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ABSTRACT

Protein design aims to identify sequences compatible with a
given protein fold but incompatible to any alternative folds.
To select the correct sequences and to guide the search pro-
cess, a design scoring function is critically important. It is
also important that a design scoring function can charac-
terize the global fitness landscape of many proteins simul-
taneously. We describe how finding optimal design scor-
ing functions can be understood from two geometric view-
points, and propose a formulation using mixture of Gaus-
sian kernel functions. We give results of distinguishing na-
tive sequences for a major portion of representative pro-
tein structures from a large number of alternative decoy se-
quences. We succeeded in deriving nonlinear scoring func-
tion that perfectly discriminate a set of 440 representative
native proteins of known protein structures from 14 million
sequence decoys. We show that no linear scoring function
can have perfect discrimination. In an independent blind
test using 194 unrelated proteins, our scoring function mis-
classfies only 13 native proteins. This compares favorably
with 37 or 51 misclassifications when optimal linear func-
tions reported in literature are used.

1. INTRODUCTION

The problem of protein sequence design or inverse folding
aims to identify sequences compatible with a given protein
fold and incompatible to alternative folds [1]. The ultimate
goal is to engineer protein molecules with improved activ-
ities or with acquired new functions. A successful protein
design strategy needs a scoring function or fitness function
to identify sequences that are compatible with the desired
template fold. To achieve this, an ideal fitness function
would maximize the probabilities of protein sequences tak-
ing their native fold instead of other structures.

In this work, we study a simplified version of the protein
design problem. Our goal is to develop a globally applica-
ble scoring function for characterizng the fintness landscape
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of many proteins simultaneously. Specifically, we aim to
identify protein sequences that are compatible with given
three-dimensional coarse-grained structures from a large set
of protein decoy sequences that are taken from proteins of
unrelated folds.

We formulate in this study a novel protein scoring func-
tion, in the form of mixture of nonlinear Gaussian kernel
functions. Experimentation shows that this scoring function
can discriminate simultaneous 440 native proteins against
14 million sequence decoys. In contrast, there is no lin-
ear scoring function with perfect discrimination. We also
perform blind tests to identify native sequence compatible
to a protein fold from other decoy sequences. Taking 194
proteins unrelated to the 440 training set proteins, the non-
linear scoring function achieves a success rate of 93.3% in
sequence design. This result compares favorably with opti-
mal linear scoring function (80.9% and 73.7% success rate)
and statistical potential (58.2%).

2. THEORY AND MODELS

Modeling Protein Design Scoring Function. For protein
descriptor, we use the vector ���������
	���
���� of num-
ber counts of the 210 types of amino acid residue con-
tacts. Once the structural conformation of a protein � and
its amino acid sequence � is given, the contact vector � is
fully determined.

We use a model analogous to the Anfinsen experiments
in protein folding. We require that the native amino acid se-
quence ��� from a set of native proteins � mounted on its
native structure � � has the best (lowest) fitness score com-
pared to a set of alternative sequences � (sequence decoys)
taken from unrelated proteins of different fold mounted on
the same native protein structure � ��� � � � ����� . We have:���! "� � � � � �$#%#'&�(*) �*�+ "� � � � ��� #%# , where (-, � for
all
� �.� � � �$# � � . Equivalently, the native sequence will

have the highest probability to fit into the specified native
structure.

A widely used functional form for protein scoring func-
tion

�
is the weighted linear sum of pairwise contacts. The

linear sum score
�

is:
���! "� � � � #%# � ��� � # �0/213��� where
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Fig. 1. Geometric views of the inequality requirement.

“ 1 ” denotes inner product of vectors. For such linear scoring
functions, the basic requirement for design scoring function
is then: /�1 � � �54 � � #6&-(7) ��� (1)

Our goal here is to obtain such a scoring function to dis-
criminate native proteins from decoys.

Two Geometric Views of Linear Protein Scoring Po-
tentials. There is a natural geometric view of the inequality
requirement. Each of the inequalities divides the space of�8� ( �"9 of /:� �<;7= � ; 9 ) in Fig 1a) into two halfs sepa-
rated by a hyperplane. The hyperplane for Equation (1) is
defined by the normal vector

� � �24 � � # and its distance(?>�@A@ � �B4 � � @C@ from the origin. The weight vector / must
be located in the half-space opposite to the direction of the
normal vector

� � ��4 � � # . This half-space can be written
as /D1 � � �E4 � � #�&0(F) � . When there are many inequal-
ities to be satisfied simultaneously, the intersection of the
half-spaces forms a convex polyhedron (filled polygon on
the right in Fig 1a). If the weight vector is located in the
polyhedron, all the inequalities are satisfied. Scoring func-
tions with such weight vector / can discriminate the native
protein sequence from the set of all decoys.

For each native protein G , there is one convex polyhedronHJI
. To discriminate simultaneously K native proteins from

a union of sets of sequence decoys, the weight vector /
must be located in a smaller convex polyhedron

H
that is the

intersection of the K convex polyhedra /L� H �BMONIAPQ=H I
.

There is yet another geometric view of the same inequal-
ity requirements. If we now regard

� � �R4 � � # as a point in� � ( � 9 of S � �UTV= � T 9 # in Fig 1b, where S�W � � �X4 � � # ),

the relationship /Y1 � � �-4 � � #Z&[(\) � for all sequence de-
coys and native proteins requires that all points �]� �R4 � ���
are located on one side of a hyperplane, which is defined
by its normal vector / and its distance (?>Z@C@ / @A@ to the ori-
gin. We can show that such a hyperplane exists if the origin
is not contained within the convex hull of the set of points�]� � 4 � � � . The second geometric view is dual and mathe-
matically equivalent to the first geometric view.

Optimal Linear Scoring Function. According to the
first geometric view, if the final convex polyhedron

H
is

non-empty, there can be infinite number of choices of / , all
with perfect discrimination. But how do we find a weight
vector / that is optimal? Here we describe an optimal-
ity criterion according to the second geometric view. We
can choose the hyperplane

� /^� (?# that separates the points�]� �_4 � ��� with the largest distance to the origin. We want
to characterize proteins with a region defined by the training
set points �`� �Y4 � ��� . It is desirable to define this region
such that a new unseen point drawn from the same protein
distribution as �]� ��4 � ��� will have a high probability to
fall within the defined region. Non-protein points follow-
ing a different distribution, which is assumed to be centered
around the origin when no a priori information is available,
will have a high probability to fall outside the defined re-
gion. In this case, we are more interested in modeling the
region or support of the distribution of protein data, rather
than estimating its density distribution function. For linear
scoring function, regions are half-spaces defined by hyper-
planes, and the optimal hyperplane

� /^� (3# is then the one
with maximal distance to the origin. This is related to the
novelty detection problem and single-class support vector
machine studied in statistical learning theory [2]. Any non-
protein points will need to be detected as outliers from the
protein distribution characterized by �]� �a4 � ��� . Among
all linear functions derived from the same set of native pro-
teins and decoys, an optimal weight vector / is likely to
have the least amount of mislabellings. The optimal weight
vector / can be found by solving the following quadratic
programming problem:

Minimize
=
9 @A@ / @A@ 9 (2)

subject to /21 � � �R4 � � #b&*(\) � for all � � and � � .(3)

We obtained the solution by solving the following support
vector machine problem:

Minimize
=
9Vc / c 9

subject to /�1�� � & 	ed 4 �/�1�� � & 	efB�.� (4)

where 	 , � . Note that a solution of Problem (4) satisfies
the constraints in Inequalities (3), since subtracting the sec-
ond inequality here from the first inequality in the constraint
conditions of (4) will give us /�1 � � �R4 � � #b& 
gd0� .
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Nonlinear Scoring Function. However, it is possible
that the weight vector / does not exist, i.e., the final con-
vex polyhedron

H � MONICPQ=H I may be an empty set. Some
decoys are very difficult to discriminate due to perhaps de-
ficiency in protein representation. It is impossible to adjust
the weight vector so the native protein has a lower score than
the sequence decoy. Figure 1c shows a set of inequalities
represented by straight lines according to the first geometric
view. A subset of inequalities (black lines) require that the
weight vector / to be located in the filled convex polygon
on the left, but another subset of inequalities (green lines)
require that / to be located in the dashed convex polygon
on the top. Since these two polygons do not intersect, there
is no weight vector that can satisfy all these inequality re-
quirements. According to the second geometric view (Fig-
ure 1d), no hyperplane can separate all points (black and
green) �`� � 4 � � � from the origin. In addition, even if a
weight vector / can be found for each native protein, i.e.,/ is contained in a nonempty polyhedron, it is still possible
that the intersection of K polyhedra is an empty set, i.e., no
weight vector can be found that can discriminate all native
proteins against the decoys simultaneously.

A fundamental reason for this failure is that the func-
tional form of linear sum is too simplistic. Here we intro-
duce a nonlinear scoring function, which takes the follow-
ing form:

���! "� � � � #%# � ��� � # �Lh �Jikjml �on � ���p� � #q4h � i�r0l � n � ���
� ��# , where l � f�� and l � f�� are pa-
rameters to be determined, and � � �  "� � � � �Q� # for the set
of decoys � �s� � �`r � �6j # � is the contact vector of a se-
quence decoy t mounted on a native protein structure � � ,
and � � �  "� � � � � ��# for the set of native training proteins� ��� � � � � � �$# � is the contact vector of a native sequence� � mounted on its native structure � � . A convenient kernel
function n is n � S �%u # �Evxw�yzy S w u yzy {
|p9p}~{ for any vectors S
and u�� ����� , where � 9 is a constant.

Optimal Nonlinear Scoring Function. Our goal is to
find a set of parameters � l � � l �F� such that

���! "� �x� � ��� #
#
has value close to 4 � for native proteins, and the decoys
have values close to & � . We use an optimality criterion
originally developed in statistical learning theory [2]. First,
we note that we have implicitly mapped each structure and
decoy from � 9 =�� through the kernel function of n � S �%u # �v w�yzy S w u yzy {
|p9
}~{ to another space with dimension as high as
tens of millions. Second, we then find the hyperplane of
the largest margin distance separating proteins and decoys
in the space transformed by the nonlinear kernel. That is,
we search for a hyperplane with equal and maximal dis-
tance to the closest native proteins and the closest decoys in
the transformed high dimensional space. Such a hyperplane
can be found by obtaining the parameters � l ��� and � l � �
from solving the following Lagrange dual form of quadratic

programming problem:

Maximize h I i�rO��jq��l I 4
=
9 h I � �6� I � � l I l � vxw"yzy �.� w �.� yzy {p|p9
}~{

subject to �Od l I d_���

where � is a regularizing constant that limits the influence
of each misclassified protein or decoy [2], and � I � 4 � if G
is a native protein, and � I � & � if G is a decoy. When pro-
jected back to the space of �89 =�� , this hyperplane becomes
a nonlinear surface. For the toy problem of Figure 1, Fig-
ure 1d shows that such a hyperplane becomes a nonlinear
curve in �89 formed by a mixture of Gaussian kernels. It
separates perfectly all vectors �]� � 4 � � � (black and green)
from the origin. A nonlinear scoring function in this case
can have perfect discrimination.

Computational Methods. We use the count vector
of pairwise contact interactions after normalization by the
chain length of the protein. Here contacts are derived from
the edge simplices of the alpha shape of a protein structure
[3]. To obtain design decoys, we thread the sequence of a
larger protein through the structure of a smaller protein, and
obtain sequence decoys by mounting a fragment of the se-
quence of the large protein to the full structure of the small
protein. We therefore have for each native protein

� � � � � ��#
a set of sequence decoys

� ��� � � � # . Because all native con-
tacts are retained in this case, sequence decoys obtained by
gapless threading are challenging.

We use protein structures contained in the WHATIF

database. It provides a good representative set of currently
all known protein structures. We use a list of 440 proteins
from WHATIF98 as training data. Using threading method,
we generated a set of 14,080,766 sequence decoys.

We use SVMLIGHT [4] with Gaussian kernels and the
training set of 440 native proteins plus 14,080,766 decoys
to obtain the optimized parameter � l � � l ��� . The regular-
ization constant � takes default value. The value of � 9 for
the Gaussian kernel n � S �%u # ��v�w�yzy S w u yzy { |p9
} { is chosen
by experimentation. The final design scoring function is
obtained with � 9 set to � ������� .

3. RESULTS

We succeeded in finding a nonlinear function that can dis-
criminate all 440 native proteins from 14 million decoys.
Unlike statistical scoring functions where each native pro-
tein in the database contribute to the empirical scoring func-
tion, only a subset of native proteins contribute and have
l ������ . In addition, a small fraction of decoys also con-
tribute to the scoring function. About � ��� of native pro-
teins and ) ���A�`� of decoys from the original training data
enter the scoring function. No linear scoring function can
be found by solving Eqn (4) that can perfectly discriminates
440 proteins from decoys.
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Table 1. Discrimination results.

Misclassified Natives Misclassified Natives

KDF 13/194 19/201
TE 37/194 44/201

BFKV 51/194 54/201
MJ 81/194 87/201

We conduct a blind test in discriminating native proteins
from decoys for an independent test set. To construct such a
test set, we first take the entries in WHATIF99 database that
are not present in WHATIF98. We then eliminate proteins
with chain length less than 46 residues and those with ,� ��� inter chain contact, and obtain a set of test proteins
of 201 proteins. Further elimnation of structures with ,����� missing coordinates give a smaller set of 194 proteins.
Using gapless threading, we generate a sets of 3,096,019
sequence decoys.

To test design scoring functions for discriminating na-
tive proteins from sequence decoys, we take the sequence� from the conformation-sequence pair

� � � � � # for a pro-
tein with the lowest score as the predicted sequence. If it
is not the native sequence ��� , the discrimination failed and
the design scoring function does not work for this protein.
For comparison, we also test the discrimination results of
optimal linear scoring function taken as reported in refer-
ence [5, 6], as well as the statistical potential developed by
Miyazawa and Jernigan.

Our nonlinear kernel design scoring function (KDF) is
the only function capable of discriminating all of the 440 na-
tive sequences. It also works well for the test set (Table 1). It
succeeded in correctly identifying 93.3% (181 out of 194) of
native sequences in the independent test set of 194 proteins.
This compares favorably with results obtained using opti-
mal linear folding scoring function TE taken as reported in
[5], which succeeded in identifying 80.9% (157 out of 194)
of this test set. It also has better performance than optimal
linear scoring function BFKV based on calculations using
parameters reported in reference [6], which succeeded in
identifying 73.7% (143 out of 194) of proteins in the test set.
The Miyazawa-Jernigan statistical potential (MJ) succeeded
in identifying 113 native proteins out of 194) (success rate
58.2%).

4. DISCUSSION

We found in this study that no linear scoring function ex-
ists that can discriminate a training set of 440 native se-
quence from 14 million sequence decoys generated by gap-
less threading. The success of nonlinear scoring function
in perfect discrimination of this training set proteins and
its good performance in an unrelated test set of 194 pro-

teins is encouraging. It indicates that it is now possible to
characterize simultaneously the fitness landscape of many
proteins, and nonlinear kernel scoring function is a general
strategy for developing effective scoring function for pro-
tein sequence design.

In summary, we show in this study two geometric crite-
ria for defveloping scoring function, and propose an alter-
native formulation of scoring function using a mixture of
Gaussian kernels. We demonstrate that this formulation can
characterize fitness landscape of many proteins simultane-
ously, and it performs well in blind independent tests. Our
results suggest that this functional form can be useful for
studying protein design and protein folding. This approach
can be generalized for any other protein representation, e.g.,
with descriptors for explicit hydrogen bond and higher order
interactions.
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