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The amino acid sequences of proteins provide rich information for inferring distant phylogenetic relationships and for
predicting protein functions. Estimating the rate matrix of residue substitutions from amino acid sequences is also im-
portant because the rate matrix can be used to develop scoring matrices for sequence alignment. Here we use a continuous
timeMarkov process to model the substitution rates of residues and develop a BayesianMarkov chainMonte Carlo method
for rate estimation. We validate our method using simulated artificial protein sequences. Because different local regions
such as binding surfaces and the protein interior core experience different selection pressures due to functional or stability
constraints, we use our method to estimate the substitution rates of local regions. Our results show that the substitution rates
are very different for residues in the buried core and residues on the solvent-exposed surfaces. In addition, the rest of the
proteins on the binding surfaces also have very different substitution rates from residues. Based on these findings, we
further develop a method for protein function prediction by surface matching using scoring matrices derived from esti-
mated substitution rates for residues located on the binding surfaces. We showwith examples that our method is effective in
identifying functionally related proteins that have overall low sequence identity, a task known to be very challenging.

Introduction

Amino acid sequences are an important source of in-
formation for inferring distant phylogenetic relationships
and for predicting the biochemical functions of protein. Be-
cause the substitutions of nucleotides can become rapidly
saturated, and the likelihood of unrelated identical substi-
tutions is high for nucleotides, the information of evolution-
ary conservation of nucleotides is quickly obscured after
a number of generations. The mapping of DNA sequences
by the genetic code to amino acid sequences frequently can
reveal more remote evolutionary relation with more inter-
pretable sequence similarity (Liò and Goldman 1999). In
addition, statistical analysis of protein sequence alignment
is also more reliable as it is much more difficult to detect
and correct for deviations from independent identical dis-
tributions in DNA sequences due to possible translation of
normal complexity DNA sequences into low complexity
protein sequences such as tandem repeats of simple patterns
of a few residues (Pearson 1998).

The success in detecting evolutionarily related protein
sequences through sequence alignment depends on the use
of a scoring matrix, which determines the similarity be-
tween residues. Rate matrices of amino acid residue substi-
tutions can be the basis for developing many scoring
matrices for sequence alignment. Dayhoff, Schwartz, and
Orcutt (1978) were the first to develop empirical models
of amino acid residue substitutions. They used a counting
method to obtain accepted point mutation matrices (called
Pam matrices). The widely used Blosum matrices can be
viewed as analogous to transition matrices of residues at
different time intervals (S. Henikoff and J. G. Henikoff
1992; Liò and Goldman 1998). They were developed fol-
lowing a heuristic counting approach similar to that of Pam
and were derived from structure-based alignments of blocks
of sequences of related proteins (S. Henikoff and J. G.

Henikoff 1992). Both Pam and Blosum matrices are widely
used for sequence alignment (e.g., in software tools such as
Fasta, Blast, and ClustalW) (Altschul et al. 1990; Pearson
1990; Thompson, Higgins, and Gibson 1994). An update of
the Pam matrices based on the same counting approach us-
ing a much enlarged database is the Jones-Taylor-Thornton
(JTT) amino acid substitution matrix, which is widely used
for phylogenetic analysis (Jones, Taylor, and Thornton
1992; Adachi and Hasegawa 1996; Yang 1997).

Whelan and Goldman pointed out that these counting
methods are effectively equivalent to the maximum parsi-
mony method, and therefore suffer from several drawbacks:
the systematic underestimation of substitutions in certain
branches of a phylogeny and the inefficiency in using all
information contained in the amino acid residue sequences
(Whelan and Goldman 2001). This can be a serious prob-
lem for applications such as inferring protein functions
from a protein sequence, as the number of sequence homo-
logs available for multiple sequence alignment is often lim-
ited. In addition, matrices such as Pam and Blosum have
implicit parameters whose values were determined from
the precomputed analysis of large quantities of sequences,
while the information of the particular protein of interest
has limited or no influence. A more effective approach
for studying amino acid residue substitutions is to employ
an explicit continuous time Markov model based on a phy-
logenetic tree of the protein (Yang, Nielsen, and Hasegewa
1998; Whelan and Goldman 2001). Markovian evolution-
ary models are parametric models and do not have prespe-
cified parameter values. These values are estimated from
data specific to the protein of interest (Whelan, Liò, and
Goldman 2001). Recent work using this approach has
shown that more informative rate matrices can be derived,
with significant advantages over matrices obtained from
counting method (Whelan and Goldman 2001).

Despite these important results, current studies of the
substitution rates of amino acid residues are based on the
assumption that the whole protein sequence experience sim-
ilar selection pressure and therefore have the same substitu-
tion rates. There is no distinction for different regions of
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proteins, namely, all sites have the same evolutionary rates.
This is an unrealistic assumption. For example, regions that
directly participate in biochemical functions, such as bind-
ing surfaces, are likely to experience very different selection
pressure from other regions. In the protein interior, hydro-
phobic amino acid residues may be conserved not due to
their functional roles, but due to the constraints of maintain-
ing protein stability, as hydrophobic interactions are the
driving force of protein folding (Dill 1990; Govindarajan
and Goldstein 1997; Parisi and Echave 2001; Li and Liang
2005). Similarly, residues in the transmembrane segments
of membrane proteins experience different selection pres-
sure from soluble parts of the proteins (Liò and Goldman
1999; Tourasse and Li 2000). It is therefore important to
study region-specific residue replacement rates.

An important advance in the reconstruction of phylog-
eny is the consideration of heterogenous substitution rates
among different sites (Yang et al. 2000; Mayrose et al.
2004). However, these are based on substitution models
of either nucleotides or codons, with sometimes discretized
categories of rates. Because of the large number of param-
eters due to an alphabet size of 20 for amino acid residues, it
is impractical to estimate site-specific rates for amino acid
residue sequences.

In this study, we use a continuous time Markov model
to estimate residue substitution rates for spatially defined
regions of proteins based on known three-dimensional
structures of proteins (Liang, Edelsbrunner, and Woodward
1998; Binkowski, Adamian, and Liang 2003). Different
from previous studies of rate estimation based on maximum
likelihood methods (Felsenstein and Churchill 1996; Yang,
Nielsen, and Hasegawa 1998; Whelan and Goldman 2001;
Siepel and Haussler 2004), we develop a Bayesian method
to estimate the posterior mean values of the instantaneous
rates of residue substitution. Our approach is based on
the technique of Markov chain Monte Carlo, a method that
has been widely used in phylogenetic analysis (Yang and
Rannala 1997;Mau,Newton, andLarget 1999;Huelsenbeck,
Rannala, and Larget 2000). To derive well-defined spatial
regions of proteins which are formed by residues well sep-
arated in primary sequences, we rely on computational
analysis of protein structures (Liang, Edelsbrunner, and
Woodward 1998). In our study, these distant residues in
sequences are spatial neighbors that participate in direct
molecular binding events and can be regarded as belonging
to the same class of substitution rates. Our study is also mo-
tivated by the need to deduce related functions from protein
structures, that is, to identify functionally related protein
structures. As structural biology proceeds, there is an in-
creasing number of proteins whose atomic structures are
resolved, yet their biological functions are completely un-
known (Sanishvili et al. 2003).

Our results show that residue substitution rates are sig-
nificantly different for different regions of the proteins, for
example, for the buried protein core, solvent-exposed sur-
faces, and specific binding surfaces on protein structures.
We also develop a novel method for inferring protein func-
tions. Using residue similarity scoring matrices derived
from estimated substitution rates for protein surfaces, our
method is far more effective than several other methods
in detecting similar binding surface that are functionally re-

lated from different protein structures. This is a challenging
task, as it is well known that function prediction becomes
difficult when the sequence identity between two proteins is
below 60%–70% (Rost 2002; Tian and Skolnick 2003).

This paper is organized as follows.Wefirst describe the
continuous time Markov model for residue substitution
rates. We then discuss how to compute the likelihood func-
tion of substitution rate matrices given a specific phylogeny
and a multiple sequence alignment. The Markov chain
Monte Carlo method is then briefly described, including
the design ofmove sets that helps to improve the rate of mix-
ing. We then describe simulation results in estimating sub-
stitution rates. This is followed bydiscussion of the results of
different substitution rates estimated for different regions of
a set of proteins. We then give examples to show how res-
idue scoring matrices derived from the estimated rate matrix
can improve detection of functionally related proteins.

Model and Methods
Continuous Time Markov Process for Residue Substitution

For a given phylogenetic tree, we use a reversible con-
tinuous time Markov process as our evolutionary model
(Felsenstein 1981; Yang 1994a). This model has several
advantages over empirical methods. For example, Markov-
ian evolutionary models are parametric models and do not
have prespecified parameter values. These values are all es-
timated from data specific to the protein of interest (Whelan,
Liò, and Goldman 2001). In addition, previous works
showed that the effects of secondary structure and solvent
accessibility are important for protein evolution, and such
effects can be captured by aMarkovian evolutionary model,
while it is difficult for empirical methods to take these ef-
fects into account (Goldman, Thorne, and Jones 1996,
1998; Liò and Goldman 1999; Robinson et al. 2003).

Once the tree topology and the time intervals of se-
quence divergence ftg (or the branch lengths) of the phy-
logenetic tree are known, the parameters of the model are
the 20 3 20 rate matrix Q for the 20 amino acid residues.
Because substitution rate and divergence time t are con-
founded, t cannot be expressed in absolute units. We follow
the approach of Adachi and Hasegawa (1996) to represent
the divergence time t as the expected number of residue
changes per 100 sites between the sequences. The entries
qij of matrix Q are substitution rates of amino acid residues
for the set A of 20 amino acid residues at an infinitesimally
small time interval. Specifically, we have: Q 5 fqijg,
where the diagonal element is qi;i5�

P
i;j 6¼i qi;j: The

transition probability matrix of size 20 3 20 after time t
is (Liò and Goldman 1998):

PðtÞ5 fpijðtÞg5Pð0ÞexpðQ � tÞ;
where Pð0Þ5I: Here pij(t) represents the probability that
a residue of type i will mutate into a residue of type j after
time t. To ensure that the nonsymmetric rate matrix Q is
diagonalizable for easy computation of P(t), we follow
Whelan and Goldman (2001) and insist that Q takes the
form of Q5S � D; where D is a diagonal matrix who entries
are the composition of residues from the region of interest
on the protein structure, and S is a symmetric matrix whose
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entries need to be estimated. Because symmetric S is
diagonalizable as S5VKVT ; the matrix Q5S � D5
D1=2VKVTD�1=2 is also diagonalizable, hence
PðtÞ5Pð0ÞðD1=2VÞexpðKtÞðVTD�1=2Þ:

Likelihood Function of a Fixed Phylogeny

For node k and node l separated by divergence time tkl,
the time reversible probability of observing residue xk in
a position h at node k and residue xl of the same position
at node l is:

pxk
pxkxl

ðtklÞ5 pxl
pxlxk

ðtklÞ:

For a set S of s multiple-aligned sequences ðx1; x2;.; xsÞ of
length n amino acid residues in a specific region, we assume
that a reasonably accurate phylogenetic tree T5ðV; EÞ of
the proteins is given. Here V is the set of nodes, namely,
the union of the set of observed s sequences L (leaf nodes),
and the set of s � 1 ancestral sequences I (internal nodes).
E is the set of edges of the tree. Let the vector
xh5ðx1;.; xsÞT

be the observed residues at position h
for the s sequences, h ranges from 1 to n. Without loss
of generality, we assume that the root of the phylogenetic
tree is an internal node k. Given the specified topology of
the phylogenetic tree T and the set of edges, the probability
of observing s number of residues xh at position h is:

pðxhjT;QÞ5 pxk

X
i2I

xi 2A

Y
ði;jÞ2E

pxixj
ðtijÞ:

After summing over the set A of all possible residue types
for the internal nodes I : The probability PðSjT;QÞ of ob-
serving all residues in the functional region is:

PðSjT;QÞ5Pðx1;.; xsjT;QÞ5
Yn

h5 1

pðxhjT;QÞ:

This can be used to calculate the log-likelihood function
l5logPðSjT;QÞ:

Bayesian Estimation of Instantaneous Rates

Our goal is to estimate the values of the Q matrix. The
continuous timeMarkovmodel for residue substitutions has
been implemented in several studies using maximum likeli-
hood estimation (Yang 1994a; Whelan and Goldman 2001)
and has also been applied in a protein folding study (Tseng
and Liang 2004). Different from these prior studies, here we
adopt a Bayesian approach.We use a prior distribution p(Q)
to encode our past knowledge of amino acid substitution
rates for proteins. We describe the instantaneous substitu-
tion rate Q 5 fqijg by a posterior distribution pðQjS;TÞ;
which summarizes prior information available on the rates
Q5 fqijg and the information contained in the observations
S and T. After integrating the prior information and the
likelihood function, the posterior distribution pðQjS;TÞ
can be estimated up to a constant as:

pðQjS;TÞ}
Z

PðSjT;QÞ � pðQÞ dQ:

Our goal is to estimate the posterior means of rates in Q as
summarizing indice:

EpðQÞ5
Z

Q � pðQjS;TÞ dQ:

In this study, we use uniform uninformative priors. Others
choices are also possible.

Markov Chain Monte Carlo

We run a Markov chain to generate samples drawn
from the target distribution pðQjS;TÞ: Starting from a rate
matrix Qt at time t, we generate a new rate matrix Qt11 us-
ing the proposal function: T(Qt, Qt11). The proposed new
matrix Qt11 will be either accepted or rejected, depending
on the outcome of an acceptance rule r(Qt, Qt11). Equiva-
lently, we have:

Qt 1 1 5AðQt;Qt1 1Þ5 TðQt;Qt 1 1Þ � rðQt;Qt 1 1Þ:
To ensure that the Markov chain will reach stationary state,
we need to satisfy the requirement of detailed balance, that
is,

pðQtjS;TÞ � AðQt;Qt1 1Þ5 pðQt1 1jS;TÞ � AðQt 1 1; QtÞ:
This is achieved by using the Metropolis-Hastings ac-
ceptance ratio r(Qt, Qt11) to either accept or reject Qt11,
depending on whether the following inequality holds:

u � rðQt;Qt1 1Þ5min 1;
pðQt1 1jS;TÞ � TðQt1 1;QtÞ
pðQtjS;TÞ � TðQt;Qt1 1Þ

� �
;

where u is a random number drawn from the uniform dis-
tribution U[0,1]. With the assumption that the underlying
Markov process is ergodic, irreducible, and aperiodic
(Grimmett and Stizaker 2001), a Markov chain generated
following these rules will reach the stationary state (Robert
and Casella 2004).

We collect m correlated samples of the Q matrix after
the Markov chain has reached its stationary state. The pos-
terior means of the rate matrix are then estimated as:

EpðQÞ’
Xm

i5 1

Qi � pðQijS;TÞ:

Move Set

A move set determines the proposal function
T(Qt, Qt11), which is critical for the rapid convergency
of a Markov chain. To improve mixing, we design two
types of moves for proposing a new rate matrix Qt11 from
a previous matrixQt. When the state variable s for these two
types of moves takes the value s 5 1, we take Type 1 move.
When the state s 5 2, we take Type 2 move. For Type 1
moves, a single entry of the rate matrix with index ij is
randomly chosen, and with equal probability we assign:

qij;t1 1 5 a1qij;t or qij;t 1 1 5 a2qij;t;

where a1 5 0.9 and a2 5 1.1. For Type 2 moves, we use
a simplified residue alphabet of size 5 to represent the 20
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amino acid residue types, based on the analysis described
by Li, Hu, and Liang (2003). The five residue types are: fG,
A, V, L, I, Pg, fF, Y, Wg, fS, T, C, M, N, Qg, fD, Eg, and
fK, R, Hg. We select one of the five reduced residue types
following U[1,2,.,5], and scale with equal probability all
entries in Q corresponding to the residues contained in one
of the simplified residue type, with a constant of either a15
0.9 or a2 5 1.1 at equal probability. The transition between
these two types of moves is determined by the transition
matrix:

s1;1 s1;2
s2;1 s2;2

� �
5

0:9 0:1
0:9 0:1

� �
:

Overall, the acceptance ratio of Type 1 moves is 50%–66%,
and the acceptance ratio of Type 2 move is ,10%.

Rate Matrix Q and Residue Similarity Score

To derive residue similarity scoring matrices for se-
quence alignments and database searches from the evolu-
tionary model, we calculate the residue similarity scores
(Karlin and Altschul 1990) bij(t) between residues i and j
at different evolutionary time t from the rate matrix Q:

bijðtÞ5
1

k
log

pijðtÞ
pj

5
1

k
log

mijðtÞ
pipj

;

where mij(t) is joint probability of observing both residue
type i and j at the two nodes separated by time t, and k
is a scalar. Here bij(t) satisfies the equalityP

pipje
kbij51; because of the property of the joint proba-

bility
P

ij mijðtÞ5
P

ij pipijðtÞ5
P

i pi51 holds for Markov
matrix which has the property

P
j pijðtÞ (Grimmett and

Stizaker 2001). The overall expected score of this matrix
is then

P
ij mijðtÞbijðtÞ; usually in bit units (Karlin and

Altschul 1990).

Computation of Surface Pockets and Interior Voids

We use the Volbl method to compute the solvent
accessible (SA) surface area of protein structures
(Edelsbrunner et al. 1995; Liang et al. 1998). We use the
CastP method (Liang, Edelsbrunner, and Woodward
1998; Binkowski, Naghibzadeh, and Liang 2003) to identify
residues located on surface pockets. Both Volbl and CastP
are based on precomputed alpha shapes (Edelsbrunner and
Mücke 1994), where the dual simplicial complex is con-
structed from the Delaunay triangulation of the atomic
coordinates of the protein. We use the pocket algorithm
(Edelsbrunner,Facello,andLiang1998;Liang,Edelsbrunner,
and Woodward 1998) in CastP to identify residues located
in surface pockets and interior voids. Details and other
applications of these methods can be found in Edelsbrunner,
Facello, and Liang (1998), Liang, Edelsbrunner, and
Woodward (1998), Liang and Dill (2001), and Binkowski,
Adamian, and Liang (2003).

Results

There are a large number of parameters (189) charac-
terizing the substitutions of amino acid residues. We first

need to understand at what accuracy these parameters
can be estimated. Because we are studying regions (e.g.,
binding surfaces) on a protein structure, we often only have
a few dozen instead of a few hundred residue positions
available for parameter estimation. In addition, we are fre-
quently limited by the available sequence data, and the size
of the phylogenetic tree may be moderate. Even if the
parameters of the substitution model can be estimated, it
is not clear how effective they are for applications such
as inferring protein functions from protein structures. We
describe our results addressing each of these issues.

Rate Estimation: Simulation Studies

We first carry out a simulation study to test the accu-
racy of the estimated residue substitution rates. We generate
a set of artificial sequences based on an evolutionary model
with known substitution rates. We ask whether our method
can recover the original substitution rates reasonably well
and how many sequences and residues are necessary so an
accurate estimation can be made. For this purpose, we first
take the sequence of the alpha-catalytic subunit of cyclic
adenosine monophosphate (cAMP)-dependent protein ki-
nase (SwissProt P36887, pdb 1cdk, with length 343) and
the sequence of carboxypeptidase A2 precursor (SwissProt
P48052, pdb 1aye, length 417).

Statistics for Estimation Accuracy

We use the JTT evolutionary model (Jones, Taylor,
and Thornton 1992), which is characterized by a frequency-
independent amino acid interconversion rate matrix SJTT

and the diagonal matrix D of the composition of the 20
amino acid residues for the set of sequences that were used
to derive the original JTT model (Yang 1997). The substi-
tution rate matrix QJTT is then: QJTT 5 SJTT�D. To avoid
potential bias, we use the composition D of the protein
kinase and the frequency-independent amino acid intercon-
version rate matrix of SJTT to calculate the instantaneous
rate matrix Q for the protein kinase, which is then used
to generate 16 artificial kinase sequences at different time
intervals t using the probability P(t) 5 exp(Qt)I. Here we
use a simple balanced phylogenetic tree of 16 leaf nodes
with equal branch lengths of t 5 0.1 for all edges. We com-
pare the estimated frequency-independent amino acid inter-
conversion rate matrix S̃ to the true matrix SJTT.

For comparison, we first normalized the estimated and
true JTT frequency-independent interconversion rate matri-
ces, such that:

1

20

X
ij;i 6¼j

sij 5 1 and
1

20

X
ij;i 6¼j

s~ij 5 1;

where sij is the (i, j)-th entry of the matrix S.
We are interested in the rates of substitution that occur

in a specific spatial region of the protein. Because these
regions contain only a subset of the residues and often
are under different selection pressure, not all possible sub-
stitutions are observed with adequate frequency for esti-
mation. In addition, the usually moderate size of the
phylogenetic tree limits the observed frequency of some sub-
stitutions.Nevertheless, the frequentlyobserved substitutions
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fora specificprotein regionare likely tobe themost important
ones, and theestimationof their rates shouldbebetter than the
rates of infrequently observed substitutions.

We need to quantitatively assess our estimation error.
Because it is very difficult to estimate accurately the abso-
lute values of the individual rates, we assess instead the
errors in estimated s̃ij in terms of their effects on the overall
patterns of residue substitution on a specific protein region.
This is more appropriate for many applications such as the
analysis of the evolution of binding surfaces and the evo-
lution of the folding core, as only a subset of substitutions
occur at a functional surface or in the core. We develop
some quantitative measures for this purpose.

We call a residue pair (i, j) an ‘‘occurring pair’’ if both
residues i and j occur simultaneously in one column of the
multiple-aligned sequences of a specific region. For the sub-
set of rates S5fsijg for a residue pair (i, j) from the set of
occurring pairs P; we obtain the ‘‘relative contribution’’ of
a specific frequency-independent interconversion rate be-
tween a pair of residues as:

s#ij 5 sij=
X
ij2P

sij:

The Deij ‘‘weighted error in contribution’’ is computed
as:

Deij[
fijP

ij;i 6¼j fij

½s~#ij � s#ij�;

where s~ij is the estimated value of s#ij and fij is the number
count of how often the (i, j) substitutions occur.

To measure the overall differences of the estimated S̃
and the original SJTT matrices for the occurring substitu-
tions, we use the ‘‘weighted mean square error’’ ðMSEPÞ
Mayrose et al. (2004):

MSEP[
1

jPj
X

ij2P;i 6¼j

De2

ij:

Error Analysis in Estimated Rates

Using the 16 artificial sequences generated from the
sequence of carboxypeptidase and a simple balanced phy-
logenetic tree with equal branch length t 5 0.1 for all edges
between nodes, the Markov chain converges quickly after
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FIG. 1.—Estimating residue substitution rates using simulated carboxypeptidase sequences. (a) TheMarkov chain converges after 33 105. The insert
shows negative log-likelihood (�‘) values in stationary state after the burning-in period. (b) sij values estimated in two simulations are all similar to the true
rates. In the first simulation, the 189 initial values are set such that sij 5 0.1 for all entries. In the second simulation, the 189 initial sij values are sorted
numerically by index i then by index j, and the values are assigned from 0.1 with an increment of 0.01 for the next entry. (c) The MSEP values from 50
repeated estimations of substitution rates of carboxypeptidase with random initial values are all less than 8 3 10�4. The mean value of MSEP is 5.2 3
10�4. (d) The value of MSEP depends on the length of available subsequences. For subsequence of length �20, the MSEP value is ,0.008.
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33 105 Monte Carlo steps (fig. 1a), as shown by the value
of �‘ for the negative likelihood function. After a burning-
in period of 33 105 steps, we collect m 5 43 105 samples
for estimating fsijg values. Figure 1b shows the estimation
results for two simulations started from two different sets of
initial values of fsijg. It is clear that both sets of estimated
rates fs~ijg for the occurring pairs are in general agreement to
the set of true values from the JTT model.

To further assess how robust the estimations are, we
repeated the Markov chain Monte Carlo simulation 50
times using random initial values of fsijg drawn from a uni-
form distribution of U(0,1). On an average, the estimation
error is small. The mean of the overall weighted MSEP from
50 simulations is 5.2 3 10�4 for occurring pairs (fig. 1c).

Length Dependency of Errors in Estimated Parameters

To estimate region-specific substitution rates, it is im-
portant to assess how the accuracy of the estimation
depends on the size of the region. For example, the func-
tional region of a protein contains only a small number of

residues, which varies depending on the size of the binding
site. We carry out another simulation study for this purpose.
Starting from the N-termini of the 16 artificially generated
carboxypeptidase sequences, we take a subsequence from
each sequence, with the length increasing from 10 to 417, at
an increment of ten residues. We then estimate the substi-
tution rates at each length. Each simulation of a different
length was started from a random set of initial values drawn
from U(0,1), and the same burning-in period and sample
size m are used as before. The MSEP values obtained using
sequences of different lengths are plotted in figure 1d. Our
results show that for this set of sequences, as long as the
number of residues is �20, the MSEP of the estimated
parameters will be less than 0.008.

Based on analysis of the protein structures in the Pro-
tein Data Bank, we found that among the surface pockets
from 6,273 protein structures that all contain annotated
functional residues (as recorded either in the Feature table
of the SwissProt database or the Active Site field of the PDB
file), the average size of a functional site pocket is 35 res-
idues, and the median is 23 residues (fig. 2a). This suggests
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FIG. 2.—The length distribution and amino acid composition of functional pockets. (a) The length distribution of 6,273 functional pockets. The
average length of functional pockets is 35 residues, and the median is 23 residues. (b) Comparison of amino acid compositions of residues in 6,273
functional pockets with the composition of 16,300 protein sequences used to derive the JTT substitution matrix. The dashed line is the expected prob-
ability of 0.05 if all substitution rates following the uniform distribution.
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FIG. 3.—Estimating the substitution rates of residues on the binding surface of cAMP-dependent protein kinase from simulated sequences. (a) For
110 independent estimations of the substitution rates with random initial values, the MSEP values are all ,83 10�4. The mean MSEP value of the 110
estimations is 0.0048. (b) There are only four substitutions (empty circles) whose errorDeij is greater than 3.0%, although all of the 90 occurring pairs have
Deij , 4.5%.
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that our method will be applicable for the analysis of protein
functional pockets.

We carried out another simulation study estimating
substitution rates only for the binding surface of a protein.
Using the same phylogenetic tree as that of the carboxypep-
tidase simulations and the same JTT model, we generate 16
artificial sequences of the alpha-catalytic subunit of cAMP-
dependent protein kinase (SwissProt P36887, pdb 1cdk,
length 343). Our goal is to estimate rates only for the subset
of 38 residues located in the binding site. Figure 3a shows
that the MSEP values of the estimated rates from 110 inde-
pendent simulations for the 90 occurring pairs of residues
are all small. The estimated rates from all simulations have
MSEP , 83 10�3, and the mean of the overall MSEP from
110 simulations is 4.8 3 10�3 for the 90 occurring pairs.
Clearly, the estimation errors measured in MSEP are larger
when only residues in the binding site are used compared to
the estimation errors of carboxypeptidase where all 417 res-
idues are used. Nevertheless, the estimations are still useful,
as the mean MSEP value remains small. Figure 3b plots the
individual mean value of weighted errors Deij for the 90
occurring pairs obtained from 110 simulations. There are

only four substitutions whose weighted error in contribu-
tion Deij is greater than 3%, although all occurring pairs
have Deij , 4.5%.

Evolutionary Rates are Region Specific
Exposed Surface and Buried Interior Have Different
Substitution Rates

Residues on protein surfaces that are exposed to sol-
vent are under different physicochemical constraints from
residues in the buried interior. We estimate the substitution
rates for exposed and buried regions on a protein structure.
We use a simple criterion to classify residues as either ex-
posed or buried: based on the calculation of SA surface area
using Volbl (Liang et al. 1998), we declare a residue to be
buried if its SA area is 0 Å2 and exposed if SA area. 0 Å2.

For the protein 2-haloacid dehalogenase (pdb 1qh9),
figure 4 shows that the residues on the exposed surfaces
and in the buried interior have very different substitution
patterns. For example, the substitution of threonine (T) with
asparagine (N), aspartate (D), or glutamine (Q) occurs
much more frequently in the buried interior than on the
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FIG. 4.—Substitution rates of residues on solvent-exposed surface and in buried interior. (a) Substitution rates of buried interior residue on 2-haloacid
dehalogenase (pdb 1qh9). There are 100 occurring pairs. (b) Substitution rates of surface-exposed residues of 1qh9. There are 188 occurring pairs. (c)
Substitution rates of buried interior residue of alpha amylase (pdb 1bag). There are 190 occurring pairs. (d) Substitution rates of surface-exposed residues
of 1bag. There are 177 occurring pairs.
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surface (fig. 4a and b). A similar pattern is also seen for
alpha amylase (pdb 1bag, fig. 4c and d). In general, ioniz-
able and polar residues in the protein interior have higher
propensities to mutate to other ionizable and polar residues.

The frequent substitutions between T and fN, D, Qg
observed in the protein interior of l-2-haloacid dehaloge-
nase and amylase suggest that to maintain the H-bonding
interactions in the protein interior, it is far more common
to have substitutions among ionizable residues and polar
residues. These substitution patterns point to the importance
of preserving polar interactions, which provide important
structural stability in the protein interior, as the high dielec-
tric constants inside proteins makes the electrostatic contri-
bution of salt bridges and H-bonds in the protein interior
stronger than H-bonds on protein surfaces.

The conclusion that residues in the protein interior ex-
perience different selection pressure from residues on the
protein surfaces are likely to be true for other proteins.
We estimated the substitution rates of buried residues
and exposed residues for six additional proteins with differ-
ent biological functions as indicated by different enzyme
classification numbers (table 1). In all cases, we find that
surface residues have different evolutionary patterns over-
all. Although not all substitution rates are noticeably differ-
ent, table 1 shows that for each of the eight proteins studied,
we can reject the null hypothesis, based on the nonparamet-
ric Kolmogorov-Smirnov test, that the two distributions of
substitution rates for the set of exposed residues and the set
of buried residues are the same.

Residues in Functional Sites and on the Rest of the
Surface Have Different Substitution Rates

Protein functional sites are the regions where a protein
interacts with ligand, substrate, or other molecules. Because
proteins fold into their three-dimensional native structures,
functional sites often involve residues that are distant in se-
quence but are in spatial proximity.As canbe seen in figure 5,
two proteins with a low sequence identity (,16%) may be
very different overall, but their functional binding pockets
may be quite similar. In this study,we use theCastP database
of precomputed surface pockets for our analysis of func-
tional sites on protein structures. This approach has been ap-
plied in studies of protein function prediction (Binkowski,
Adamian, and Liang 2003; Binkowski, Naghibzadeh, and
Liang 2003) and in structural analysis of nonsynonymous
single-nucleotide polymorphisms (Stitziel et al. 2003).

Residues that are located in functional pockets are un-
der different selection pressures. This can be clearly seen in
figure 2b, such that the composition of residues in functional
pockets is very different from the composition of residues in
the set of full protein sequences from which the JTT substi-
tution matrix was derived. Here we examine only protein
surface pockets that contain functionally important residues
as annotated by either SwissProt or PDB. In functional pock-
ets, Tyr, Trp, His, Asp, and Gly residues are far more
enriched, but Leu, Ser, and Ala are less if compared to se-
quences used in the JTT rate matrix analysis. Tyr, Trp, His,
and Asp are residues that play important roles in enzyme
reactions through electrostatic interactions, change of pro-
tonation states, and aromatic interactions. Gly residues
are important in the formation of turns and other geometric
features for binding site formation. The enrichment of hy-
drophobic Leu and small residues Ser and Ala in the full
sequence are probably important for structural stability.

We examine the patterns of residue substitutions on
protein functional surfaces in some detail. Taking a structure
of alpha amylase (pdb 1bag) as an example, we compare the
estimated substitution rate matrix of functional surface res-
idues with that of the remaining surface residues of the pro-
tein (fig. 6). It is clear that the selection pressures for residues
located in functional site and for residues on the rest of the
protein surface are different and they are also both different
from the JTT matrix (data not shown). This suggests that
identifying functionally related protein surfaces will be
more effective if we employ scoring matrices specifically
derived from residues located on functional surface instead
of using a general precomputed substitution matrix.

Application: Detecting Functionally Similar Biochemical
Binding Surfaces

For proteins carrying out similar functions such as
binding similar substrates and catalyzing similar chemical
reactions, the binding surfaces experience similar physical
and chemical constraints. The sets of allowed and forbidden
substitutions will therefore be similar because of these con-
straints. The continuous time Markov model can provide
evolutionary information at different time intervals once
the instantaneous substitution rates are estimated. This in-
formation is encoded in the time-dependent residue substi-
tution probabilities. An objective test of the utility of the
estimated evolutionary model is to examine if we can dis-
cover functionally related proteins, namely, whether we can
identify protein structures that have similar binding surfaces
and carry out similar biological functions.

Identification of Functionally Related Proteins from
a Template Binding Surface

We use alpha amylases as our test system. Alpha am-
ylase (Enzyme Classification [EC] number, EC 3.2.1.1) acts
on starch, glycogen, and related polysaccharides and oligo-
saccharides. Detecting functionally related alpha amylase is
a challenging task, as many of them have very low overall
sequence identities (,25%) to the query protein template. If
two proteins have a sequence identity below 60%–70%, it
becomes difficult to make functional inferences based on
sequence alignment (Rost 2002).

Table 1
Substitutions Rate of Residues in the Interior and on the
Exposed Surface Are Different

Protein Family pdb

Interior
Occurring

Pairs

Surface
Occurring

Pairs

P Value
of K-S
Test

EC 3.4.11.18 1b6a 80 175 0.016
EC 3.2.1.1 1bag 190 177 0.015
EC 2.3.3.1 1csc 55 163 0.009
EC 3.8.1.2 1qh9 139 169 0.023
EC 3.2.1.21 1h49 60 169 0.024
EC 3.5.1.5 1udp 92 162 0.014
EC 1.1.1.37 1b8v 97 150 4.8 3 10�5

NOTE.—K-S, Kolmogorov-Smirnov.
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Given a template binding surface from an alpha am-
ylase (1bag, pdb), we wish to know how many protein
structures can be identified that have the same EC number
at an accuracy of all four EC digits. These protein structures
all carry out the same or related reactions. By the conven-
tion of the EC system, the EC numbers represent a progres-
sively finer classification of the enzyme with the first digit
about the basic reaction and the last digit often about the
specific functional group that is cleaved during reaction.

We first exhaustively compute all of the voids and
pockets on this protein structure (Liang, Edelsbrunner,
and Woodward 1998; Binkowski, Naghibzadeh, and Liang
2003). Based on biological annotation contained in the Pro-
tein Data Bank, the 60th pocket containing 18 residues is
identified as the functional site (fig. 7b). To construct an evo-
lutionary model, we use sequence alignment tools to gather

sequences homologous to that of 1bag (Altschul et al. 1997).
After removing redundant sequences and sequences with
.90% identity to any other identified sequences or the query
sequence of 1bag, we obtain a set of 14 sequences of amy-
lases. These 14 sequences are used to construct a phyloge-
netic tree of alpha amylase (fig. 7a). We use the maximum
likelihood method implemented in the Molphy package for
tree construction (Adachi and Hasegawa 1996).

We then calculate the similarity scoring matrices from
the estimated values of the rate matrix. Because a priori we
do not know how far a particular candidate protein is sep-
arated in evolution from the query template protein, we cal-
culate a series of 300 scoring matrices, each characterizing
the residue substitution pattern at a different time separa-
tion, ranging from 1 time unit to 300 time unit. Here 1 time
unit represents the time required for 1 substitution per 100

FIG. 5.—Protein functional pockets of kinases. Functional site of (a) the catalytic subunit of cAMP-dependent protein kinase (1cdk chain A), and (b)
tyrosine protein kinase c-src (2src). Both kinases bind to AMP or AMP analogs. Their global primary sequence identity is as low as 16%. However, if we
extract their binding surfaces (as shown in c and d) out, (e) the residues forming the binding pockets have much a higher sequence identity (51%).
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residues (Dayhoff, Schwartz, and Orcutt 1978). We use the
Smith-Waterman algorithm as implemented in the Ssearch
method of Fasta (Pearson 1991) with each of the 300 scor-
ing matrices in turn to align sequence patterns of candidate
binding surfaces from a database of.2 million protein sur-
face pockets contained in the pvSoar database (Binkowski,
Freeman, and Liang 2004). We use an E value of 10�1 as
the threshold to decide if a matched surface pocket is a hit.
Surfaces similar to the query binding pocket identified (with
E values , 10�1) are then subjected to further shape anal-
ysis, where those that cannot be superimposed to the resi-
dues of the query surface pattern at a statistically significant
level (P value, 0.01) by either the coordinate squared root
of mean square deviations (RMSD) measure or the orien-
tational RMSD (Binkowski, Adamian, and Liang 2003)
measure are excluded. The P value is estimated using meth-
ods developed by Binkowski, Adamian, and Liang (2003).

A total of 58 PDB structures are found to have similar
binding surfaces to that of 1bag, and hence are predicted as
amylases. All of them turn out to have the same EC number
of 3.2.1.1 as that of 1bag. We repeat this study but using
a different amylase structure as the query protein. Using
the functional pocket on 1bg9, we found 48 PDB structures
with EC 3.2.1.1 labels. The union of the results from these
two searches gives 69 PDB structures with EC 3.2.1.1
labels. Examples of matched protein surfaces are shown
in figure 7.

Comparison with Others

We compare our results with other studies. The En-
zyme Structure Database (ESD) (http://www.ebi.ac.uk/
thornton-srv) collects protein structures for enzymes con-
tained in the Enzyme data bank (Bairoch 1993) for study.
Here we take the ESD database as the gold standard, and all
true answers are contained in this human curated database.
There are 75 PDB entries with enzyme class label EC
3.2.1.1 in ESD (version Oct, 2004). Out of the 75 structures,
our method discovered 69 PDB structures (no redundancy)
using 1bag and 1bg9 as queries.

We also compare our results with those obtained from
a database search using sequence alignment methods.

Using the Smith-Waterman algorithm as implemented in
Ssearch of the Fasta package with the default Blosum50
matrix, only 32 structures are identified as alpha amylase
(see table 2 in Binkowski, Adamian, and Liang [2003]).
When using Psi-Blast and the NR database with default
parameters, an E value threshold of 10�3, and ,10 itera-
tions to generate position-specific weight matrices, 65
structures (no redundancy) among the 75 known structures
of alpha amylase are found after combining results from
queries with 1bag and 1bg9.

We next tested search results using the standard JTT
matrix instead of the estimated protein-specific and surface-
specific matrix. In this case, we find 52 hits instead of 58
using 1bag as the query protein and 8 hits instead of 48 us-
ing 1bg9 as the query protein.

Our method differs from Ssearch (Pearson 1998) in
two aspects: first, we use short sequence patterns generated
from the binding surface of the protein structure instead of
the full protein sequences. Second, we use the customized
scoring matrix derived from the estimated evolutionary
model instead of the standard Blosum matrix. Psi-Blast dif-
fers from our method in that it also uses full-length primary
sequences and it effectively uses an empirical model of
position-specific weight matrices to extract evolutionary in-
formation from a set of multiple-aligned sequences, without
the benefit of using a phylogeny and an explicit parametric
model.

Compared to the Fasta sequence alignment and Psi-
Blast search, our method can identify more alpha amylases.
In addition, because we directly detect binding surface sim-
ilarity instead of global sequence similarity, our prediction
has stronger implications for inferring functional relation-
ships. In contrast, Psi-Blast search does not provide infor-
mation about which residues are important for function.
We have also shown that our estimated rate matrix works
much better than the generic precomputed JTT matrix, es-
pecially when the query template surface has a relatively
small size.

To examine whether our method works for proteins of
other functions, we repeated our test using four additional
enzymes of different biochemical functions. These are: 2,
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FIG. 6.—Substitution rates of residues in the functional binding surface and the remaining surface of alpha amylase (pdb 1bag). (a) Substitution rates
of the functional binding surface. There are 39 occurring pairs. (b) Substitution rates of the remaining surface on 1bag. There are 177 occurring pairs.
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3-dihydroxybiphenyl dioxygenase (EC 1.13.11.39), adeno-

sine deaminase (EC 3.5.4.4), 2-haloacid dehalogenase (EC

3.8.1.2), and phosphopyruvate hydratase (EC 4.2.1.11). As

shown in table 2, we are able to find all other protein struc-

tures of the same EC numbers contained in the ESD in all

four cases. Our results are better than using Psi-Blast or us-

ing the JTT matrix.

Discussion

We have developed a Bayesian method for estimating
residue substitution rates. Bayesian inference of phylogeny
was independently introduced byYang and Rannala (1997),
Mau, Newton, and Larget (1999), and Li, Pearl, and Doss
(2000). Bayesian methods have found wide applications
(Huelsenbeck et al. 2001, 2002), including host-parasite

FIG. 7.—Function prediction of alpha amylases. (a) The phylogenetic tree for PDB structure 1bag from Bacillus subtilis. (b) The functional binding
pocket of alpha amylase on 1bag. (c) A matched binding surface on a different protein structure (1b2y from human, full sequence identity 22%) obtained
by querying with the binding surface of 1bag. (d) The phylogenetic tree for 1bg9 from Hordeum vulgare. (e) The binding pocket on 1bg9. (f) A matched
binding surface on a different protein structure (1u2y from human, full sequence identity 23%) obtained by querying with 1bg9.
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cospeciation (Huelsenbeck, Rannala, and Yang 1997), esti-
mation of divergence times of species (Thorne, Kishino, and
Painter 1998), simultaneous sequence alignment and phy-
logeny estimation (Mitchison 1999), inference of ancestral
states (Huelsenbeck and Bollback 2001), and determination
of the root position of a phylogenetic tree (Huelsenbeck,
Bollback, and Levine 2002). Similar to others, our approach
is based on the Markov chain Monte Carlo sampling tech-
nique. Although we are not aware of any other studies using
Bayesian models for the direct estimation of substitution
rates between amino acid residues, our approach is a natural
extension of existing work on maximum likelihood esti-
mation (Goldman and Yang 1994; Yang, Nielsen, and
Hasegawa 1998) of codon substitution rates for amino acid
residues and other studies based onBayesian statistical anal-
ysis (Huelsenbeck, Rannala, and Yang 1997; Yang and
Rannala 1997; Thorne, Kishino, and Painter 1998; Mau,
Newton, and Larget 1999; Huelsenbeck et al. 2001).

In this work, we studied the substitution of residues
using amino acid sequences instead of nucleotide se-
quences. In our model, the parameters of the continuous
time Markov process are the rates of direct substitutions be-
tween residues. A more established model of residue substi-
tution is that of the substitutions between codons. Thismodel
can provide rich information about detailed mechanisms
of molecular evolution. For example, the differential effects
of transition versus transversion and synonymous versus
nonsynonymous substitutions all can bemodeled (Goldman
and Yang 1994; Yang, Nielsen, and Hasegawa 1998). Our
choice of the current model of direct residue substitution is
based on two practical considerations. First, for the applica-
tion of predicting protein functions, we find it is far easier
to gather amino acid residue sequences than nucleotide
sequences when large scale database searches are carried
out. Second, when using scoring matrices derived from sub-
stitution rates to detect remotely related proteins, amino acid
sequences give far better results in sensitivity and specificity
than nucleotide sequences (Pearson 1998; Liò and Goldman
1999). An interesting future studywould be one that is based
on codon substitution models, which will help to identify
possible bias in the current approach, where the effects of
transition/transversion and synonymous/nonsynonymous
substitutions are not considered.

It has long been recognized that the evolutionary diver-
gence of protein structures is far slower than that of se-

quences (Chothia and Lesk 1986). Because physical
constraints on protein structure would give rise to associa-
tions between patterns of amino acid replacement and pro-
tein structure (Koshi and Goldstein 1996, 1997), the
substitution rates of residues in different secondary struc-
tural environments and of different solvent accessibility
have been well studied (Lesk and Chothia 1982; Goldman,
Thorne, and Jones 1996, 1998; Thorne, Goldman, and Jones
1996; Bustamante, Townsend, and Hartl 2000). In a pio-
neering work, Thorne, Goldman, and Jones developed an
evolutionary model that combines secondary structure with
residue replacement, and showed that the incorporation of
secondary structure significantly improves the evolutionary
model for sucrose synthase (Thorne, Goldman, and Jones,
1996). The impact of secondary structure and solvent acces-
sibility on protein evolution were further studied in detail
using a hidden Markov model in (Goldman, Thorne, and
Jones 1998). Additional work showed that an accurate evo-
lution model can in turn lead to accurate prediction of pro-
tein secondary structure (Goldman, Thorne, and Jones 1996;
Liò et al. 1998). Parisi and Echave have further developed
a simulation model to study the effects of selection of struc-
tural perturbation on the site-dependent substitution rates of
residues (Parisi and Echave 2001, 2005; Robinson et al.
2003). These studies highlighted the importance of physical
constraints on protein evolution.

Our work is a continuation in the direction of assessing
substitution rates of residues in different structural environ-
ments, but with an important novel development. Here we
proposed to study substitution rates of residues in a new
structural category, namely, residues from local binding
surface regions that are directly implicated in biochemical
functions. Because a fundamental goal of studying protein
evolution is to understand how biological functions emerge,
evolve, and disappear (J. Gu and X. Gu 2003; Vogel et al.
2004; Lecomte, Vuletich, and Lesk 2005), estimation of
the substitution rates of residues on functional surfaces is
critically important.

Proteins are selected to fold to carry out necessary cel-
lular roles. In many cases, they are involved in binding
interactions with other molecules. Surface binding pockets
and voids are therefore the most relevant structural regions,
which can be computed using exact algorithms (Liang,
Edelsbrunner, and Woodward 1998). A unique advantage
of this novel structural category is that it allows better

Table 2
Detecting Functionally Related Proteins

Protein Family
Query

Structure
Pocketa

identification
Pocket
Length

Ourb

Result
Results by
Psi-Blastc

Results
by JTTd

ESDe (true
answers)

EC 3.2.1.1 1bag 60 18 58 45 52 75
EC 3.2.1.1 1bg9 61 12 48 21 8 75
EC 3.8.1.2 1qh9 23 16 8 8 3 8
EC 3.5.4.4 2ada 49 28 23 17 19 23
EC 4.2.1.11 1ebh 122 35 22 20 19 22
EC 1.13.11.39 1kw9 34 23 18 16 18 18

a Pocket id could be referenced through CastP database (http://cast.engr.uic.edu).
b Our results are obtained from querying with a template binding surface and customize scoring matrices.
c The true answers are taken as those recorded in the human curated ESD database.
d Results using Psi-Blast sequence alignment.
e Results using our method with a standard JTT matrix.

432 Tseng and Liang

http://cast.engr.uic.edu


separation of residues experiencing selection pressure due
to the constraints of biochemical functions from those due
to the constraints for physical structural integrity. In con-
trast, the structural categories of residues in different sec-
ondary structural environments and solvent accessibility
are more suited to study how substitutions are related to
protein stability because they inevitably will include many
conservation patterns due to the requirements of structural
stability.

For example, solvent accessibility directly relates to
the driving force of hydrophobic effects for protein folding,
and secondary structures are essential for maintaining pro-
tein stability (Dill 1990; Dill et al. 1995). The structural cat-
egorizations developed in (Goldman, Thorne, and Jones
1996, 1998; Thorne, Goldman, and Jones 1996) are well
suited for studying how protein evolution is constrained
by physical interactions important for protein folding and
stability. For example, the patterns of hydrophobic residues
in the buried interior, polar residues on the surface, and
small residues in b-turns are all due to structural constraints
and do not have direct functional implications. Indeed, the
study of Koshi and Goldstein found strong correlation be-
tween transfer free energy DG of amino acid residues,
a physicochemical property of amino acid solvation energy,
and residue substitution rates (Koshi and Goldstein 1996).
The categorization of residues proposed here are designed
for studying how protein evolution is constrained by
function (i.e., protein-ligand/substrate binding and protein-
protein interactions). To our best knowledge, this is the first
study in which a structure-derived category amenable for
computation is proposed that separates residues selected
for function from residues selected for stability.

Our results showed that residues located in functional
pockets have different substitution rates from residues in
the remaining parts of the protein. The differences are
mostly due to residues such as His and Asp that are known
to be important for protein function. All of these region-
specific substitution rate matrices are different from the pre-
computed Blosum matrix.

It is informative to examine the difference of the
substitution rates in the JTT matrix and the binding site-
specific rate matrices we estimated. The JTT matrix was
developed using a very large database of sequences, and
the overall composition DJTT of amino acid residues is very
different from the composition D of the binding surfaces.
Hence, the conserved residues, or the values of the diagonal
elements sii of the substitution matrix, are very different.
This is reflected in the different residue composition for
functional surfaces and the full protein sequence (fig.
2b). This would result in different overall patterns of sub-
stitutions. For substitution after a long time interval, it is
necessary to estimate the off-diagonal elements sij with
some accuracy as the substitutions would accumulate with
time, and identifying remotely related binding surfaces
becomes difficult.

It is challenging to estimate substitution rates of amino
acid residues in a local region. The number of residue posi-
tions for a specific region may be small, and the available
sequences in the phylogenetic tree may also be limited. It is
unlikely that all 189 independent substitution rates of the 20
3 20 matrix can be estimated accurately when only limited

data are available. In this study, we can only estimate sub-
stitution rates for occurring pairs, namely, substitutions be-
tween residues that occur in the same position in different
sequences. However, for applications such as inferring pro-
tein functions by matching similar binding surfaces, our
results show that the constructed scoring matrices are very
effective. It is likely that the substitutions (or lack thereof)
that occur in the sampled data for a specific region are the
most important ones in overall patterns of evolution of res-
idues in this specific region. For example, the most impor-
tant features in a functional pocket on a protein structure are
the conserved residues. Accurate estimation of the diagonal
rates (sii) is therefore the most important task. Because con-
served residues appear in relatively higher frequency, they
often can be estimated well. If some substitutions never oc-
cur in the sampled data, they probably are not important and
setting their values to a baseline offset value such as that
from a uniform prior would be reasonable. We have carried
out detailed studies on identifying functionally related al-
pha amylases and other enzymes by querying with one
or more template binding surface and assessing similarity
using scoring matrices derived from the estimated rates. As
shown in table 2, our approach works very well in practice.
In a control study, we assign random values to the matrix
entries, which conform to the normalization condition.
Scoring matrices derived from this randomized rate matrix
are ineffective, and we were not able to find any function-
ally related proteins for any example listed in table 2.

One might wish to estimate a 20 3 20 substitution
rate matrix that is specific to an individual site or position
in the sequence. However, this would require a very large
amount of data that are not available in practice. In addition,
it is conceivable that estimating site-specific rate matrices
may not be necessary or possible. For example, if a residue
is critical for protein folding stability, it might be conserved
through all stages of the evolution, and there is no variation
at this particular position of the amino acid sequences.
In such cases, it is difficult to estimate a full substitution
matrix for this site. In our approach, we essentially pool
residues that are located in the same region together and
assume that they experience similar evolutionary pressure.

Ultimately, the effectiveness of incorporating struc-
tural information in phylogenetic analysis and evolutionary
models can be tested on the criterion whether it in turn helps
to understand the organization principles of protein struc-
tures and their biochemical functions. As indicated by suc-
cessful applications in protein function prediction reported
here, structure-based phylogenetic analysis provides a
powerful framework for studying significant problems in
structural biology.

Our method benefits from existing computational
techniques. Without the mathematical theory that formal-
izes our intuitive notion of protein shapes such as pockets
and voids (Edelsbrunner, Facello, and Liang 1998), effi-
cient algorithms for their computation (Edelsbrunner,
Facello, and Liang 1998; Liang, Edelsbrunner, and
Woodward 1998), strategies for shape similarity assess-
ment (Binkowski, Adamian, and Liang 2003), as well as
demonstrated success of these computational techniques
(Liang, Edelsbrunner, and Woodwart 1998; Binkowski,
Adamian, and Liang 2003; Li, Hu, and Liang 2003;
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Li and Liang 2005), the novel category of functionally
important surface pockets would not be possible.

There are, however, some limitations in our method. If
the number of homologous sequences is too few (,10) or
the length of the functionally important binding pocket is
too short (,8 residues), there will not be enough data
for parameter estimation. Another limitation of our study
is the assumption that all sites in a protein evolve according
to the same rate matrix along all branches of the phyloge-
netic tree. Although simulation studies and applications in-
dicate that the estimated rates are sufficiently accurate for
the purpose of detecting functionally related protein surfa-
ces, this assumption may not be realistic for studying de-
tailed evolutionary history and mechanisms for a specific
protein (Yang 1993, 1994b; Huelsenbeck and Nielsen
1999; Felsenstein 2001).

Our simulation study is simple and cannot provide
a full picture of the estimation errors under different biolog-
ical conditions. The focus of our simulation study is to as-
sess how estimation error is affected by the length of
a functional pocket. In our method, the proper and accurate
construction of a high quality phylogenetic tree is essential.
We find it important to carefully select amino acid sequen-
ces to ensure quality multiple sequence alignments, where
few gaps are introduced and proteins of different divergence
are well represented. In our practice, we find that the max-
imum likelihood estimator of Molphy works well with
amino acid sequences for constructing phylogenetic trees.
The effects of the assumption that the input phylogenetic
tree is optimal, as well as the effects of different input branch
lengths on the accuracy of estimation, needs further detailed
studies. Our preliminary results suggest that the estimated
scoring matrices for protein functional sites and database
search results are insensitive to small perturbations in the
phylogenetic tree and the branch lengths. For instance, in
a database search of alpha amylase, we are able to use dif-
ferent surface templates, each from a different protein struc-
ture with its own slightly different phylogenetic tree and
branch lengths. Our results show that the sets of functionally
related proteins are nearly identical (data not shown).

Furthermore, the choice of a prior is an important and
complex issue in Bayesian statistics. We assume that the
likelihood function dominates and the information from
the prior is limited. More detailed study is needed for a clear
understanding of the influence of the choice of prior.

In summary, we have extended existing continuous
time Markov models of residue substitution from that of
codon-codon replacement to a model of residue-residue re-
placement. We have also developed a novel structural cat-
egory of local surface regions that is well suited for
studying the evolution of protein functions. We have imple-
mented an effective Bayesian Monte Carlo method that can
successfully estimate the substitution rates of residues in
small local structural regions in proteins. In addition, we
have developed a database search method using scoring
matrices derived from estimated residue substitution rates.
Our results in solving the fundamental problem of inferring
protein functions from protein structures show very encour-
aging results. There are other novel technical develop-
ments. For example, we find it necessary to develop an
efficient move set for rapid mixing in Monte Carlo estima-

tion of substitution rates. We have also explored how reli-
ability of estimated substitution rates depends on the size of
the local region. As indicated by the successful applications
reported here, we believe that phylogenetic analysis of pro-
tein evolution provides powerful tools for the important
bioinformatic task of protein function prediction.
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