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Screening phage-displayed combinatorial peptide library is an effective approach
for discovery of peptide modulators for protein-protein interactions. However, as
peptide length increases, the chance of finding active peptides in a finite size library
diminishes. To increase the likelihood of finding peptides that bind to a protein,
we develop statistical potential for computational construction of biased combi-
natorial antibody-like peptide libraries. Based on the alpha shapes of antibody-
antigen complexes, we developed an empirical pair potential for antigen-antibody
interactions that depends on local packing. We validate this potential and show
that it can successfully discriminate the native interface peptides from a simulated
library of 10,000 random peptides for 34 antigen-antibody complexes. In addi-
tion, we show that it can successfully recognize the native binding surface patch
among all possible surface patches taken from either the antibody or the antigen for
seven antibody-antigen protein complexes contained in the CAPRI (Critical As-
sessment of Predicted Interactions) dataset. We then develop a Weighted Amino
Acid Residue sequence Generator (WAARG) for design of biased peptide library.
When compared with a random peptide library, WAARG libraries contain more
native-like binding peptides at a significantly smaller size. Our method can be
used to construct peptide library for screening of antibody variants with improved
specificity and affinity to a target antigen. It can also be used for screening of
antibody-like antagonist peptides modulating other protein-protein interactions.

1 Introduction

Modulating protein-protein interactions has the promise of obtaining many
novel therapeutic agents. An effective approach for discovery of such mod-
ulators is through screening of combinatorial libraries of peptides. To iden-
tify peptides that interact with an antigen, the technique of phage display
is effective 1, 2, because it can produce synthetic peptides that may have the
target-recognition qualities of natural antibodies. By fusing the DNA sequence
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encoding a particular peptide to the gene of a coat protein of a bacterial virus
(called phage), the peptide is displayed on the virus coat. The coding se-
quence for the selected peptide inside the phage can be readily retrieved for
further analysis and amplification. A phage library is formed by a collec-
tion of a large number of antibody-covered phages. The new technique of
trinucleotide-phosphoramidite-based synthesis enables the design of peptide
library at individual residue level 3.

Random phage-display peptide libraries have been applied to identify bind-
ing peptides of a specific target. They can also be used to predict binding sites
on a 3D structure 4. However, random combinatorial libraries meet their lim-
itations because of the huge sequence space. The entire mutated fragment of
each peptide phage libraries can contain up to a billion different peptides, a
size comparable to that of the repertoire of human immune system. It is still
too small to cover the space of 3× 1019 possible 15-mers. When a typical ran-
dom phage library containing 109 unique peptide sequences is screened, there
is only a minuscule chance that a peptide of length 15 with reasonably high
affinity for an intended protein target is actually contained in the library. It is
necessary to generate biased libraries that are enriched with active peptides.

In this study, we develop a method for computational design of phage
display libraries, with the goal to improve the likelihood of finding effective
peptide modulators. Our method requires a known protein target structure
of antigen to which a modulating peptide will bind. A critical ingredient is a
potential function that can be computed efficiently to guide the generation of
promising candidate peptides. We develop such an empirical potential func-
tion based on statistical analysis of contact interactions across protein-protein
interfaces in protein database. Specifically, we select a set of protein-protein
complexes from Protein Data Bank and compute their alpha shapes. Statis-
tical models are then developed for estimating propensity for two residues on
two proteins to interact.

An important consideration of our model for contact interactions is the
local environment. It is well known that protein-protein interface is not evenly
packed: some regions are tightly packed, but others contain voids and pockets5.
Both energetically important interfacial residues, termed as “hot spots” 6, and
structurally conserved residues are more likely to be located at tightly packed
regions 7. The importance of hot spots in such tightly packed region are due
to not only the numerous contact interactions with the binding partner, but
also the dehydrated environment where H-bonding interactions are enhanced
because of reduced dialectic constant 8. A parameter related to local packing
environment is explicitly included in our model.

We organize this paper as follows. First, we describe the geometric model
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for contact interactions and for the coordination shell surrounding a contact-
ing residue pair, and how they can be computed using alpha shape. We then
discuss the probabilistic model of packing-dependent empirical interface con-
tact potential. This empirical potential is then validated by testing its ability
to discriminate native antibody interfaces from random peptides, and its abil-
ity to recognize native binding surface patches from other surface patches for
antibody and antigen complexes used in the CAPRI competition. We then de-
scribe how this scoring function can be used to generate biased peptide library.
We conclude with discussion.

2 Model and Methods

Empirical potential of residue interactions. Due to its simplicity and
fast evaluation, empirical potential based on statistics of protein database is
well-suited for rapid generation of peptide library of tens of thousands peptides.
Molecular mechanics and other methods based on potential functions derived
from physical modes are difficult to use for this purpose.

Empirical potential can be derived based on either description of protein
structure at residue level 9−11 or at atomic level 12, 13. It has been applied with
success in fold recognition and structure prediction. Because the atomic de-
tails of protein-protein interactions are difficult to obtain, we develop potential
function based on residue level representation for designing peptide library.

We use a simplified residue model for protein structure. We follow the
union of ball model and represent the i-th amino acid residue as a ball bi

14,
whose center xi ∈ R

3 coincides with the geometric center of its side-chain.
Because Gly residue has no side chain, the position of Cα atom is taken as
the center of the ball xi. The radius ri of each ball depends on the size of
side chain, and is taken from values by Levitt listed in 15, with an added 0.5
Å increment to account for uncertainty due to side-chain flexibility. This is
necessary to reduce spurious contacts.

Alpha contacts and coordination shell. We are interested in identifying
contacting residues that are spatial nearest neighbors. We use the dual com-
plex calculated by the alpha shape software to identify such residues 14, 16−20.
Briefly, the Voronoi diagram decomposes the space and the union of residue
balls

⋃
B =

⋃
bi into convex regions VB, and the dual complex K or the al-

pha shape of the molecule records the overlap pattern among these regions 14:
K = {σ = convxB |

⋂
VB ∩

⋂
B 6= ∅}, where xB is the set of residue centers

{xi} of a set of balls B, VB is the set of Voronoi cells of balls B, whose in-
tersection

⋂
VB overlap with the intersection

⋂
B of the balls. convxB is the
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convex hull of residue centers xB , which forms a simplex σ. In this study, we
only make use of a subset of 1-simplices σij (or alpha edges), such that the
corresponding two residues i and j are from two proteins. Denote the name of
the protein of residue i as I(i), we have I(i) 6= I(j).

For a pair of such balls B = {bi, bj} located on the protein interface, we
examine the set of residues Sij that are connected by an alpha edge to either
residue bi or residue bj : Sij = { bk|σki,k 6=j ∈ K or σkj,k 6=i ∈ K}. We call this
set of residues the coordination shell of the interacting residue pair i and j.
The number of such residues zij = |Sij | is termed the coordination number of
contacting residue pair ij.

The Delaunay triangulation is computed using the delcx program, and
the alpha shapes computed using the mkalf program 17, 19. Both can be
downloaded from the web-site at (http://www.alphashape.org).

Probabilistic model. The propensity p(k, l, z) for residue of type k inter-
acting with residue of type l with coordination number z is modeled as an
odds ratio. We first estimate the probability q(k, l, z) of residues of type k

and type l interact across protein-protein interface with a coordination num-
ber z. The random probability qR(k, l, z) of a pairwise contact involving
both residue k and l with coordination number z is calculated from a null
model (or reference state). Specifically, we have: p(k, l, z) = q(k,l,z)

qR(k,l,z) , where

q(k, l, z) = n(k,l,z)∑
k′,l′,z

n(k′,l′,z) . Here, n(k, l, z) = |{σij |σij ∈ K and I(i) 6= I(j)}| is

the number count of alpha edge contacts on protein interface involving residue
type k and residue type l when coordination number is z.

∑
k′,l′,z n(k′, l′, z)

is the total number of all interfacial alpha contacts of any residue types with
the same coordination number z. The random probability qR(k, l, z) is the
probability that a pair of contacting residues is selected from surface residue of
type k and type l, when chosen randomly and independently. Here a surface
residue is defined as that with more than 15% of its total solvent accessible
surface area exposed in the model of a tri-peptide Gly-X-Gly21. We divide the
range of coordination number z into five intervals [0, 3], [4, 6], [7, 9], [10, 12] and
[13,∞) for all pair contact interactions.

The choice of random model or reference state for estimating qR(k, l, z)
is critical for empirical potential. We use a random model or reference state,
where there are no preferred contacts between any residue type k and any
residue type l, no preference for location of k or l to be on interface or on the
rest of surface, and no preferential coordination number z for any interfacial
contact pair. For our random model, packing plays no direct roles for protein-
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protein interactions. We have:

qR(k, l, z) = qR(k, l) = 2 · nknl · (
1

n(n − 1)
), when k 6= l (1)

and

qR(k, l, z) = qR(k, l) = nk(nk − 1) ·
1

n(n − 1)
, when k = l, (2)

where nk is the number of surface residues of type k, and n is the total number
of surface residues.

The alpha contact potential U(i, j) of protein-protein interaction between
residue i and residue j with coordination number z is obtained as U(σij) =
− ln p(a(i), a(j), zij) using kT unit, where a(i) and a(j) are the residue types of
residue i and j, respectively. The overall energy of a protein-protein interface
is calculated as:

E =
∑

σij ,

I(i) 6=I(j)

U(σij), (3)

To assess the importance of local packing environment as reflected by the
coordination number z, we also develop a simpler scoring function which does

not consider the local packing environment: p(k, l) = q(k,l)
qR(k,l) , where q(k, l) =

n(k,l)∑
k′,l′

n(k′,l′) , and n(k, l) = |{σij |σij ∈ K, a(i) = k, a(j) = l and I(i) 6= I(j)}| is

the number count of interfacial contact pairs between residue types k and l.
The random probability qR(k, l) is calculated using Equation (1) and (2).

Dataset of nonredundant antibody-antigen complexes. Contact po-
tentials derived from one dataset may not be universal and fully transferable
to other systems 22. Therefore, the selection of a representative set of proteins
is important for developing empirical potential. Because our goal is to design
synthetic antibody for enhanced binding affinity or for creating novel binding,
we collect a dataset of antibody-antigen complex structures. We select co-
crystallized complex structures from the Protein Data Bank that satisfy the
following criteria: the resolution of each chain should be less than 2.5 Å; each
chain should have more than 30 amino acids; no pair of chains in protein com-
plexes have a sequence identity larger than 25% to any other chain in the data
set. Based on these three criteria, we collected a set of 34 antibody-antigen
complexes.
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3 Results

Discriminating native antibody interfaces. We first validate the em-
pirical potential by testing whether it can identify interface residues on the
native antibody. For each antibody-antigen complex, we first locate the in-
terface residues on the antibody and on the antigen, respectively. These are
residues connected by alpha edges across the two proteins. To model a random
phage library where each residue has equal probability to be generated at each
position of the peptide, we randomly substitute uniformly all the interfacial
residues on the antibody with any of the 20 amino acid residues. The inter-
face residues on the antigen are unchanged. For simplicity, we assume that
the interface contacts and hence the coordination numbers for all contacting
pairs remain unchanged. Given m interface residues on the antibody, there are
20m possible different sequences, where m ranges typically from 4 to 26. We
randomly generate a sample of 10,000 sequences to test the empirical potential.

We performed 34 leave-one-out tests. In each case, 33 of the antibody-
antigen complexes are used to construct the empirical potential. The remain-
ing antibody-antigen complex is used for testing. Table 1 shows that among
34 antibody-antigen complexes, 28 native interfaces rank among the top 10 in-
terfaces among the corresponding 10,000 random interfaces. The median and
average rankings of 34 native sequences among the 34 sets of 10,000 gener-
ated sequences are 1 and 20, respectively, and their z-scores are 4.79 and 4.38,
respectively. The incorporation of the coordination number for local packing
environment is important. Without such consideration, the median and mean
rankings of the 34 native sequences are only 9 and 236, respectively, and their
z scores are 3.44 and 3.01, respectively. In terms of the mean value of rank-
ing of native sequences, the performance improves more than 10 times when
local-packing is considered. For comparison, results of discrimination using
Miyazawa-Jernigan potential are also listed in Table 1.

Recognition of binding surface patch of CAPRI targets. The CAPRI
(Critical Assessment of PRedicted Interactions) competition is designed to
evaluate current protein docking algorithms. A blind docking prediction starts
from two known crystallographic or NMR structures of unbound proteins and
ends with a comparison to a solved structure of the protein complex, to which
the participants did not have access. Since its inception in 2001, a total of 19
protein complexes have been used for blind docking. Among these, seven are
antibody or antibody related proteins (e.g., Fab fragment, T-cell receptor). We
use these seven complex structures to evaluate the effectiveness of the empirical
potential.
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Table 1: Discrimination of Native Antibody Interfaces.

Ab - Ag Local packing Local packing Miyazawa-Jernigan
Complexes dependent independent potential bNAb

cNAg

1i8k a375/2.29 4770/0.04 3523/0.39 18 8
1nmb 137/ 2.47 111/2.37 406/1.84 15 18
1e6j 54/2.72 123/2.34 463/1.66 18 13
1jps 35/2.93 364/1.86 142/2.31 21 22
1iqd 15/3.19 1022/1.29 1764/0.94 26 17
1nsn 7/3.30 502/1.69 410/1.70 20 21
1osp 20/3.38 69/2.63 215/2.08 15 21
1nca 10/3.47 23/2.81 1192/1.18 22 24
1qfu 3/3.63 326/1.86 47/2.55 24 21
1kb5 5/3.78 50/2.54 1399/1.10 24 26
2jel 1/3.86 181/2.19 1508/1.02 20 16
1eo8 5/3.90 201/2.11 861/1.39 19 19
1ai1 3/4.29 53/2.73 6582/-0.42 17 6
1dvf 1/4.32 7/3.25 272/1.92 19 18
1wej 1/4.35 2/3.97 2/4.16 13 11
1mpa 1/4.60 4/3.57 4781/0.04 16 7
1ktr 1/4.71 157/2.25 1486/1.04 17 4
1fe8 1/4.79 4/3.67 480/1.71 23 20
3hfm 1/4.80 4/3.55 262/1.93 21 17
1f58 1/4.81 4/3.60 1022/1.28 18 10
3hfl 1/4.84 7/3.64 45/2.80 19 16
1nby 1/4.86 3/3.93 33/2.90 22 18
1jhl 1/4.89 2/4.16 9/3.43 16 11
1fns 1/4.94 6/3.80 191/2.16 16 12
1iai 1/5.01 3/3.46 1147/1.21 21 23
1gc1 1/5.10 29/3.09 225/2.04 14 12
1g9n 1/5.16 16/3.46 22/2.76 13 12
1a2y 1/5.20 1/4.38 153/2.29 14 14
1jrh 1/5.27 1/4.54 4/3.97 20 15
2iff 1/5.28 10/3.42 28/3.03 20 16
2hrp 1/5.63 7/3.46 303/1.88 17 8
1cu4 1/5.65 4/3.52 223/2.04 22 9
1a3r 1/5.69 2/4.35 48/2.57 31 14
2ap2 1/5.83 1/4.22 1581/1.02 17 8
Average 20/4.38 236/3.01 907/1.88 19 15
Median 1/4.75 9/3.44 286/1.90 19 16

a The first number in each cell is the rank of native antibody interface and the second

number is the Z score. Z score = E − Enative/σ; E and σ are the mean and standard

deviation of the scores of 10,000 randomly generated peptides, respectively. bNAb: number

of interfacial residues on the interface of antibody side. cNAg: number of interfacial residues

on the interface of antigen side.

In docking, a cargo protein is docked to a seat protein. All surface patches
as candidate at binding interface are sampled from the surface of an unbound
structure. We therefore generate candidate sequences of binding peptide from
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the surfaces of cargo protein structure. Since our goal is not docking but to
evaluate the performance of the potential function, we assume the knowledge
of the binding interface on the seat protein. We further assume the knowledge
of the coordination number for interface residues.

We first partition the surface of the unbound cargo protein into candidate
surface patches, each has the same size as the native binding surface of m

residues. A candidate surface patch is generated by starting from a surface
residue on the cargo protein, and following alpha edges on the boundary of the
alpha shape by breadth-first search, until m residues are found. We construct
n candidate surface patches by starting in turn from each of the n surface
residue on the cargo protein. None of the candidate patches is identical to the
native binding surface patch.

Second, we assume that a candidate surface patch on cargo protein has the
same set of contacts as that of the native binding surface. The coordination
number for each hypothetical contacting residue pair is also assumed to be the
same. We replace the m residues of the native surface with the m residues from
the candidate surface patch. There are m!∏

20

i=1
mi!

different ways to permute the

m residues of the candidate surface patch, where mi is the number of residue
type i on the candidate surface patch. A typical candidate surface patch
has about 20 residues, therefore the number of possible permutation is very
large. For each candidate surface patch, we take a sample of 1,000 random
permutations. The expected binding energy Ē for a candidate surface patch
is estimated as Ē =

∑1,000
k=1 Ek, where Ek is calculated using Equation (3) for

the k-th permutation. The value of Ē is used to rank the candidate surface
patches.

We assess the empirical potential by taking antibody/antigen protein in
turn as the seat protein, and the antigen/antibody as cargo protein. The native
interface on the seat protein is fixed and we test if our empirical potential can
identify the correct surface patch on the cargo protein from the set of candidate
surface patches plus the native surface patch. The results are listed in Table 2.
Among the 14 native binding surfaces for 7 protein complexes, we can rank
11 native binding surfaces successfully as the top surface of the rank ordered
list. The remaining 3 native binding surfaces all rank among the top 5, and
the best ranking candidate surface patches for these three proteins all have
over 50% native interfacial residues. By this criteria, our potential function
can correctly recognize the native or near native binding surface patches of
antibody and antigen complexes.

Weighted Amino Acid Residue sequence Generator (WAARG) We
then develop an method to generate candidate antibody sequences for a given
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Table 2: Recognition of Native Binding Surface of CAPRI Targets

aAntibody Antigen
Target Complex bRnative

cO dN Rnative o m
T02 Rotavirus VP6-Fab 1 0.65 283 1 0.72 639
T03 Flu hemagglutinin-Fab 1 0.55 297 1 0.68 834
T04 α-amylase-camelid Ab VH 1 2 0.53 89 1 0.47 261
T05 α-amylase-camelid Ab VH 2 1 0.43 90 5 0.56 263
T06 α-amylase-camelid Ab VH 3 1 0.63 88 1 0.56 263
T07 SpeA superantigen TCRβ 1 0.57 172 1 0.64 143
T13 SAG1-antibody complex 3 0.64 286 1 0.68 249

a“Antibody”: surface patches on the antibody molecule are scored, while the native binding

surface on the antigen is kept unchanged. “Antigen”: similarly defined as “Antibody”.
bRnative: Ranking of native binding surface among all n candidate surface patches. cO:

Percentage of overlap of residues from the best candidate patch with that of the native

binding surface patch. dm: Number of surface residues. It is also the number of partitioned

candidate surface patches.

antigenic protein (called WAARG for Weighted Amino Acid Residue sequence
Generator) based on the empirical potential. Again, we assume the knowledge
of the binding surface on the seat protein, the size m of the binding interface
on the cargo protein, which is also taken as the length of peptide that needs
to be generated. We further assume the same contact patterns as observed in
the complex structure. The unknowns are the identities and sequence of the
residues that would best bind to the binding surface on the seat protein.

To generate biased sequences, the probability π(i, a(i)) of placing a residue
of type a(i) at position i of the length m sequence is set to be proportional
to exp(

∑
j,σij

U(i, j, zij)), where σij is an interfacial alpha edge across two

proteins, and U(i, j, zij) is the empirical energy score. The value of π(i, a(i))
therefore depends on the residue types of the contacting residue pair i and j,
and the local packing environment reflected by the coordination number zij .

One way to specify the design of a biased peptide library is to provide a
profile listing the favorable residues at each peptide position, along with the
bias (or weight). Table 3 shows an example of such a profile for constructing
a Protein A binding peptide library of length 7. The known native binding
sequence is listed in the first row, followed by the profile consisting of the top 10
amino acid residues ranked by their weights at each position. At three residue
positions, the wild type residues in the native binding surface are ranked first.
For other positions, the wild type residues are ranked among the top 6, except
for the position of GLY.
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Table 3: Example of Weighted Sequence Library for Complex of Protein A and Antibody
Fab (1osp).

aNative Seq. Y S D Y G Y R

1 bY(0.47) H(0.34) Y(0.34) Y(0.51) R(0.32) Y(0.58) W(0.36)

2 W(0.27) N(0.26) E(0.25) N(0.19) K(0.23) N(0.12) S(0.22)
3 F(0.06) M(0.09) H(0.16) W(0.12) Y(0.12) S(0.06) T(0.12)
4 N(0.04) Y(0.06) D(0.09) V(0.06) V(0.08) V(0.06) Y(0.10)

5 S(0.03) S(0.04) R(0.02) Q(0.05) I(0.05) W(0.05) K(0.06)

6 V(0.02) W(0.04) N(0.02) C(0.01) W(0.04) Q(0.02) R(0.03)

7 C(0.02) Q(0.03) I(0.01) R(0.01) A(0.03) R(0.01) M(0.01)
8 R(0.02) R(0.03) L(0.01) K(0.01) C(0.03) K(0.01) G(0.01)
9 K(0.01) L(0.02) F(0.01) G(0.01) M(0.02) G(0.01) N(0.01)
10 G(0.01) V(0.02) S(0.01) M(0.01) H(0.02) M(0.01) A(0.01)

aNative Seq.: The interfacial sequence from the heavy chain. bY(0.47): residue type Y is to

be chosen with a weight of 0.47. Underline: the chosen residue is the same as the residue at

native interface.

Assessing WAARG performance. To assess the overall quality of the
peptide library generated computationally, we calculate similarity score of a
designed sequence to the corresponding native sequence using the BLOSUM62
substitution scoring matrix. We found that in most cases, candidate pep-
tides generated by the Weighted Amino Acid Residue sequence Generator
(WAARG) have significantly higher sequence similarity than random sequences
(Figure 1). To generate random sequences, we sample uniformly each of the
20 amino acid residues for each of the m positions. The average similarity
between a native sequence of antibody interface and 1,000 random sequences
Srandom ranges from -30.14 to -11.95. The average similarity between a na-
tive sequence of antibody interface and 1,000 biased sequences generated by
WAARG Sweighted ranges from -6.73 to 38.36. Figure 1(b) shows the dis-
tributions of similarity scores for designed and random sequences for N10-
staphylococcal nuclease-antibody complex (1nsn). The Srandom and Sweighted

is -16.22 and 25.12, respectively. The overall distribution of similarity scores by
WAARG has much higher similarity compared to the distribution of random
sequences. These results shows the peptide library generated by WAARG will
have significantly more enriched native-alike peptides than random.

Another method to assess the performance in generating biased library is
to compare the number of sequences appeared before a sequence similar to that
of the wild-type binding interface first occurs for both WAARG and random
generators. This evaluation provides indication of the appropriate size of a
peptide library to ensure inclusion of a number of good candidate sequences.
We illustrate with the example of the binding interface between the heavy
chain of NC10 antibody and influenza virus neuraminidase (1nmbHN) as a
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Figure 1: Evaluation of biased library. (a) Average similarity scores between one of the 34
native sequences of antibody interfaces and 1,000 sequences generated by random (Srandom)
and 1,000 sequences by empirical potential (Sweighted) ; (b) The similarity score distribution

of Srandom and Sweighted for antibody N10-staphylococcal nuclease complex (1nsn), one
example among the 34 complexes. Every similarity score is normalized by the sequence
length.

testing example. On the interface of this complex, there are seven residues on
the binding surface of the antibody, and ten residues on the binding surface of
the antigen. We design a library of peptides of length 7 that would bind to the
antigen, and record the number of sequences appeared for the two methods
before a candidate sequence with 4, 5, 6, and 7 identical residues to that of
the wild-type binding surface peptide occur. If the sequence identity is 7, the
candidate sequence is exactly the same as the native sequence. Table 4 shows
that the WAARGG can generate reasonably good candidate sequences with a
much smaller library size than the random generator.

Table 4: Efficiency of WAARG

Identity Num by WAARG Num by Random Candidate Seq. by WAARG
4 170 1721 N N Y Y D W H
5 2854 19417 S N Y F Y Y G
6 13645 a207/(7 × 19) S N Y Y Y Y G
7 367288 a107 bS N Y Y D Y G

aExpected number of sequences generated before an active peptide occurs. This number

follows exponential distribution with the expectation 1/λ, where λ is the probability of a

random sequence to be a required one. λ = 7 · (1/20)6 · (19/20) = (7 × 19)/207 when the

identity is required to be six, and λ = (1/20)7 when the identity is required to be seven. b:

Wild type.
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4 Discussion

We have developed a method for computational design of peptide library that
can introduce useful bias to increase the efficiency in discovery of peptides
binding to a target antigen protein. The key elements of our method is the
alpha shape method to identify precise contact interactions, and an empirical
potential for antibody-antigen interactions. We show that such a potential
can be obtained by analyzing the alpha edges of known protein complexes. We
find that it is important to consider the local packing environment, and the
introduction of the coordination number in the empirical potential significantly
improves the performance of the designed peptide library. Further development
will need to consider the codon usage of the bacteria where the phage library
is expressed.
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