, 2004

Advance Access publication June 24, 2004

ABSTRACT
Motivation. Protein design aims to identify sequences com-
patible with a given protein fold but incompatible to any altern-
ative folds. To select the correct sequences and to guide the
search process, a design scoring function is critically import-
ant. Such a scoring function should be able to characterize the
global fitness landscape of many proteins simultaneously.
Results: To find optimal design scoring functions, we intro-
duce two geometric views and propose a formulation using
a mixture of non-linear Gaussian kernel functions. We aim
to solve a simplified protein sequence design problem. Our
goal is to distinguish each native sequence for a major por-
tion of representative protein structures from a large number
of alternative decoy sequences, each a fragment from proteins
of different folds. Our scoring function discriminates perfectly
a set of 440 native proteins from 14 million sequence decoys.
We show that no linear scoring function can succeed in this
task. In a blind test of unrelated proteins, our scoring function
misclassfies only 13 native proteins out of 194. This compares
favorably with about three–four times more misclassifications
when optimal linear functions reported in the literature are
used. We also discuss how to develop protein folding scoring
function.
Availability: Available on request from the authors.
Contact: jliangATuicDOTedu

1 INTRODUCTION
The problem of protein sequence design aims to identify
sequences compatible with a given protein fold and incom-
patible with alternative folds (Drexler, 1981; Pabo, 1983;
DeGrado et al., 1999). It is also called the inverse protein fold-
ing problem. This is a fundamental problem and has attracted
considerable interest (Yue and Dill, 1992; Shakhnovich, 1998;
Li et al., 1996; Deutsch and Kurosky, 1996; Koehl and
Levitt, 1999a,b). The ultimate goal of protein design is to
engineer protein molecules with improved activities or with
acquired new functions. There have been many important
design studies, including the design of novel hydrophobic
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core (Desjarlais and Handel, 1995; Lazar,G.A. et al., 1997),
the design and experimental validation of an entire protein for
specified backbone (Dahiyat and Mayo, 1997), the design of a
novel alpha helical protein (Emberly et al., 2002), the design
and validation of a protein adopting a completely new fold
unseen in nature (Kuhlman et al., 2003) and a soluble analog
of membrane potassium channel (Slovic et al., 2004).

A successful protein design strategy needs to solve two
problems. First, it needs to explore both the sequence and
the structure search space and efficiently generates candid-
ate sequences. Second, a scoring function or fitness function
needs to identify sequences that are compatible with the
desired template fold (the ‘design in’ principle) but are incom-
patible with any other competing folds (the ‘design out’
principle) (Yue and Dill, 1992; Koehl and Levitt, 1999a,b).
To achieve this, an ideal scoring function would maxim-
ize the probabilities of protein sequences taking their native
fold, and reduce the probability that these sequences take
any other fold. Because many protein sequences with low
sequence identity can adopt the same protein fold, a full-
fledged design scoring function should identify all sequences
that fold into the same desired structural fold from a vast
number of sequences that do fold into alternative structures,
or that do not fold.

Several design scoring functions have been developed based
on physical models. For redesigning protein cores, hydro-
phobicity and packing specificity are the main ingredients of
the scoring functions (Desjarlais and Handel, 1995). Van der
Waals interactions and electrostatics have also been incor-
porated for protein design (Koehl and Levitt, 1999a,b). A
combination of terms including Lennard–Jones potential,
repulsion, Lazaridis–Karplus implicit solvation, approxim-
ated electrostatic interactions and hydrogen bonds are used
in an insightful computational protein design experiment
(Kuhlman and Baker, 2000). Models of solvation energy
based on surface area are a key component of several other
design scoring functions (Wernisch et al., 2000; Koehl and
Levitt, 1999a,b).

A variety of empirical scoring functions based on known
protein structures have also been developed for coarse-grained
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models of proteins. In this case, proteins are not represented in
atomic detail but are represented at residue level. Because of
the coarse-grained nature of the protein representation, these
scoring functions allow rapid exploration of the search space
of the main factors important for proteins, and can provide
good initial solutions for further refinement where models
with atomistic details can be used.

Many empirical scoring functions were originally developed
for the purposes of protein folding and structure prediction.
Because the principles are very similar, they are often used
directly for protein design. One prominent class of empir-
ical scoring functions are knowledge-based scoring functions,
which are derived from statistical analysis of the database of
protein structures (Tanaka and Scheraga, 1976; Miyazawa and
Jernigan, 1985; Samudrala and Moult, 1998; Lu and Skolnick,
2001). Here, the interactions between a pair of residues are
estimated from its relative frequency in database when com-
pared with a reference state or a null model. This approach has
found many successfull applications (Miyazawa and Jernigan,
1996; Samudrala and Moult, 1998; Lu and Skolnick, 2001;
Wodak and Rooman, 1993; Sippl, 1995; Lemer et al., 1995;
Jernigan and Bahar, 1996; Simons et al., 1999; Li et al., 2003).
However, there are several conceptual difficulties with this
approach. These include the neglect of chain connectivity
in the reference state, and the problematic implicit assump-
tion of Boltzmann distribution (Thomas and Dill, 1996a,b;
Ben-Naim, 1997).

An alternative approach for empirical scoring function is
to find a set of parameters such that the scoring functions
are optimized by some criterion, e.g. maximized score dif-
ference between native conformation and a set of alternative
(or decoy) conformations (Goldstein et al., 1992; Maiorov
and Crippen, 1992; Thomas and Dill, 1996a; Tobi et al.,
2000; Vendruscolo and Domany, 1998; Vendruscolo et al.,
2000a; Bastolla et al., 2001; Dima et al., 2000; Micheletti
et al., 2001). This approach has been shown to be effective
in fold recognition, where native structures can be identi-
fied from alternative conformations (Micheletti et al., 2001).
However, if a large number of native protein structures are
to be simultaneously discriminated against a large number
of decoy conformations, no such scoring functions can be
found (Vendruscolo et al., 2000a; Tobi et al., 2000). A similar
conclusion is found in the present study for protein design,
where we find that no linear design scoring function can sim-
ultaneously discriminate a large number of native proteins
from sequence decoys. A recent criticism for contract poten-
tial is that it is impossible to predict stability changes due to
mutation using contact-based scoring function (Khatun et al.,
2004).

There are three key steps in developing effective empirical
scoring function using optimization: (1) the functional form,
(2) the generation of a large set of decoys for discrimination
and (3) the optimization techniques. The initial step of choos-
ing an appropriate functional form is often straightforward.

Empirical pairwise scoring functions are usually all in the
form of weighted linear sum of interacting residue pairs (for
an exception, see Fain et al., 2002). In this functional form, the
weight coefficients are the parameters of the scoring function,
which are optimized for discrimination. The same functional
form is also used in statistical potential, where the weight coef-
ficients are derived from database statistics. The optimization
techniques that have been used include perceptron learning
and linear programming (Tobi et al., 2000; Vendruscolo et al.,
2000a). The objectives of optimization are often maximization
of score gap between native protein and the average of decoys,
or score gap between native and decoys with the lowest score,
or the Z-score of the native protein (Goldstein et al., 1992;
Koretke et al., 1996, 1998; Hao and Scheraga, 1996; Mirny
and Shakhnovich, 1996).

In this work, we study a simplified version of the protein
design problem. Our goal is to develop a globally applic-
able scoring function for characterizng the fitness landscape of
many proteins simultaneously. Specifically, we aim to identify
a protein sequence that is compatible with a given three-
dimensional coarse-grained structure from a set of protein
sequences that are taken from protein structures of different
folds. In conclusion, we discuss how to proceed to develop a
full-fledged fitness function that discriminates similar and dis-
similar sequences adopting the same fold against all sequences
that adopt different folds and sequences that do not fold (e.g.
all hydrophobes). In this study, we do not address the prob-
lem of how to generate candidate template fold or candidate
sequence by searching either the conformation space or the
sequence space.

To develop an empirical scoring function that improves dis-
crimination of native protein sequence, we explore in this
study an alternative formulation of protein scoring function,
in the form of mixture of non-linear Gaussian kernel func-
tions. We also use a different optimization technique based
on quadratic programming. Instead of maximizing the score
gap, here an objective function related to bounds of expected
classification errors is optimized (Vapnik and Chervonenkis,
1974; Vapnik, 1995; Burges, 1998; Schölkopf and Smola,
2002).

Experimentation with the non-linear function developed
in this study shows that it can discriminate simultaneously
440 native proteins against 14 million sequence decoys. In
contrast, we cannot obtain a perfect weighted linear sum scor-
ing function using the state-of-the-art interior point solver of
linear programming following Tobi et al. (2000) and Meller
et al. (2002). We also perform blind tests for native sequence
recognition. Taking 194 proteins unrelated to the 440 train-
ing set proteins, the non-linear scoring function achieves a
success rate of 93.3% in sequence design. This result com-
pares favorably with optimal linear scoring function (80.9
and 73.7% success rate) and statistical potential (58.2%)
(Tobi et al., 2000; Bastolla et al., 2001; Miyazawa and
Jernigan, 1996).
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The rest of the paper is organized as follows. We first
describe the theory and model of linear and non-linear
functions, including the kernel model and the optimization
technique. We then explain details of computation. We fur-
ther describe experimental results of learning and results of
blind test. We conclude with a discussion on how these ideas
may be applicable for developing protein folding scoring
function.

2 THEORY AND MODELS
Modeling protein design scoring function. To model a pro-
tein computationally, we first need a method to describe its
geometric shape and its sequence of amino acid residues. Fre-
quently, a protein is represented by a d-dimensional vector
c ∈ R

d . For example, a method that is widely used is to
count non-bonded contacts of various types of amino acid
residue pairs in a protein structure. In this case, the count vec-
tor c ∈ R

d , d = 210, is used as the protein descriptor. Once
the structural conformation of a protein s and its amino acid
sequence a is given, the protein description f : (s, a) �→ R

d

will fully determine the d-dimensional vector c. In the case
of contact vector, f corresponds to the mapping provided
by specific contact definition, e.g. two residues are in con-
tact if their distance is below a specific cutoff threshold
distance.

To develop scoring functions for our simplified problem,
namely, a scoring function that allows the search and identi-
fication of sequences most compatible with a specific given
coarse-grained three-dimensional structure, we use a model
analogous to the Anfinsen experiments in protein folding. We
require that the native amino acid sequence aN mounted on
the native structure sN has the best (lowest) fitness score com-
pared to a set of alternative sequences (sequence decoys) taken
from unrelated proteins known to fold into a different fold
D = {sN , aD} when mounted on the same native protein
structure sN :

H(f (sN , aN)) < H(f (sN , aD)) for all sN , aD ∈ D.

Equivalently, the native sequence will have the highest prob-
ability to fit into the specified native structure. This is the
same principle described by Shakhnovich and Gutin (1993),
Deutsch and Kurosky (1996), Li et al. (1996). Sometimes we
can further require that the score difference must be greater
than a constant b > 0:

H(f (sN , aN)) + b < H(f (sN , aD)) for all (sN , aD) ∈ D.

A widely used functional form for protein scoring function
H is the weighted linear sum of pairwise contacts (Tanaka
and Scheraga, 1976; Miyazawa and Jernigan, 1985; Tobi et al.,
2000; Vendruscolo and Domany, 1998; Samudrala and Moult,

1998; Lu and Skolnick, 2001). The linear sum score H is:

H(f (s, a)) = H(c) = w · c, (1)

where ‘·’ denotes the inner product of vectors. As soon as
the weight vector w is specified, the scoring function is fully
defined. Much work has been done using this class of design
function of linear sum of contact pairs (Shakhnovich and
Gutin, 1993; Deutsch and Kurosky, 1996). For such linear
scoring functions, the basic requirement for design scoring
function is then:

w · (cN − cD) < 0,

or
w · (cN − cD) + b < 0, (2)

if we require that the score difference between a native protein
and a decoy must be greater than a real positive value b. The
goal here is to obtain a scoring function to discriminate nat-
ive proteins from decoys. An ideal scoring function therefore
would assign the value ‘−1’ for native structure/sequence and
the value ‘+1’ for decoys.

Two geometric views of linear protein design scoring
function. There is a natural geometric view of the inequal-
ity requirement for weighted linear sum scoring functions.
A useful observation is that each of the inequalities divides
the space of R

d into two halves separated by a hyperplane
(Fig. 1a). The hyperplane for Equation (2) is defined by the
normal vector (cN − cD) and its distance b/||cN − cD|| from
the origin. The weight vector w must be located in the half-
space opposite the direction of the normal vector (cN − cD).
This half-space can be written as w ·(cN −cD)+b < 0. When
there are many inequalities to be satisfied simultaneously, the
intersection of the half-spaces forms a convex polyhedron
(Edelsbrunner, 1987). If the weight vector is located in the
polyhedron, all the inequalities are satisfied. Scoring func-
tions with such weight vector w can discriminate the native
protein sequence from the set of all decoys. This is illustrated
in Figure 1a for a two-dimensional toy example, where each
straight line represents an inequality w · (cN − cD) + b < 0
that the scoring function must satisfy.

For each native protein i, there is one convex polyhedron Pi

formed by the set of inequalities associated with its decoys. If
a scoring function can discriminate simultaneously n native
proteins from a union of sets of sequence decoys, the weight
vector w must be located in a smaller convex polyhedron P
that is the intersection of the n convex polyhedra:

w ∈ P =
n⋂

i=1

Pi .

There is yet another geometric view of the same inequality
requirements. If we now regard (cN −cD) as a point in R

d , the
relationship w ·(cN −cD)+b < 0 for all sequence decoys and

3082



Scoring function for protein design

–4 0 2 4

–4
–2

0
2

4

w1

w
2

a

–1.0 0.0 1.0

–1
.0

0.
0

1.
0

x1

x 2

b

–3 –1 1 2 3

3
–1

0
1

2
3

w1

w
2

c

–5 0 5

–5
0

5

x1

x 2

d

Fig. 1. Geometric views of the inequality requirement for protein scoring function. Here, we use a two-dimensional toy example for illustration.
(a) In the first geometric view, the space R

2 of w = (w1, w2) is divided into two half-spaces by an inequality requirement, represented as
a hyperplane w · (cN − cD) + b < 0. The hyperplane, which is a line in R

2, is defined by the normal vector (cN − cD), and its distance
b/||cN − cD|| from the origin. In this figure, this distance is set to 1.0. The normal vector is represented by a short line segment whose
direction points away from the straight line. A feasible weight vector w is located in the half-space opposite the direction of the normal vector
(cN − cD). With the given set of inequalities represented by the lines, any weight vector w located in the shaped polygon can satisfy all
inequality requirement and provide a linear scoring function that has perfect discrimination. (b) A second geometric view of the inequality
requirement for linear protein scoring function. The space R

2 of x = (x1, x2), where x ≡ (cN − cD), is divided into two half-spaces by the
hyperplane w · (cN − cD) + b < 0. Here, the hyperplane is defined by the normal vector w and its distance b/||w|| from the origin. All points
{cN − cD} are located on one side of the hyperplane away from the origin, therefore satisfying the inequality requirement. That is, a linear
scoring function w such as the one represented by the straight line in this figure can have perfect discrimination. (c) In the second toy problem,
a set of inequalities are represented by a set of straight lines according to the first geometric view. A subset of the inequalities require that the
weight vector w be located in the shaded convex polygon on the left, but another subset of inequalities require w to be located in the dashed
convex polygon on the top. Since these two polygons do not intersect, there is no weight vector w that can satisfy all inequality requirements.
That is, no linear scoring function can classify these decoys from native protein. (d) According to the second geometric view, no hyperplane
can separate all points {cN − cD} from the origin. But a non-linear curve formed by a mixture of Gaussian kernels can have perfect separation
of all vectors {cN − cD} from the origin: it has perfect discrimination.

native proteins requires that all points {cN − cD} are located
on one side of a different hyperplane, which is defined by its
normal vector w and its distance b/||w|| to the origin (Fig. 1b).
We can show that such a hyperplane exists if the origin is not
contained within the convex hull of the set of points {cN −cD}
(see Appendix section).

The second geometric view looks very different from the
first view. However, the second view is dual and mathemat-
ically equivalent to the first geometric view. In the first view,
a point cN − cD determined by the structure–decoy pair
cN = (sN , aN) and cD = (sN , aD) corresponds to a hyper-
plane representing an inequality, a solution weight vector w
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corresponds to a point located in the final convex polyhedron.
In the second view, each structure–decoy pair is represented
as a point cN − cD in R

d , and the solution weight vector
w is represented by a hyperplane separating all the points
C = {cN − cD} from the origin.

Optimal linear scoring function. Several optimization
methods have been applied to find the weight vector w of
linear scoring function. The Rosenblantt perceptron method
works by iteratively updating an initial weight vector w0

(Vendruscolo and Domany, 1998; Micheletti et al., 2001).
Starting with a random vector, e.g. w0 = 0, one tests each
native protein and its decoy structure. Whenever the relation-
ship w · (cN − cD) + b < 0 is violated, one updates w by
adding to it a scaled violating vector η · (cN − cD). The final
weight vector is therefore a linear combination of protein and
decoy count vectors:

w =
∑

η(cN − cD) =
∑
N∈N

αNcN −
∑
D∈D

αDcD . (3)

Here, N is the set of native proteins, and D is the set of decoys.
The set of coefficients {αN } ∪ {αD} gives a dual form repres-
entation of the weight vector w, which is an expansion of the
training examples including both native and decoy structures.

According to the first geometric view, if the final
convex polyhedron P is non-empty, there can be an
infinite number of choices of w, all with perfect dis-
crimination. But how do we find a weight vector w

that is optimal? This depends on the criterion for optim-
ality. For example, one can choose the weight vector
w that minimizes the variance of score gaps between
decoys and natives: argw min 1

|D|
∑

[w · (cN − cD)]2 −[
1

|D|
∑

D (w · (cN − cD))
]2

as used by Tobi et al. (2000),

minimizes the Z-score of a large set of native proteins, min-
imizes the Z-score of the native protein and an ensemble of
decoys (Chiu and Goldstein, 1998; Mirny and Shakhnovich,
1996) or maximize the ratio R between the width of the
distribution of the score and the average score difference
between the native state and the unfolded ones (Goldstein
et al., 1992; Hao and Scheraga, 1999). A series of important
works using perceptron learning and other optimization tech-
niques (Friedrichs and Wolynes, 1989; Goldstein et al., 1992;
Tobi et al., 2000; Vendruscolo and Domany, 1998; Dima et al.,
2000) showed that effective linear sum scoring functions can
be obtained.

Here, we describe yet another optimality criterion according
to the second geometric view. We can choose the hyperplane
(w, b) that separates the points {cN − cD} with the largest
distance to the origin. Intuitively, we want to characterize pro-
teins with a region defined by the training set points {cN −cD}.
It is desirable to define this region such that a new unseen
point drawn from the same protein distribution as {cN − cD}
will have a high probability to fall within the defined region.

Non-protein points following a different distribution, which
is assumed to be centered around the origin when no a priori
information is available, will have a high probability to fall
outside the defined region. In this case, we are more inter-
ested in modeling the region or support of the distribution
of protein data, rather than estimating its density distribution
function. For linear scoring function, regions are half-spaces
defined by hyperplanes, and the optimal hyperplane (w, b)

is then the one with maximal distance to the origin. This
is related to the novelty detection problem and single-class
support vector machine studied in statistical learning theory
(Vapnik and Chervonenkis, 1964; Vapnik and Chervonenkis,
1974; Schölkopf and Smola, 2002). In our case, any non-
protein points will need to be detected as outliers from the
protein distribution characterized by {cN − cD}. Among all
linear functions derived from the same set of native proteins
and decoys, an optimal weight vector w is likely to have the
least amount of mislabelings. The optimal weight vector w

can be found by solving the following quadratic programming
problem:

Minimize 1
2 ||w||2 (4)

Subject to w · (cN − cD) + b < 0
for all N ∈ N and D ∈ D.

The solution maximizes the distance b/||w|| of the plane
(w, b) to the origin. We obtained the solution by solving the
following support vector machine problem:

Minimize 1
2‖w‖2

Subject to w · cN + d ≤ −1
w · cD + d ≥ 1,

(5)

where d > 0. Note that a solution of Problem (5) satisfies the
constraints in Inequalities (4), since subtracting the second
inequality here from the first inequality in the constraint
conditions of (5) will give us w · (cN − cD) + 2 ≤ 0.

Non-linear scoring function. However, it is possible that
the weight vector w does not exist, i.e. the final convex
polyhedron P = ⋂n

i=1 Pi may be an empty set. First, for
a specific native protein i, there may be severe restriction
from some inequality constraints, which makes Pi an empty
set. Some decoys are very difficult to discriminate due to per-
haps deficiency in protein representation. In these cases, it is
impossible to adjust the weight vector so the native protein
has a lower score than the sequence decoy. Figure 1c shows
a set of inequalities represented by straight lines according to
the first geometric view. A subset of inequalities (black lines)
require that the weight vector w to be located in the shaded
convex polygon on the left, but another subset of inequalit-
ies (green lines) require w to be located in the dashed convex
polygon on the top. Since these two polygons do not intersect,
there is no weight vector that can satisfy all these inequality
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requirements. That is, no linear scoring function can classify
all decoys from native protein. According to the second geo-
metric view (Fig. 1d), no hyperplane can separate all points
(black and green) {cN − cD} from the origin.

Second, even if a weight vector w can be found for each
native protein, i.e. w is contained in a non-empty polyhedron,
it is still possible that the intersection of n polyhedra is an
empty set, i.e. no weight vector can be found that can discrim-
inate all native proteins against the decoys simultaneously.
Computationally, the question whether a solution weight vec-
tor w exists can be answered unambiguously in polynomial
time (Karmarkar, 1984), and results described later in this
study show that when the number of decoys reaches millions,
no such weight vector can be found.

A fundamental reason for this failure is that the functional
form of linear sum is too simplistic. It has been suggested
that additional decriptors of protein structures such as higher-
order interactions (e.g. three-body or four-body contacts)
should be incorporated in protein description (Betancourt and
Thirumalai, 1999; Munson and Singh, 1997; Zheng et al.,
1997). Functions with polynomial terms using up to six
degrees of Chebyshev expansion have also been used to rep-
resent pairwise interactions in protein folding (Fain et al.,
2002).

Here, we propose an alternative approach. In this study we
still limit ourselves to pairwise contact interactions, although
it can be naturally extended to include three or four body
interactions (Li and Liang, 2004). We introduce a non-linear
scoring function analogous to the dual form of the linear
function in Equation (3), which takes the following form:

H [f (s, a)] = H(c) =
∑
D∈D

αDK(c, cD)−
∑
N∈N

αNK(c, cN),

(6)
where αD ≥ 0 and αN ≥ 0 are parameters of the scoring
function to be determined, cD = f (sN , aD) from the set of
decoys D = {(sN , aD)} is the contact vector of a sequence
decoy D mounted on a native protein structure sN , and
cN = f (sN , aN) from the set of native training proteins N =
{(sN , aN)} is the contact vector of a native sequence aN moun-
ted on its native structure sN . In this study, all decoy sequences
{aD} are taken from real proteins possessing different fold
structures. The difference of this functional form from the lin-
ear function in Equation (3) is that a kernel function K(x, y)

replaces the linear term. A convenient kernel function K is:

K(x, y) = e−||x−y||2/2σ 2
for any vectors x and y ∈ N

⋃
D,

where σ 2 is a constant. Intuitively, the surface of the scoring
function has smooth Gaussian hills of height αD centered on
the location cD of decoy protein D, and has smooth Gaussian
cones of depth αN centered on the location cN of native struc-
tures N . Ideally, the value of the scoring function will be −1
for contact vectors cN of native proteins and +1 for contact
vectors cD of decoys.

Optimal non-linear scoring function. To obtain the non-
linear scoring function, our goal is to find a set of parameters
{αD , αN } such that H [f (sN , aN)] has a value close to −1
for native proteins, and the decoys have values close to +1.
There are many different choices of {αD , αN }. We use an
optimality criterion originally developed in statistical learning
theory (Vapnik, 1995; Burges, 1998; Schölkopf and Smola,
2002). First, we note that we have implicitly mapped each
structure and decoy from R

210 through the kernel function of
K(x, y) = e−||x−y||2/2σ 2

to another space with dimension
as high as tens of millions. Second, we then find the hyper-
plane of the largest margin distance separating proteins and
decoys in the space transformed by the non-linear kernel. That
is, we search for a hyperplane with equal and maximal dis-
tance to the closest native proteins and the closest decoys in
the transformed high-dimensional space. Such a hyperplane
can be found by obtaining the parameters {αD} and {αN }
from solving the following Lagrange dual form of quadratic
programming problem:

Maximize
∑

i∈N∪D, αi

− 1
2

∑
i,j∈N∪D yiyjαiαj e

−||ci−cj ||2/2σ 2

Subject to 0 ≤ αi ≤ C,

where C is a regularizing constant that limits the influ-
ence of each misclassified protein or decoy (Vapnik
and Chervonenkis, 1964; Vapnik and Chervonenkis, 1974;
Vapnik, 1995; Burges, 1998; Schölkopf and Smola, 2002),
yi = −1 if i is a native protein and yi = +1 if i is a
decoy. These parameters lead to optimal discrimination of an
unseen test set (Vapnik and Chervonenkis, 1964; Vapnik and
Chervonenkis, 1974; Vapnik, 1995; Burges, 1998; Schölkopf
and Smola, 2002). When projected back to the space of R

210,
this hyperplane becomes a non-linear surface. For the toy
problem of Figure 1, Figure 1d shows that such a hyperplane
becomes a non-linear curve in R

2 formed by a mixture of
Gaussian kernels. It separates perfectly all vectors {cN − cD}
(black and green) from the origin. That is, a non-linear scoring
function can have perfect discrimination.

3 COMPUTATIONAL METHODS
Alpha contact maps. Because protein molecules are

formed by thousands of atoms, their shapes are complex. In
this study we use the count vector of pairwise contact inter-
actions after normalization by the chain length of the protein
(Edelsbrunner, 1995; Liang et al., 1998). Here, contacts are
derived from the edge simplices of the alpha shape of a pro-
tein structure (Li et al., 2003). These edge simplices represent
the nearest neighbor interactions that are in physical contact.
They encode precisely the same contact information as a sub-
set of the edges in the Voronoi diagram of the protein molecule.
These Voronoi edges are shared by two interacting atoms from
different residues, but intersect with the body of the molecule
modeled as the union of atom balls. Statistical potential based
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Fig. 2. Decoy generation by gapless threading. Sequence decoys can be generated by threading the sequence of a larger protein to the structure
of an unrelated smaller protein.

on edge simplices has been developed (Li et al., 2003). We
refer to Edelsbrunner (1995) and Liang et al. (1998) for further
theoretical and computational details.

Generating sequence decoys by threading. Maiorov and
Crippen introduced the gapless threading method to generate
a large number of decoys (1992). The sequence of a smaller
protein aN is threaded through the structure of an unrelated
larger protein and takes the conformation sD of a fragment
with the same length from the larger protein (Maiorov and
Crippen, 1992). Along the way, the sequence of the smaller
protein can take the conformations of many fragments of the
larger protein, each becoming structure decoy.

We can generate sequence decoys in an analogous way, as
already suggested by Jones et al. (1992) and Munson and
Singh (1997). We thread the sequence of a larger protein
through the structure of a smaller protein, and obtain sequence
decoys by mounting a fragment of the sequence of the larger
protein to the full structure of the smaller protein. We therefore
have for each native protein (sN , aN) a set of sequence decoys
(sN , aD) (Fig. 2). Because all native contacts are retained
in this case, sequence decoys obtained by gapless threading
are far more challenging than structure decoys generated by
gapless threading.

Protein data. Following Vendruscolo et al. (2000b), we
use protein structures contained in the Whatif database
(Vriend and Sander, 1993) in this study. Whatif database con-
tains a representative set of sequence-unique protein structures

generated from X-ray crystallography. Structures selected for
this study all have pairwise sequence identity <30%, R-factor
<0.21 and resolution <2.1 Å. Whatif database contains less
structures than Pdbselect because the R-factor and resolu-
tion criteria are more stringent (Vriend and Sander, 1993).
Nevertheless, it provides a good representative set of all
currently known protein structures.

We use a list of 456 proteins kindly provided by
Dr Vendruscolo, which was compiled from the 1998 release
(Whatif98) of the Whatif database (Vendruscolo et al.,
2000a). There are 192 proteins with multiple chains in this
data set. Some of them have extensive interchain contacts.
For these proteins, it is possible that their conformations may
be different if there are no interchain contacts present. We
use the criterion of contact ratio to remove proteins that have
extensive interchain contacts. Contact ratio is defined here as
the number of interchain contacts divided by the total num-
ber of contacts a chain makes. For example, protein 1ept has
four chains A, B, C and D. The intra chain contact number
of chain B are 397. Contacts between chain A and chain
B are 178, between B and C they are 220 and between B
and other heteroatoms, 11. The Contact ratio of chain B is
therefore (178 + 220 + 11)/(397 + 178 + 220 + 11) =
51%. Thirteen protein chains are removed because they all
have Contact ratio >30%. We further remove three proteins
because each has >10% of residues missing with no coordin-
ates in the Protein Data Bank file. The remaining set of
440 proteins are then used as a training set for developing
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the design scoring functions. Using the threading method
described earlier, we generated a set of 14 080 766 sequence
decoys.

Learning linear scoring function. For comparison, we
have also developed optimal linear scoring function following
the method and computational procedure described by Tobi
et al. (2000). We apply the interior point method as imple-
mented in BPMD package by Mészáros (1996) to search for
a weight vector w. We use two different optimization criteria
as described by Tobi et al. (2000). The first is:

Identify w

Subject to w · (cN − cD) < ε and |wi | ≤ 10,

where wi denotes the i-th component of weight vector w, and
ε = 1 × 10−6. Let C = {cN − cD}, and |C| the number of
decoys. The second optimization criterion is:

Minimize min 1
|C|

∑
(w · (cN − cD))2

−
[

1
|C|

∑
(w · (cN − cD))

]2

Subject to w · (cN − cD) < ε.

Learning non-linear kernel scoring function. We use
SVMlight (http://svmlight.joachims.org/) (Joachims, 1999)
with Gaussian kernels and a training set of 440 native
proteins plus 14 080 766 decoys to obtain the optimized
parameter {αN , αD}. The regularization constant C takes
a default value, which is estimated from the training
set N ∪ D:

C = |N ∪ D|2
/ [ ∑

x∈ N∪D

√
K(x, x) − 2 · K(x, 0) + K(0, 0)

]2

.

(7)

Since we cannot load all 14 millions decoys into computer
memory simultaneously, we use a heuristic strategy for train-
ing. Similar to the procedure reported by Tobi et al. (2000),
we first randomly selected a subset of decoys that fits into
the computer memory. Specifically, we pick every 51st decoy
from the list of 14 million decoys. This leads to an initial
training set of 276 095 decoys and 440 native proteins. An
initial protein scoring function is then obtained. Next, the
scores for all 14 million decoys and all 440 native proteins
are evaluated. Three decoy sets were collected based on the
evaluation results: the first set of decoys contains the violat-
ing decoys which have lower scores than the native structures;
the second set contains decoys with the lowest absolute score
and the third set contains decoys that participate in H(c) as
identified in the previous training process. The union of these
three subsets of decoys is then combined with the 440 native
proteins as the training set for the next iteration of learning.

This process is repeated until the score difference to native
protein for all decoys is greater than 0.0. Using this strategy,
the number of iterations typically is between 2 and 10. During
the training process, we set the cost factor j in SVMlight to
120, which is the factor in which the training errors on native
proteins outweighs the training errors on decoys.

The value of σ 2 for the Gaussian kernel K(x, y) =
e−||x−y||2/2σ 2

is chosen by experimentation. If the value of
σ 2 is too large, no parameter set {αN , αD} can be found
such that the fitness scoring function can perfectly classify
the 440 training proteins and their decoys, i.e. the problem is
unlearnable. If the value of σ 2 is too small, the performance
in blind test will deteriorate. The final design scoring function
is obtained with σ 2 set to 416.7.

4 RESULTS
Linear design scoring functions. To search for the optimal
weight vector w for design scoring function, we use linear
programming solver based on interior point method as imple-
mented in BPMD by Mészáros (1996). After generating
14 080 766 sequence design decoys for the 440 proteins in the
training set, we search for an optimal w that can discriminate
native sequences from decoy sequences. That is, we search for
parameters w for H(s, a) = w ·c, such that w ·cN < w ·cD for
all sequences. However, we fail to find a feasible solution for
the weight vector w. That is, no w exists capable of discrimin-
ating perfectly 440 native sequences from the 14 million decoy
sequences. We repeat the same experiment using a larger set
of 572 native proteins from Tobi et al. (2000) and 28 261 307
sequence decoys. The result is also negative.

Non-linear kernel scoring function. To overcome the
problems associated with linear function, we use the set of
440 native proteins and 14 million decoys to derive non-linear
kernel design functions. We succeed in finding a function in
the form of Equation (6) that can discriminate all 440 native
proteins from 14 million decoys.

Unlike statistical scoring functions where each native pro-
tein in the database contributes to the empirical scoring
function, only a subset of native proteins contribute and have
αN 
= 0. In addition, a small fraction of decoys also con-
tribute to the scoring function. Table 1 lists the details of the
scoring function, including the numbers of native proteins and
decoys that participate in Equation (6). These numbers rep-
resent ∼ 50% of native proteins and <0.1% of decoys from
the original training data.

Discrimination tests for design scoring function. Blind
test in discriminating native proteins from decoys for an inde-
pendent test set is essential to assess the effectiveness of
design scoring functions. To construct a test set, we first
take the entries in Whatif99 database that are not present
in Whatif98. After eliminating proteins with chain length
less than 46 residues, we obtain a set of 201 proteins. These
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Table 1. Derivation of kernel scoring function

Design scoring function Folding scoring function
σ 2 = 416.7 σ 2 = 227.3

Number of vectors Natives 220 214
Decoys 1685 1362

Range of score values Natives 0.9992–4.598 0.9990–4.215
Decoys −9.714–0.7423 −6.859–0.3351

Range of smallest score gap 0.2575–11.53 0.8446–9.816

Details of derivation of non-linear kernel design scoring functions. The numbers of native proteins and decoys with non-zero αi entering the scoring function are listed. The range of
the score values of natives and decoys are also listed, as well as the range of the smallest gaps between the scores of the native protein and decoy. Details for non-linear kernel folding
scoring functon are also listed.

Table 2. Blind discrimination test of protein sequence design

Misclassified natives Misclassified natives

Kernel design scoring function (KDF) 13/194 19/201
Tobi and Elber 37/194 44/201
Bastolla et al. 51/194 54/201
Miyazawa and Jernigan 81/194 87/201

The number of misclassified protein sequences for the test set of 194 proteins and the set of 201 proteins using non-linear kernel design scoring function, two optimal linear scoring
functions taken as reported in Tobi et al. (2000) and in table I of Bastolla et al. (2001) and Miyazawa–Jernigan statistical potential (Miyazawa and Jernigan, 1996). The non-linear
kernel design scoring function has the best performance in blind test and is the only function that succeeded in perfect discrimination of the 440 native sequences from a set of 14
million sequence decoys.

proteins all have <30% sequence identities with any other
sequence in either the training set or the test set proteins. Since
139 of the 201 test proteins have multiple chains, we use the
same criteria applied in training set selection to exclude seven
proteins with >30% Contact Ratio or with >10% residues
missing coordinates in the PDB files. This leaves a smaller
set of test proteins of 194 proteins. Using gapless threading,
we generate a set of 3 096 019 sequence decoys from the set
of 201 proteins. This is a superset of the decoy set generated
using 194 proteins.

To test design scoring functions for discriminating native
proteins from sequence decoys in both the 194 and the 201 test
sets, we take the sequence a from the conformation–sequence
pair (sN , a) for a protein with the lowest score as the predicted
sequence. If it is not the native sequence aN , the discrimina-
tion failed and the design scoring function does not work for
this protein.

For comparison, we also test the discrimination results
of optimal linear scoring function taken as reported in Tobi
et al. (2000), as well as the statistical potential developed by
Miyazawa and Jernigan. Here we use the contact definition
reported in Tobi et al. (2000), i.e. two residues are declared to
be in contact if the geometric centers of their side chains are
within a distance of 2.0–6.4 Å.

The non-linear design scoring function capable of discrim-
inating all of the 440 native sequences also works well for
the test set (Table 2). It succeeded in correctly identifying

93.3% (181 out of 194) of native sequences in the independ-
ent test set of 194 proteins. This compares favorably with
results obtained using optimal linear folding scoring function
taken as reported in Tobi et al. (2000), which succeeded in
identifying 80.9% (157 out of 194) of this test set. It also
has better performance than optimal linear scoring function
based on calculations using parameters reported in Bastolla
et al. (2001), which succeeded in identifying 73.7% (143 out
of 194) of proteins in the test set. The Miyazawa–Jernigan stat-
istical potential succeeded in identifying 113 native proteins
out of 194 (success rate 58.2%).

Discriminating dissimilar proteins. As any other discrim-
ination problems, the success of our classification strongly
depends on the training data. If the scoring function is chal-
lenged with a drastically different protein than proteins in
the training set, it is possible that the classification may fail.
To further test how well the non-linear scoring function per-
forms when discriminating proteins that are dissimilar to those
contained in the training set, we take five proteins that are
longer than any training proteins (lengths between 46 and
688). These are obtained from the list of 1261 polypeptide
chains contained in the updated October 15, 2002 release of
Whatif database. The first test is to discriminate the five pro-
teins from 1728 exhaustively generated design decoys using
gapless threading. The second test is to discriminate these five
proteins from exhaustively enumerated sequence decoys gen-
erated by threading 14 large protein sequences of unknown
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Table 3. Discriminating large proteins from decoys.

pdb N n (a) Design decoy by KDF (b) Folding decoy by KFF (c) SwissProt decoy by KDF
H �score H �score n H �score

1cs0.a 1073 0 2.67 N/A 2.31 N/A 8232 2.67 2.42
1g8k.a 822 545 2.07 4.18 1.49 4.71 11 997 2.07 1.69
1gqi.a 708 1002 3.03 5.16 2.82 5.03 13 707 3.03 2.16
1kqf.a 981 93 2.19 5.17 1.85 4.95 9612 2.19 1.82
1lsh.a 954 148 1.97 4.57 1.66 4.02 10 017 1.97 2.01

Discrimination of five large proteins against (a) design decoys and (b) folding decoys generated by gapless threading, and against (c) additional design decoys generated by threading
unrelated long proteins (length from 1124 to 2459) to the structures of these five proteins. Here pdb is the pdb code of the protein structure, N is the size of protein, n is the number
of decoys, H is the predicted value of the scoring function, �score is the smallest gap of score between the native protein and its decoys. The results show that all decoys can be
discriminated from natives, and the smallest score gaps between native and decoys are large.

structures obtained from SwissProt database, whose sizes are
between 1124 and 2459. This is necessary since structures of
the longest chains otherwise have few or no threading decoys.
Table 3 lists results of these tests, including the predicted
score value and the smallest gap between the native protein
and decoys. For the first test, the non-linear design scoring
functions can discriminate these five native proteins from all
decoys in the first test. For the second test, the design scoring
function can also discriminate all five proteins from a total
of 53 565 SwissProt sequence decoys, and the smallest score
gaps between native and decoys are large.

We find that it is infrequent for an unknown test protein to
have low similarity to all reference proteins. For each protein
in the 440 training set, we calculate its Euclidean distance
to the other 439 proteins. The distribution of the 440 max-
imum distances for each training protein to all other 439
proteins is shown in Figure 3a. We also calculate for each
protein in the 201 test set its maximum distance to all training
proteins (Fig. 3b). It is clear that for most of the 201 test pro-
teins, the values of maximum distances to training proteins are
similar to the values for training set proteins. The only excep-
tions are two proteins, ribonuclease inhibitor (1a4y.a) and
formaldehyde ferredoxin oxidoreductase (1b25.a). Although
they are correctly classified, the former has a significant
amount of unaccounted interchain contact with another pro-
tein angiogenin, and the latter has iron/sulfur clusters. It
seems that the set of training proteins provide an adequate
basis set for characterizing the global fitness landscape of
sequence design for other proteins.

Nature of misclassification. We further distinguish mis-
classifications due to native protein being too close to a decoy
and misclassifications due to decoys being too close to a nat-
ive protein. Among the set of 201 test proteins, the native
sequences of 13 proteins are not recognized correctly from
design decoys. These 13 proteins are truly misclassifications
because they do not have extensive unaccounted interchain
interactions or cofactor interactions. We calculate the Euc-
lidean distance of each of the 13 proteins from the 220 native
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Fig. 3. The distribution of maximum distances of proteins to the set
of training proteins. (a) The maximum distance for each training
protein to all other 439 proteins. (b) The maximum distance for each
protein in the 201 test set to all 440 training proteins. These two
distributions are similar.

proteins and 1685 decoys that participate in the kernel design
scoring function. The results are shown in Table 4, where the
number of native proteins among the top 3, 5 and 11 nearest
neighboring vectors to the failed protein are listed. Except
protein 1bx7, all misclassifications are due to native vectors
being too close to decoys.

5 DISCUSSION
Formulation of non-linear scoring function. A basic require-
ment for computational studies of protein design is an effective
scoring function, which allows searching and identifying of
sequences adopting the desired structural templates. Our study
follows earlier works such as Vendruscolo et al. (2000b), Tobi
and Elber (2000) and Goldstein et al. (1992), where empirical
scoring functions based on coarse residue level representation
have been developed by optimization. The goal of this study
is to explore ways to improve the sensitivity and/or specificity
of discrimination.

There are several routes towards improving empirical
scoring functions. One approach is to introduce higher-order
interactions, where three-body or four-body interactions are
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Table 4. Nearest neighbors of misclassified proteins

pdb 3-NN 5-NN 11-NN

1bd8 0 0 0
1bx7 2 3 5
1bxy.a 0 1 1
1cku.a 1 2 2
1dpt.a 2 2 2
1flt.v 1 3 3
1hta 0 0 0
1mro.c 0 0 0
1ops 1 1 1
1psr.a 1 1 1
1rb9 1 1 1
1ubp.b 1 1 1
3ezm.a 0 0 0

The nearest neighbors of the 13 proteins misclassified by design function. The number
of native protein support vectors among the top 3, 5 and 11 nearest neighbors (NNs)
are listed. Except protein 1bx7, the majority of nearest neighbors of all misclassified
proteins are decoys.

explicitly incorporated in the scoring function (Zheng et al.,
1997; Munson and Singh, 1997; Betancourt and Thirumalai,
1999; Rossi et al., 2001; Li et al., 2003). A different approach
is to introduce non-linear terms. Recently, Fain et al. (2002)
use sums of Chebyshev polynomials up to order 6 for
hydrophobic burial and each type of pairwise interactions.

In this work, we propose a different framework for devel-
oping empirical protein scoring functions, with the goal of
simultaneous characterization of fitness landscapes of many
proteins. We use a set of Gaussian kernel functions located
at both native proteins and decoys as the basis set. Decoys
set in this formulation are equivalent to the reference state or
null model used in statistical potential. The expansion coeffi-
cients {αN }, N ∈ N and {αD}, D ∈ D of the Gaussian kernels
determine the specific form of the scoring function. Since
native proteins and decoys are non-redundant and are rep-
resented as unique vectors c ∈ R

d , the Gram matrix of the
kernel function is full-rank. Therefore, the kernel function
effectively maps the protein space into a high-dimensional
space in which effective discrimination with a hyperplane is
easier to obtain. The optimization criterion here is not Z-score,
rather we search for the hyperplane in the transformed high-
dimensional space with maximal separation distance between
the native protein vectors and the decoy vectors. This choice
of optimality criterion is firmly rooted in a large body of stud-
ies in statistical learning theory, where the expected number of
errors in classification of unseen future test data is minimized
probabilistically by balancing the minimization of the train-
ing error (or empirical risk) and the control of the capacity
of specific types of functional form of the scoring function
(Vapnik, 1995; Burges, 1998; Schölkopf and Smola, 2002).

This approach is general and flexible, and can accommodate
other protein representations, as long as the final descriptor

of protein and decoy is a d-dimensional vector. In addition,
different forms of non-linear functions can be designed using
different kernel functions, such as polynomial kernel and sig-
moidal kernels. It is also possible to adopt different optimality
criteria, e.g. by minimizing the margin distance expressed in
1-norm instead of the standard 2-norm Euclidean distance.

Folding scoring function. The geometric views of design
scoring function and the optimality criterion also apply to the
protein folding problem. For folding scoring function, the
only difference from the design scoring function of Equation
(6) is that here D is a set of structure decoys rather than a set
of sequence decoys. Specifically, we generate for each native
protein (sN , aN) a set of structure decoys {(sD , aN)}, i.e. by
mounting the native sequence on fragment of the structure of
a large protein such that it contains exactly the same number
of amino acid residues as the native protein. We use the same
training set of 440 proteins from Whatif98 and 14 080 766
structural decoys as in design study. The same optimization
technique of margin maximization is used. The σ 2 value and
the number of proteins and decoys entering the final folding
scoring function are listed in Table 1.

For comparison, we also report discrimination results of
the optimal linear scoring function taken as reported in Tobi
et al. (2000), as well as the statistical potential developed by
Miyazawa and Jernigan. Here we use the contact definition
reported in Tobi et al. (2000), i.e. two residues are declared to
be in contact if the geometric centers of their side chains are
within a distance of 2.0–6.4 Å.

To test non-linear folding scoring functions for the same
194 and 201 test set proteins, we take the structure s from the
conformation–sequence pair (s, aN) with the lowest score as
the predicted structure of the native sequence. If it is not the
native structure sN , the discrimination failed and the folding
scoring function does not work for this protein. The results
of discrimination are summarized in Table 5. There are four
and eight misclassified native structures for the 194 set and
201 set, respectively. These correspond to a failure rate of 2.1
and 4.0%, respectively. The performance of the optimal non-
linear kernel folding scoring function is better than the optimal
linear scoring function of Tobi et al. (2000), based on calcu-
lation using values taken from Tobi et al. (2000) (failure rates
3.6 and 6.5% for the 194 set and 201 set, respectively), and
is comparable to the results using values taken from Bastolla
et al. (2001) (two and five misclassifications, failure rates of
1.0 and 2.5% for the 194 set and 201 set, respectively). Con-
sistent with previous reports (Clementi et al., 1998), statistical
potential has ∼43.8% (81 out of 194) and 43.2% (87 out of
201) failure rates for the 194 set and the 201 set, respectively.

An updated study to Vendruscolo et al. (2000b) reported
perfect discrimination for 1000 proteins from folding decoys
(Bastolla et al., 2001). Our results cannot be directly compared
with this study, because many of the test proteins or their
homologs in our study are likely to be included in the training
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Table 5. Blind discrimination test of protein structures

Misclassified natives Misclassified natives

Kernel folding scoring function 4/194 8/201
Tobi and Elber 7/194 13/201
Bastolla et al. 2/194 5/201
Miyazawa and Jernigan 85/194 92/201
Kernel design scoring function 4/194 9/201

The number of misclassified protein structures for the test set of 194 proteins and the set of 201 proteins using non-linear kernel folding scoring function, two optimal linear scoring
function taken as reported in Tobi et al. (2000) and in table I of Bastolla et al. (2001) and Miyazawa–Jernigan statistical potential (Miyazawa and Jernigan, 1996). The set of 201
proteins include those with >30% interchain contacts and those with >10% missing coordinates. We also list performance of kernel design scoring function for structure recognition.

set of Bastolla et al. (2001), as it is the union of proteins in the
Whatif database and the Pdbselect database. In addition, it
is not clear whether all decoys generated by gapless threading
were tested by Bastolla et al. (2001). This makes a direct
comparison of the two studies rather difficult.

It is informative to examine the four misclassified proteins
by the kernel folding scoring function (1bx7, 1hta, 1ops and
3ezm.a). Hirustasin 1bx7 contain five disulfide bonds, which
are not modeled explicitly by the protein description. 1hta
(histone Hmfa) exists as a tetramer in complex with DNA
under physiological condition. Its native structure may not
be the same as that of a lone chain. The two terminals of
this protein are rather flexible, and their conformations are
not easy to determine. Among the 13 native sequences mis-
classified by the kernel design scoring function (1bd8, 1bx7,
1bxy.a, 1cku.a, 1dpt.a, 1flt.v, 1hta, 1mro.c, 1ops, 1psr.a, 1rb9,
1ubp.b, 3ezm.a), several have extensive interchain interac-
tions, although the contact ratio is below the rather arbitrary
threshold of 30%: Contact ratio of 24% for 1mor.c, 19% for
1upb.b, 24% for 1flt.v, 15% for 1psr.a and 13% for 1qav.a. It
is likely that the substantial contacts with other chains would
alter the confirmation of a protein. 1cku.a (electron trans-
fer protein) contains an iron/sulfur cluster, which covalently
binds to four Cys residues and prevent them from forming
two disulfide bonds. These covalent bonds are not modeled
explicitly. 1bvf (oxidoreductase) is complexed with a heme
and an FMN group. The conformations of 1cku.a may be dif-
ferent upon removal of these functionally important hetero
groups. Altogether, there is some rationalization for 8 of the
13 misclassified proteins.

In many cases, the misclassification of some native con-
formations is often indicative of the peculiar nature of the
protein structures. This is true for both the linear scoring
function reported in Vendruscolo and Domany (1998) and
Vendruscolo et al. (2000b) and the non-linear kernel func-
tion developed in this study. For example, the misclassified
proteins are often peptide chains stabilized by other chains, or
by interactions with cofactors, or are small fragments whose
interactions are modified by crystal lattice interactions, or are
NMR structures which are less compact and less stable than

X-ray structures. Although in this study we attempted to alle-
viate such complications by eliminating very short peptide
fragments and excluding proteins with over 30% interchain
contacts, it is unlikely all problematic protein structures can
be completely eliminated from the training set. As shown by
Bastolla et al. (2001), the design of optimized scoring func-
tion is likely to be open to the presence of wrong samples
when a large training set is used.

For protein folding scoring functions derived from simple
decoys generated by gapless threading, a more challenging
test is to discriminate native proteins from an ensemble
of explicitly generated three-dimensional decoy structures
with a significant number of near-native conformations (Park
and Levitt, 1996; Samudrala and Moult, 1998). Here, we
evaluate the performance of non-linear scoring functions
using three decoy sets from the database “Decoys R Us”
(Samudrala and Levitt, 2000): the 4state_reduced set,
the Lattice_ssfit set and the lmsd set. We compare our
results in performance with results reported in the literat-
ure using optimal linear scoring function (Tobi and Elber,
2000) and statistical potential (Miyazawa and Jernigan, 1996)
(Table 6). For the 4state_reduced set of decoys, non-
linear folding scoring function has the best performance in
terms of identifying the native structure, with only one mis-
classification (2cro). The correlation of root mean square
distance (RMSD) of conformations to the native structure
and score value in the 4state set is shown in Figure 4.
Although the performance of discriminating explicitly gen-
erated challenging decoys is not as good as that of dis-
criminating decoys generated by threading, it is likely that
non-linear kernel scoring functions can be further improved
if more realistic structural decoys are included in train-
ing. The generation of realistic structural decoys is more
involved. Several methods have been developed for gen-
erating realistic decoys, including the original ‘build-up’
method (Park and Levitt, 1996), those with additional energy
minimization (Loose et al., 2004), and the method based
on fragment assembly (Simons et al., 1997). In addition,
effective strategy of sequential importance sampling has also
been proposed to generate protein-like long-chain compact
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Table 6. Discriminating native structures from decoy structures

Protein No. of decoys KFF KDF MJ TE-13 BFKV

1. 4state_reduced
1ctf 631 1/3.64 (0.49) 1/3.14(0.55) 1/3.73 1/4.20 2/3.00
1r69 676 1/3.77 (0.45) 1/3.79 (0.55) 1/4.11 1/4.06 1/4.30
1sn3 661 1/2.15 (0.24) 27/1.79 (0.41) 2/3.17 6/2.70 1/2.89
2cro 675 3/2.57 (0.54) 1/2.66 (0.61) 1/4.29 1/3.48 2/2.91
3icb 654 1/2.56 (0.70) 1/2.68 (0.74) — — 1/2.96
4pti 688 1/4.17 (0.41) 1/2.79 (0.54) 3/3.16 7/2.43 1/3.49
4rxn 678 1/3.45 (0.47) 7/1.99 (0.53) 1/3.09 16/1.97 1/3.32

2. lattice_ssfit
1beo 2001 15/2.45 1/3.94 — — 1/3.70
1ctf 2001 1/3.76 1/5.35 1/5.35 1/6.17 1/4.66
1dkt 2001 17/2.42 8/2.64 32/2.41 2/3.92 4/3.38
1fca 2001 56/2.00 98/1.76 5/3.40 36/2.25 14/2.56
1nkl 2001 1/3.60 1/3.51 1/5.09 1/4.51 1/4.53
1pgb 2001 1/3.95 1/4.91 3/3.78 1/4.13 1/3.41
1trl 2001 56/1.97 18/2.67 4/2.91 1/3.63 90/1.75
4icb 2001 1/3.92 1/5.31 — — 1/4.39

3. 1msd
1b0n-B 498 406/−0.94 19/2.05 — — 257/−0.03
1bba 501 500/−3.58 487/−1.83 — — 500/−3.31
1ctf 498 1/3.62 1/3.31 1/3.86 1/4.13 1/2.92
1dtk 216 59/0.64 185/−1.11 13/1.71 5/1.88 54/0.74
1fc2 501 501/−3.08 486/−1.87 501/−6.24 14/2.04 501/−3.84
1igd 501 1/5.18 1/3.93 1/3.25 2/3.11 6/2.68
1shf-A 438 5/2.14 12/1.82 11/2.01 1/4.13 1/3.28
2cro 501 2/2.65 1/3.24 1/5.07 1/3.96 1/4.59
2ovo 348 1/3.11 38/1.21 2/3.25 1/3.62 40/1.15
4pti 344 1/3.14 108/0.62 — — 10/1.86

The results of discrimination of native structures from decoys using non-linear kernel scoring functions. The decoy sets include 4state_reduced set, Lattice_ssfit set and lmsd set
(Samudrala and Levitt, 2000). The rank of the native structure and its Z-score are listed. The correlation coefficient R is also listed in parentheses for the 4state_reduced

set. KFF stands for kernel folding scoring function and KDF stands for kernel design scoring function. TE-13 scoring function is a linear distance-based scoring function
optimized by linear programming, taken as reported in Tobi and Elber (2000), BFKV the linear scoring function reported in Bastolla et al. (2001) and MJ is the statist-
ical scoring function as reported in Miyazawa and Jernigan (1996). The results for TE-13 scoring function and Miyazawa–Jernigan scoring function are taken from table II of
Tobi and Elber (2000).

self-avoiding walk to overcome the attribution problem
(Zhang et al., 2003). This approach has been applied to gen-
erate realistic decoys. Preliminary results of deriving scoring
function using such decoys can be found in Zhang et al.
(2004).

Non-linear scoring function for folding and design.
Sequence decoys and structure decoys in general lead to differ-
ent scoring functions. For example, the contact count vectors
c can be very different for a sequence decoy of a protein and
a structure decoy of the same protein. The discrimination sur-
face defined by the design scoring function and the folding
scoring function therefore may be different (Table 7). There
are 220 out of 440 native proteins participating in design
scoring function, and 214 out of 440 native proteins parti-
cipating in folding scoring function. There are 199 proteins
that appear both in folding and design scoring functions. The
majority of the native proteins have similar α values for both
folding and design scoring functions. Figure 5 shows the

difference �αi of the coefficient αi for protein i appearing
in both folding scoring function and design scoring function.
In most cases, �αi values are small. That is, most native pro-
teins contribute similarly in design scoring function and in
folding scoring function. This is expected because the main
differences between the two scoring functions are due to dif-
ferences in decoys. Out of the top 20 proteins with the largest
|αi | values, 11 are common for both folding and design scor-
ing functions. It is possible that the score values by kernel
folding scoring function and by kernel design scoring func-
tion may be similar for many structure–sequence pairs (s, a).
Figure 6a shows that the 194 proteins in the test set have similar
score values by the kernel folding and kernel design scoring
functions.

We also compare the values of the scoring functions for each
of the vectors c1 = {1, 0, . . . , 0}T, . . . , c210 = {0, . . . , 1}T. We
normalize these values so max H(ci ) = 1 for both scoring
functions (Fig. 6b). There is a strong correlation (R = 0.94)
for folding and design scoring functions.
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Fig. 4. Correlation of scores of decoys evaluated by non-linear kernel folding scoring function and their RMSD values to the native proteins
in the 4state_reduced set.
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Table 7. Proteins contributing most to scoring functions

Index pdb Kernel design scoring function Kernel folding scoring function
α-value Class Number of resides pdb α-value Class Number of resides

1 2por 130.88 Membrane/cell 301 2spc.a 25.95 α 107
2 1prn 96.73 Membrane/cell 289 2por 23.19 Membrane/cell 301
3 2spc.a 52.27 α 107 1prn 14.31 Membrane/cell 289
4 1nsy.a 51.41 α/β 271 1rop.a 13.28 α 56
5 3pch.m 45.22 β 236 2wrp.r 11.41 α 104
6 1bkj.a 40.37 α + β 239 1nsy.a 10.68 α/β 271
7 1xjo 36.02 α/β 276 1apy.a 10.12 α + β 161
8 1bdb 34.26 α/β 276 1tgs.i 9.83 Small 56
9 1ppr.m 31.70 α 312 3pch.m 9.66 β 236

10 1fiv.a 27.48 β 113 1dan.l 8.80 Small 132
11 1hcz 27.23 β 250 7ahl.a 8.78 Membrane/cell 293
12 1tta.a 27.16 β 127 2ilk 8.72 α 155
13 7ahl.a 26.69 Membrane/cell 293 1ppr.m 8.25 α 312
14 2rhe 26.24 β 114 1bkj.a 8.09 α + β 239
15 3pch.a 26.23 β 200 1cot 8.04 α 121
16 1snc 26.10 β 135 1wht.b 7.54 α/β 153
17 1wht.b 24.69 α/β 153 1vps.a 7.25 β 285
18 1cot 23.80 α 121 1vls 7.05 α 146
19 1bv1 23.58 β 159 1snc 6.48 β 135
20 2kau.b 22.45 β 101 1cmb.a 6.48 α 104

The top 20 proteins with the largest α-value among 199 proteins entering both kernel folding scoring function and kernel design scoring function. The α-value, the protein class as
defined by SCOP and the number of residues are also listed.

0 50 100 150 200

0
20

40
60

80
10

0

Index Number

∆α

Fig. 5. The difference in contribution to the scoring function for
the 199 native protein structures that participate in both folding and
design scoring functions. They are sorted by �α = αdesign −
αfolding. The majority of them have �α close to 0.

However, other methods reveal that kernel folding and
design scoring functions are different. One method is to
compare the scores of a subset of decoy structures that are
challenging. That is, we compare the evaluated scores of
decoys with αi 
= 0. Figure 6c shows that for decoys appear-
ing in the design scoring functions, there is little correlation

in the scores calculated by design scoring function and by
folding scoring function. Similarly, there is no strong cor-
relation between the scores calculated by folding scoring
function and by design scoring function for the set of struc-
ture decoys entering the design scoring function (Fig. 6d).
It seems that although the values of αN s are similar for the
majority of the native proteins, design scoring function and
folding scoring function can give very different score values
for some conformations. This suggests that the overall fitness
for design and folding potential may be different. However,
since all empirical scoring functions derived from optimiza-
tion and protein structures depend on the choice of traning
set proteins and decoys, we cannot rule out the alternative
explanation that the observed difference between design and
folding scoring functions may be due to the difference in the
decoy sets.

Remarks. Our goal in this study is to explore an alternative
formulation of scoring function and assess the effectiveness
of this new approach with experimental data. The non-linear
scoring functions obtained in this study should be further
improved. For example, unlike the study of optimal lin-
ear scoring function (Tobi et al., 2000), where explicitly
generated three-dimensional decoys structures are used in
training, we used only structure decoys generated by thread-
ing. The test results using the 4state_reduced set and the
lattice_ssfit are comparable or better with other residue-
based scoring functions (Fig. 4 and Table 6). It is likely
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Fig. 6. Comparison of kernel design scoring function (KDF) and non-linear kernel folding scoring function (KFF). (a) The score values by
KFF and by KDF for the 194 proteins are strongly correlated. The correlation coefficient is R = 0.90. (b) The score values of the non-linear
design and folding scoring functions for the 210 unit vectors are strongly correlated (R = 0.94). (c) The score values by both design scoring
functions and folding scoring functions for decoys that enter the non-linear design functions are poorly correlated. (d) The score values for
decoys that enter the non-linear folding scoring functions are also poorly correlated.

that further incorporation of explicit three-dimensional decoy
structures in the training set would improve the protein scoring
function.

The evaluation of the non-linear scoring function requires
more computation than for the linear function, but the
time required is moderate: on an AMD Athlon MP1800+
machine of 1.54 GHz clock speed with 2 GB memory,
we can evaluate the scoring function for 8130 decoys
per minute.

Overfitting can be a problem in discrimination. Overfit-
ting occurs when the scoring function predicts accurately
the outcomes of training set data, but performs poorly when
challenged with unrelated and unseen test data. Although
our scoring function involves a large number of basis
set proteins and decoys, it does not suffer from over-
fitting, because it has good performance in blind test

of discriminating native proteins from both structural and
sequence decoys.

In pursuit of improved sensitivity and specificity in discrim-
ination, the number of reference decoys and native structures
currently entering the scoring function is large (e.g. 1685
decoys and 220 native proteins for design scoring function).
However, we expect the scoring function to be signific-
antly simplified and the number of basis proteins and decoys
reduced considerably. The use of 1-norm instead of 2-norm
in the objective function of Equation (4) will automatically
reduce the number of vectors (Schölkopf and Smola, 2002).
In addition, new techniques such as finite Newton method for
reduced support vector machine have recently shown great
promise in further reducing the number of support vectors,
where a reduction ratio of 1% has been reported (Lee and
Mangasarian, 2001; Fung and Mangasarian, 2002).
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Conclusions. We found in this study that no linear scor-
ing function exists that can discriminate a training set of
440 native sequences from 14 million sequence decoys
generated by gapless threading. The success of non-linear
scoring function in perfect discrimination of this train-
ing set proteins and its good performance in an unre-
lated test set of 194 proteins is encouraging. It indic-
ates that it is now possible to characterize simultaneously
the fitness landscape of many proteins, and non-linear
kernel scoring function is a general strategy for devel-
oping an effective scoring function for protein sequence
design.

Our study of scoring function for sequence design is a much
smaller task than developing a full-fledged fitness function,
because we study a restricted version of the protein design
problem. We need to recognize only one sequence that folds
into a known structure from other sequences already known
to be part of a different protein structure, whose identity is
hidden during training. However, this simplified task is chal-
lenging, because the native sequences and decoy sequences in
this case are all taken from real proteins. Success in this task
is a prerequisite for further development of a full-fledged uni-
versal scoring function. A complete solution to the sequence
design problem will need to incorporate additional sequences
of structural homologs as native sequences, as well as addi-
tional decoy sequences that fold into different folds, and
decoy sequences that are not proteins (e.g. all hydrophobes).
It is our hope that the functional form and the optimiza-
tion technique introduced here will also be useful for such
purposes.

In summary, we show in this study an alternative for-
mulation of scoring function using a mixture of Gaus-
sian kernels. We demonstrate that this formulation can
lead to an effective design scoring function that charac-
terizes fitness landscape of many proteins simultaneously,
and performs well in blind independent tests. Our results
suggest that this functional form different from the simple
weighted sum of contact pairs can be useful for study-
ing protein design and protein folding. This approach can
be generalized for any other protein representation, e.g.
with descriptors for explicit hydrogen bond and higher-order
interactions.
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APPENDIX
Lemma 1. For a scoring function in the form of weighted

linear sum of interactions, a decoy always has score val-
ues higher than the native structure by at least an amount of
b > 0, i.e.

w · (cD − cN) > b for all {(cD − cN)|D ∈ D and N ∈ N }
(8)

if and only if the origin 0 is not contained within the convex
hull of the set of points {(cD − cN)|D ∈ D and N ∈ N }.

Proof. Suppose that the origin 0 is contained within the
convex hull A = conv({cD −cN }) of {cD −cN } and Equation
(8) holds. By the definition of convexity, any point inside or on
the convex hull A can be expressed as a convex combination
of points on the convex hull. Specifically, we have:

0 =
∑

(cD−cN )∈A
λcD−cN

· (cD − cN), and

∑
λcD−cN

= 1, λcD−cN
> 0.

That is, we have the following contradiction:

0 = w · 0 = w ·
∑

cD−cN

λcD−cN
· (cD − cN)

=
∑

cD−cN

λ(cD ,cN ) · w · (cD − cw)

>
∑

cD−cN

λcD−cN
· b = b.

Because the convex hull can be defined as the intersection
of half-hyperplanes derived from the inequalities, if a half-
hyperplane has a distance b > 0 to the origin, all points
contained within the convex hull will be on the other side of the
hyperplane (Edelsbrunner, 1987). Therefore, w · (cD −cN) >

b will hold for all {(cD − cN)}.

3098


