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ABSTRACT An effective potential function is
critical for protein structure prediction and folding
simulation. Simplified protein models such as those
requiring only C� or backbone atoms are attractive
because they enable efficient search of the conforma-
tional space. We show residue-specific reduced dis-
crete-state models can represent the backbone con-
formations of proteins with small RMSD values.
However, no potential functions exist that are de-
signed for such simplified protein models. In this
study, we develop optimal potential functions by
combining contact interaction descriptors and local
sequence–structure descriptors. The form of the
potential function is a weighted linear sum of all
descriptors, and the optimal weight coefficients are
obtained through optimization using both native
and decoy structures. The performance of the poten-
tial function in a test of discriminating native pro-
tein structures from decoys is evaluated using sev-
eral benchmark decoy sets. Our potential function
requiring only backbone atoms or C� atoms have
comparable or better performance than several resi-
due-based potential functions that require addi-
tional coordinates of side-chain centers or coordi-
nates of all side-chain atoms. By reducing the residue
alphabets down to size 10 for contact descriptors,
the performance of the potential function can be
further improved. Our results also suggest that local
sequence–structure correlation may play important
role in reducing the entropic cost of protein folding.
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INTRODUCTION

Protein folding is a fundamental problem in molecular
biology.1–3 The thermodynamic hypothesis of protein fold-
ing postulates that the native state of a protein has the
lowest free energy under physiological conditions. Under
this hypothesis, protein structure prediction, folding simu-
lation, and protein design all depend on the use of a
potential function. In protein structure prediction, the

potential function is used either to guide the conforma-
tional search process, or to select a structure from a set of
sampled candidate structures.

There are several challenging difficulties in computa-
tional studies of protein structures. The search space of
protein conformation is enormous, and the native struc-
ture cannot be identified by exhaustive enumeration. This
is the well-known “Levinthal’s paradox.”4 In addition, we
do not yet have full understanding of all the physical
factors and how they work collectively in folding proteins
and maintaining protein stability. Simplified protein mod-
els provide an attractive approach that helps to overcome
these two difficulties.5,6 Based on simplified protein repre-
sentation, these models can effectively reduce the complex-
ity in conformational search. They are also valuable for
isolating and identifying the most relevant factors contrib-
uting to protein folding, without the need to model an
overwhelming amount of detailed atomistic information
required when all-atom representation of protein struc-
ture is used.

There are several key technical issues in using simpli-
fied protein models: First, which form of the simplified
protein representation would contain the needed relevant
information? Second, what descriptors should we choose to
extract the necessary information? Finally, how do we
construct a potential function using these descriptors so
near native structures will have lower energy than others?
In this study, we develop an empirical potential function
for simplified protein models at the residue-level. Our
work fills an important gap. Existing empirical potential
functions require either all-atom representation of protein
structures,7–10 or the coordinates of the geometric center of
side chains,11,12 which require explicit model of side chain
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atoms. Currently, there is no accurate potential function
designed for simplified protein models requiring only C� or
backbone atoms. An effective potential function is essen-
tial for efficient conformational search, for evaluation of
sampled structures, and for realization of the capabilities
of a well-designed simplified protein model.

In this study, we choose the discrete-state off-lattice
model originally developed by Park and Levitt as the
reduced representation for protein structures.13 The states
of this model for each residue is parameterized by a bond
angle and a torsion angle. This model has been shown to
work well in modeling protein structures, at the same time
maintaining a low complexity.13 We extend the original
model and develop a set of optimal discrete states for each
amino acids through clustering of the observed angles in
native protein structures.

For these simplified off-lattice discrete state models, we
follow a novel approach to develop descriptors. We use
both two-body residue contact interactions and the local
sequence–structure information of two sequence nearest
neighboring residues. Contact interactions capture several
basic physical forces important for protein folding, includ-
ing hydrophobic interactions, hydrogen bonding, charge
interactions, and disulfide bonding interactions.14 Con-
tact interactions have been used in many empirical
potentials.7–12,15 The local sequence–structure correla-
tion of residues captures the propensity of small sequences
adopting specific local spatial structures. The existence of
such propensity has been well recognized and it has been
used in protein structure prediction,16,17 in remote homol-
ogy detection,18 and in discriminating native structures
from decoys.19–22 The nonoverlapping nature of these two
types of descriptors indicates that they contain different
information. To our best knowledge, potential function
developed in this study is the first to combine both types of
descriptors.

There are two approaches for developing an empirical
potential. One approach uses only native protein struc-
tures and apply statistical analysis to extract information
important for protein stability.7–9,11 The other approach
uses both native protein structures and decoy conforma-
tions and apply optimization (or machine learning) tech-
niques to derive a potential function that separates native
structures from decoy structures.23–26 The approach based
on statistical analysis has the drawback of assuming
explicitly or implicitly an unrealistic reference state such
as a random mixture model,11 and ignoring chain connec-
tivity.27 The approach based on optimization involves
deriving parameters from a set of training proteins and
decoys, and is attractive because it incorporates informa-
tion contained in the decoy structures that are absent in
native structures. The collection of a very large number of
decoy structures plays the role of the reference state in the
statistical methods. In addition, the optimization ap-
proach allows more flexibility in combining descriptors of
different physical nature. To develop potential function by
optimization, it is important to select a small or moderate
number of descriptors to avoid over-fitting the training
examples. For this purpose, we systematically develop sev-

eral reduced alphabet of amino acid residues for both contact
interactions and for local sequence–structure descriptors.

The potential function we developed here are tested for
discrimination of native protein structures from several
benchmark sets of decoy nonprotein conformations. For all
the decoys tested, the performance of our potential is
comparable or better than several well-known residue-
level potential functions that requiring more complex
protein representations. Our paper is organized as follow-
ing: first, we introduce the simplified representation of
protein structures. Second, we discuss the reduction of
amino acid alphabet for neighboring interaction patterns.
We then describe the descriptors and the form of the
potential function, along with the optimization method to
derive the weight vector of the potential function. This is
followed by a description of the performance of the poten-
tial function in discriminating native structures from
decoys. Finally, we conclude this paper with discussion.

MODEL AND METHODS
Representation of Protein Structures
Discrete state model

We use an off-lattice discrete state model to represent
the protein structure.13 In addition to C� atoms, we use
one additional atom SC to model all side-chain atoms,
which is attached to the main-chain C� atoms, as shown in
Figure 1. The distance between adjacent C� atoms is fixed
to 3.8 Å. The distances between C� and side-chain atoms,
as well as the radius of each side chain atom depend on the
residue type. Their values are taken from reference.28

There is no additional increase in the degree of freedom
due to the introduction of the side-chain atom.

Similar to the fact that the position of C� atom of the side
chain in a protein is uniquely determined from the posi-
tions of backbone atoms as the atoms connected to carbons
have fixed angles, the position of the residue-dependent
side-chain atom SC in this model is determined from
backbone C� atom.28

There are 20 different types of atoms altogether (one C�

for backbone and glycine, and 19 different SC atoms for
different side chains). The backbone structure of a protein
can be described by the bond angles �i and torsion angles �i

at the i-th C� position (Fig. 1). The overall three-
dimensional structure is completely determined by the set
of angles {(�i, �i)} at each C� position, except the terminal
residues.

� and � angles

To find the desirable number of states and the associ-
ated (�, �) values of amino acid residues for the discrete
state model, we obtained the distribution of � and � angles
in 1318 nonhomologous X-ray protein structures from
CulledPDB29 (Fig. 2), where the sequence identity be-
tween any pairs of proteins is less than 30%, and the
resolution of the structures is better than 2 Å. Analogous
to the Ramachandran plot, the distribution of � and �
angles also has densely and sparsely populated regions,
which correspond to different secondary structure types.
The distribution of (�, �) angles differs for different amino
acids.
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Reduced discrete states

For each residue, we obtain a Cartesian coordinate
system by taking the plane formed by Ci�2, Ci�1, and Ci as
the x � y plane, and placing the origin at Ci. The vector
from Ci�1 to Ci is taken as the direction of x-axis. After
normalizing the bond length between Ci and Ci�1 to unit
length, we cluster the positions of Ci�1 atoms for all
residues of the same type, which are taken as Ci. k-means
clustering is applied to group points on the unit sphere into
k (from 3–10) clusters for each amino-acid residue type,
where k corresponds to the number of states for the amino
acids. The centers of the clusters are then measured for the
� and � angles, which are taken as the optimized values of
the discrete states of the amino acids. The values of
discrete state angles for the four-state model are listed in
Table I. The values for k-state model of k � 5 � 10 are
listed in Supplementary Material.

To study the effect of the preceding residue to the
distribution of the discrete state of each type of amino
acids, we plotted the conditional distribution of the dis-
crete state for each amino acid residue given the state of
the preceding residue. The results for alanine is shown in
Figure 3(a), which shows that the distribution of the discrete
state of alanine is affected significantly by the state of the
preceding residue. This distribution is also affected by the
type of preceding residue, as shown in Figure 3(b). Similar
effects are observed in all other residues.

Mapping of X-ray structures to discrete state models

The conformational space associated with a discrete
state representation is different from the continuous con-
formational space of a protein structure in �3. To repre-
sent a protein in the simplified discrete space, we need to
map a protein structure from the continuous conforma-
tional space to a structure in a discrete space, with the
requirement that it must be the one most similar to the
real protein structure among all possible structures in the
simplified conformational space by some similarity mea-
sure. In this study, we use both global structural similarity
and local structural similarity criteria. To generate glo-
bally similar discrete structures to an X-ray structures, we
use a heuristic “build-up” algorithm first introduced by
Park and Levitt.13 In this method, the protein structure is
constructed in single-residue increments starting from the
N-terminus. At each step of construction, only a fixed
number of m structures with the lowest RMSD from the
partial X-ray structure are retained. When a residue is
added to the growing chain, all k possible states on each of
the retained chains are examined for conformation similar-
ity to X-ray structure. This gives k � m possible conforma-
tions at each step for a k-state model, of which the best m
conformations are retained for the next step of construc-
tion. The representatives obtained from the build-up
method are the ones among the final m full protein
candidate structures that has the lowest global RMSD
values from the native structure. With this method, we
obtained m � 5,000 discrete structures for each proteins in
the set of 70 representative proteins obtained in Fain et
al.,31 with average length of 137 residues for 3–10 discrete
states. The average RMSD values of the best-fitted struc-
tures for each discrete state are shown in Figure 4. We also
fitted 978 proteins with less than 500 residues in the set of
1318 proteins taken from PISCES database with m �
2,000 conformations for each proteins for states 3–6 and
obtained similar results with slightly larger average RMSD
values. In general, the average RMSD values of the best
models to the native structures is about 2.3 Å for the
four-state model, 1.9 Å for the five-state model, 1.6 Å for
six-state model, and near 1.0 Å for 10-state model.

The high quality of the discrete state models when fitted to
X-ray structures indicates that a model with four to six states
is sufficient to generate near native structures with low
RMSD values, that is, �3 Å to native structures. In the rest
of the paper, we use the four-state model for its simplicity.

To generate discrete state model by local structural
similarity, each residue is simply assigned a discrete state

Fig. 1. Discrete state model. �i and �i angles are shown for residue i.
Bond angle �i at position i is formed by Ci�1, Ci, and Ci�1. Torsion angle �i

is the dihedral angle of the two planes formed by atoms (Ci�2, Ci�1, Ci)
and (Ci�1, Ci, Ci�1).

Fig. 2. Distribution of � and � angles taken by 20 natural amino acids
in native proteins.
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that is most similar to its local (�,�) angle in X-ray
structure. The resulting structure has maximum local
similarity to X-ray structures.22

Descriptors
Simplified amino acid alphabet ¥1 by neighbor
interactions

Early protein synthesis has been thought to involve a
reduced amino acid alphabet.32 Previous work has shown
that a small �-sheet protein, the SH3 domain, can be
encoded by a reduced five-letter amino acid alphabet.32

Despite the dramatic changes in sequence, the folding
rates of the protein encoded by the reduced alphabet are
very close to that of the naturally occurring SH3 domain.32

Various reduced amino acid alphabets have been obtained
previously based on the analysis of amino-acid substitution
matrix, contact propensity, or information theory.15,32–36

The resulting reduced amino-acid alphabets are useful in
protein folding studies and in identifying consensus se-
quences from multiple alignment.37,38 However, there has
been no attempt to derive reduced alphabet based on the
local sequence–structure relationship of the amino acids.
By recognizing strong similarities of different amino acids

TABLE I. Values of Discrete State Angles for Four-State Model

A.A. �1 �1 �2 �2 �3 �3 �4 �4

A 104.9 �112.3 91.80 52.10 125.3 �175.7 134.8 86.03
C 112.4 �107.0 98.07 45.22 123.9 �170.3 120.3 111.4
D 106.3 �108.9 96.31 45.00 113.1 �168.9 113.7 107.1
E 106.9 �106.3 94.64 49.22 117.9 �165.8 116.3 113.7
F 112.2 �105.9 98.50 46.15 122.9 �166.7 120.9 116.0
G 108.2 �96.99 102.3 36.01 124.9 �165.0 133.1 110.4
H 108.3 �101.6 98.73 45.03 119.6 �164.7 122.9 112.8
I 110.3 �108.5 95.57 47.44 119.2 �163.9 116.4 115.4
K 108.1 �108.9 95.28 48.98 116.9 �164.8 117.0 115.8
L 110.3 �110.7 94.31 48.84 117.7 �163.9 115.3 114.6
M 110.8 �107.1 94.50 49.24 121.7 �166.0 118.8 116.6
N 106.2 �109.6 96.27 41.75 116.9 �172.9 122.3 99.00
P 110.1 �104.3 93.65 41.43 105.0 �163.4 100.0 131.7
Q 108.4 �109.7 94.70 49.15 119.3 �167.2 117.8 112.1
R 108.4 �112.9 93.20 49.67 121.4 �174.3 127.6 93.57
S 114.5 �103.3 99.38 49.30 120.8 �163.8 119.0 122.1
T 115.5 �105.7 99.57 47.03 121.6 �165.2 121.2 122.0
V 111.1 �110.3 96.96 46.87 121.0 �165.1 117.5 116.4
W 112.4 �105.3 96.64 48.12 121.5 �166.4 117.7 119.9
Y 113.3 �103.5 99.41 45.47 124.2 �166.5 119.5 118.3

Fig. 3. The distribution of discrete states of alanine calculated from
1318 nonhomologous X-ray protein structures given (a) the discrete state
or (b) the type of preceding residue. Y-axis shows the fraction of different
discrete state of alanine as labeled on X-axis. Labels in legend: all,
marginal distribution of discrete state of alanine regardless the state or
residue type of the preceding residue; st, the discrete state of the
preceding residue; r, the type of the preceding residue. We applied a
bootstrap procedure using 1000 sampling with replacement following30 to
obtain the confidence intervals for the data shown. The 95% confidence
intervals for the above data are all within (f � 0.03, f � 0.03), where f is the
fraction shown on the figure.

Fig. 4. Average RMSD values of the best 2000 discrete state models
versus the number of states. The average and standard deviation of
RMSD values are calculated from a set of 70 proteins obtained from Fain
et al.31 The average length of these proteins is 137.
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in their local spatial interaction patterns, one can summa-
rize the relationship between local sequence and structure
more succinctly and accurately. In addition, using reduced
alphabet also alleviates problems arising from the use of a
limited data set of protein structures and decoys to derive
empirical potential functions. Such a simplified alphabet
would also be useful in representation of protein struc-
tures, in building fragment libraries, in prediction of local
structures from local sequences, and in generating protein-
like conformations using chain-growth method.39–43

Different amino acids have different distributions of �
and � angles. However, amino acids that are similar in
geometrical shapes or chemical properties often share
similar patterns in the distribution of � and � angles. The
posterior distribution of discrete state angles for a residue
given the preceding residue’s type and discrete state
provides characteristic information of local structure of
residues. The observed neighboring residue effect shown
in Figure 3 indicates that the type and geometry repre-
sented by discrete state of one residue also affect the
geometry of its adjacent residues. These observations
prompt us to simplify the twenty amino acids alphabet to a
smaller alphabet. To derive the simplified alphabet, we
estimate the first-order-state transition probability of resi-
dues in native protein structures as described below.

A protein structure can be represented uniquely by a
sequence of (a, x), where a is amino acid residue type and x is
the discrete state. For a four-state model with 20 amino-acid
types, the total number of possible descriptors for one residue
position is 20 � 4 � 80. For simplicity, we use s � [1. . .80] to
represent the state a residue may take, that is, the discrete
conformational state and the amino-acid type. We define the
first order state transition probability ps1,s2

as: ps1,s2
� p[s2�s1]

� p�(a2, x2)�(a1, x1)� and calculate the transition matrix from
1318 nonhomologous proteins. We then cluster different
residue types based on the transition probabilities. Each type
of residue corresponds to a vector of 320 transition probabili-
ties (moving from one of the four states associated with this
particular type of residue to one of the 80 different residue-
type and state combinations). We define the distance be-
tween two amino-acid types as the Euclidean distance be-
tween the corresponding transition probabilities vectors.
Results of clustering of amino acids using this distance
metric are shown in Figure 5. The twenty amino acids can be
divided into two distinct groups, with one group containing
only glycine and proline. Our clustering results are very
different from those using other criteria. Geometrically, it is
intuitive that glycine with no side chain and proline with a
rigid side chain are different from other residues. For this
study, we further group the residues into an alphabet ¥1 of
five letters with � � {A, E, K, Q, R, S, H, T}, � � {C, I, V, L, M,
W, F, Y}, � � {D, N}, � � {G}, and � � {P}.

Simplified amino acid alphabet ¥2 for contact
propensity: Incorporating additional descriptors

We use a different reduced alphabet for contact interac-
tions. In this work, we take an alphabet ¥2 based on
results published in Li et al.15 where an alphabet of ten
residue types are chosen as following: {I, L, V}, {C}, {A}, {G},

{N, Q, S, T}, {P, H}, {M, F}, {W, Y}, {D, E}, {K, R}. This
reduced alphabet is used for simplification of contact
descriptors.

Descriptor set �1

To encode the information contained in local-sequence
and local-structure of sequence neighboring residues, we
use the two discrete state taken by two consecutive
residues, (xi�1, xi, ai�1, ai) as descriptors. The number of
possible descriptor values for a pair of residues is (4 � 4) �
(5 � 5) � 400, since there are four discrete conformational
states and five simplified amino-acid types in alphabet ¥1.

Descriptor set �2

Contact interactions in a protein structure can be
uniquely defined once the contact criterion is given. With
20 types of atoms (19 side-chain atoms and one backbone
atom), the number of different types of contacts, or contact
descriptors is 210. This set of descriptors is denoted as
�2,1. When using 10 reduced-atom types derived from the
simplified amino acid alphabet ¥2 with 10 amino acid
types, the number of contact descriptors is 55, and we
denoted it as �2,2. Because of the reduction in the number
of descriptors, we can afford to incorporate additional
descriptors that are more informative. As an exploratory
study, we further distinguish each pairwise contact type
by the sequence separation di,j of the two contacting
residues, where di,j � �j � i�. We group di,j values into three
bins, with bin 1 for di,j � 4, bin 2 for di,j � 5, and bin 3 for
di,j 	 5. Thus, the total number of contact descriptors
becomes 55 � 3 � 165. This set is denoted as �2,3.

Combining contact and local sequence–structure
descriptors

We have experimented with three different sets of
descriptors obtained by combining 400 local sequence–

Fig. 5. Hierarchical clustering of amino acids using their neighboring
residue interaction patterns. Glycine and proline are residues having the
highest tendency of being at turn and loop positions, which are separated
from the rest of amino acids. The remaining 18 amino acids are clustered
into two groups roughly according to their hydrophobicities.
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structure descriptors, �1 with the three different sets of
contact descriptors �2,1, �2,2, and �2,3. CALS (Contact
And Local Sequence–structure) is the set of 610 descrip-
tors combining �1 and �2,1. RCALS1 (Reduced Contact
And Local Sequence–structure 1) is the set of 455 descrip-
tors combining �1 and �2,2. RCALS2 (Reduced Contact
And Local Sequence–structure 2) is the set of 565 descrip-
tors combining �1 and �2,3.

We also study the property of using contact descriptor
�1 only (denoted as C potential) and local sequence–
structure descriptors �21 only (denoted as LS potential).

Calculation of the contact descriptors from a
structure

If all backbone atoms are present in a given structure,
we obtain each SC atom position by extending the bond
length between C� and C� atoms to a residue dependent
value along a fixed direction as in Park and Levitt,28 and
the new position of the C� is taken as the position of side
chain atom SC. If only C� atoms is present, we estimate
the SC position for side—chain atom following the ap-
proach of Park and Levitt28, where the coordinates of
side-chain atom at position i is approximately determined
by the coordinates of C�s at position i � 1, i, and i � 1.
After all C� and C� atoms have been placed, we calculate
the contact descriptors by simply measuring the pairwise
distance of atoms. In our calculations, explicit information
from side–chain atoms of a PDB structure is never used.

To derive local sequence–structure descriptors, we trans-
form the structure to a discrete state model using local fit
as described earlier. The local sequence–structure descrip-
tors are calculated directly from the discrete representa-
tion.

Empirical Potential Function

Potential functions based on physical model (such as
CHARMM and AMBER44,45) require all-atom representations
of protein structures to model detailed physical forces and
therefore are inappropriate for simplified protein represen-
tations. With a proper representations of protein sequence
and structure, and a set of descriptors specified, we have a
description function, c � f(s, a), which takes a structure s
and a sequence a to form a pair (s, a), and maps it to a
descriptor vector c. The next step is to decide on the form of
the potential function E � H (c), which maps the vector c
to a real valued energy or score, E.

The form of a potential function in this study is a linear
combination of the descriptors: H (c) � w � c, that is, the
inner product of the descriptor vector c and the weight
vector w. The energy landscape of an empirical potential
function defined for simplified protein model is inevitably
different from the true-energy landscape of a real protein.
For tasks such as protein-structure prediction, the mini-
mum requirement is that the structures in the conforma-
tional space of simplified protein model that are closest to
the native structure have the globally minimum energy
values. Developing such a potential function is challeng-
ing, as it is not even known that whether near native
conformations in simplified protein representation can be

the most stable conformations in the full conformational
space under any particular potential functions.46 Despite
this uncertainty, there is still a great deal of interest and
work in developing optimized potential functions that
stabilizes native proteins in simplified protein mod-
els.26,47–51 This work is a continuation of efforts in this
direction.

We obtain weight vector w using optimization
method.

26, 47–51
For our linear potential functions, the basic

requirement is: w � (cN � cD) � b � 0, where cN and cD are
the native descriptor vector and the decoy descriptor
vector for one protein, and b � 0 is the energy gap between
a native and decoy structure that should exist. Each pair of
native vector and decoy vector serves as one inequality
constraint. All of the constraints jointly define a convex
polyhedron P for feasible weight vectors w’s. If P is not
empty, there could be an infinite number of choices of w,
all with perfect discrimination.26 To find a weight vector w
that is optimal, one can choose the weight vector w that
minimizes the variance of score gaps between decoys and
natives,47 or minimizing the Z-score of the native protein
and an ensemble of decoys,48,49 or maximizing the ratio R
between the width of the distribution of the score and the
average score difference between the native state and the
unfolded ones.52 Previous works using perception learning
and other optimization techniques47,50–53 showed that
often effective linear sum potential functions can be ob-
tained.

Here we obtain the optimal weight vector w by solving
the following primal quadratic programming problem:

Minimize
1
2 �w�2 (1)

subject to:

w � 
cN � cD� � b � 0 for all N � � and D � � (2)

The solution maximizes the distance b/�w� of the plane (w,
b) to the origin.54 We use a support vector machines (SVM)
for this task.55

Potential function studied

Based on the five different sets of descriptors described
above, we study the following five different potential
functions: CALSP (potential function based on the CALS
descriptor set), RCALSP1 (potential function based on the
RCALS 1 descriptor set), RCALSP2 (potential function
based on the RCALS 2 descriptor set), CP (potential
function based on the C descriptor set), and LSP (potential
function based on the LS descriptor set).

Data Set for Discrimination Test
Proteins database

We select 978 nonhomologous proteins from PISCES
with length shorter than 500 residues29 with the criteria
that the sequence identity is less than 30%, the resolution
of X-ray structures is smaller than 2 Å, and the R factor is
smaller than 0.25. In addition, using a compactness param-
eter z� developed in previous work,42 we require that all
have z� values greater than 3.0, so the compactness of the
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protein is that of the single domain globular proteins. This
compactness constraint excludes proteins with extended
conformations. These proteins are unlikely to be stable on
their own, and usually require protein–protein interac-
tions or protein–DNA interactions.10,26

Gapless threading decoys

We use gapless threading to generate a total of about 60
million decoys.56 A three-fold cross-validation is applied to
train the potential function and test its performance.

Decoys generated by Loose et al. (LKF decoy set)

This set of decoys are generated by Loose, Klepeis, and
Floudas using the program of DYANA, which takes as
input the sequence of a protein, along with information
about its secondary structure that gives bounds for the
distances and torsion angles between atoms.57,58 DYANA
minimizes the energy of the structure and then simulates
a sharp increase in temperature, with a step using molecu-
lar dynamics simulation that allows the shape of the
protein to change. The protein is then slowly cooled down,
or annealed, and its energy is again minimized to give the
output structure. Decoys for 185 proteins were down-
loaded from the authors’ website. About 200 decoy struc-
tures for each protein are available to us.57

Decoys generated by Baker et al. (Baker decoy set)

This set of decoys has 41 proteins. All decoys are
generated by the Rosetta program.59 Several different
protocols are combined to produce the decoy set, which has
the following properties: (1) It contains conformations for a
wide variety of different proteins; (2) it contains conforma-
tions close (�4 Å) to the native structure; (3) it consists of
conformations that are at least near local minima for a
reasonable potential function, so they cannot be trivially
excluded based on obviously nonprotein-like features; and
(4) it is produced by a relatively unbiased procedure that
does not use information from the native structure during
conformational search.60

4State reduced set

This decoy test set contains native and near-native
conformations of seven sequences, along with about 650
misfolded structures for each sequence. Park and Levitt
generated the positions of C� in these decoys by exhaus-
tively enumerating 10 selectively chosen residues in each
protein using a four-state off-lattice model. All other
residues were assigned the �/ values based on the best fit
of a four-state model to the native chain. Conformations in
the decoy sets all have low scores by a variety of potential
functions, and low root-mean-square distance (RMSDs) to
the native structures.61

Lattice_ssfit set

The Lattice_ssfit set contains conformations for eight
small proteins generated by ab initio protein structure
prediction methods. The conformational space of a se-
quence was exhaustively enumerated on a tetrahedral
lattice. A lattice-based potential function was used to

select the 10,000 best-scoring conformations. Park and
Levitt fitted secondary structures to these conformations
using a four-state model. The 10,000 conformations were
further scored with a combination of an all-atom potential
function, a hydrophobic compactness function, and a one-
point per residue potential function. The 2000 best-scoring
conformations for each protein were selected as decoys for
this data set.62,63

LMDS set

The local minima decoy set (LMDS) contains decoys
derived from the experimentally obtained secondary struc-
tures of 10 small proteins belonging to diverse structural
classes. Each decoy is a local minimum of a “hand-made”
energy function. The authors generated ten thousand
initial conformations for each protein by randomizing the
torsion angles of the loop region.64 The adjacent local
minima were found by truncated Newton-Raphson minimi-
zation in torsion space. Each protein is represented in the
decoy set by its 500 lowest energy local minima.

RESULTS
Performance on Gapless Threading Decoys

The performance of the potential function on decoys
generated by gapless threading is listed in Table II. A
three-fold cross validation is employed to test the potential
function, where all of the 978 proteins are randomly
divided into three groups, and two groups and their
associated decoys are used in turn for training and one
group for testing. Among the 978 proteins, CALSP (see
above) has only six proteins misclassified, which corre-
sponds to an accuracy of 99%. A protein is misclassified if
there is one or more decoy structure(s) for that protein
with a lower score than that of the native structure. The
potential functions RCALSP1 and RCALSP2 also give

TABLE II. Performance of Residue-Based Potential
Functions in Decoy Discrimination†

Potential function Complexity Misclassified proteins

CALSP AB 6/978
RCALSP1 AB 5/978
RCALSP2 AB 3/978
CP AB 24/978
LSP AB 249/978
TE13 SCC 7/194
BV AA 2/194
MJ SCC 85/194
†The number of misclassifications are listed. CALSP: Contact And
Local Sequence–structure Potential; RCALSP1: Reduced Contact And
Local Sequence–structure Potential with 455 descriptors; RCALSP2:
Reduced Contact And Local Sequence–structure Potential incorporat-
ing contact order information with 565 descriptors; CP: Contact
potential using only contact component of CALSP; LSP: Local sequen-
ce–structure potential using only local sequence–structure component
of CALSP; TE13: potential function developed by Tobi and Elber12;
BV: Potential function developed by Bastolla and Vendruscolo10: MJ:
Potential function developed by Miyazawa and Jernigan.11 AB: Com-
putation of potential function needs only C� and C� atoms; SCC:
Computation of potential function needs side-chain center; AA: Com-
putation of potential function needs all-atom representation.
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good performance, with only five and three proteins misclas-
sified, respectively. We also tested potential functions
containing only contact (CP) and only local sequence-
structure (LSP) descriptors. Clearly, combining both type
of information in CALSP, RCALSP1, and RCALSP2 is
much better than using CP or LSP alone. By comparing
the performance of CP and LSP, we can also see that
contact descriptors are more informative in discriminating
native structures from decoys than local sequence–
structure descriptors.

We also compare our potential functions with several
other residue-based potential functions, including those
developed by Tobi et al. (TE13),12 Miyazawa and Jernigan
(MJ),11 and Bastolla et al. (BV).10 Although these potential
functions are residue-based potential functions, they need
all-atom representation since they either need to calculate
the side-chain geometric centers or need to compute ex-
plicit atom–atom contacts. CALSP, RCALSP1, and
RCALSP2 are the only potential functions that can be
applied on representations with only C� and C� atoms.
Since C� position is completely determined by coordinates
of backbone atoms, these potential functions also work for
representation with only backbone atoms. The results for
other potential functions are obtained from tables in Hu et
al.,26 where the authors followed the original literature of
contact definition and cut-off values, as well as used the
original potential parameters. The training data and test
data in Hu et al.,26 were obtained from the WHATIF

database,65 while the set of 978 proteins are obtained from
the PISCES database. Although direct comparisons using
exactly the same set of proteins is impossible, the results
listed in Table II indicate that despite using a much
simplified representation, CALSP has comparable or bet-
ter performance than other residue-level potential func-
tions requiring more detailed representations.

Performance on Other Decoy Sets
LKF Set

When the potential function obtained from training
using gapless threading decoys is tested on other decoy
sets, the performance of discrimination is rather poor. This
is not surprising, since it is well known that gapless
threading decoys are less challenging than explicit decoys
generated by different energy minimization protocols.
Potential functions derived by optimization frequently use
more realistic decoys. We therefore develop a new version
of potential function CALSP based on training with explic-
itly generated decoy conformations. The LKF and Baker
decoy sets are used since these are the only ones with
relatively large number of proteins and decoys (185 pro-
teins, 36,840 decoys for LKF decoy set, and 41 proteins,
76,224 decoys for Baker decoy set, respectively).

We use a four-fold cross-validation for the LKF decoy
set, where all of the 185 proteins are randomly divided into
four groups, and three groups are used in turn for training
and one group for testing. No gapless threading decoys are
included in training. As a comparison, the performance of
the original LKF potential on 151 of the 185 proteins are
listed in Loose et al.57 For these 151 proteins, 140 proteins

collected from test sets of different cross-validations are
ranked as number 1 by our CALSP potential function with
an average z-score of 6.42, and 137 proteins ranked as
number 1 by RCALSP1 with an average z-score of 6.15. As
a comparison, potential function LKF has 93 protein
ranked as number 1 as reported in Loose et al.,57 with an
average z-score of 3.08. Potential function TE13 has 64
proteins ranked as number 1 as reported in Loose et al.57

with an average z-score of 2.01 (Table III).
Because the Baker decoy set contains only 41 proteins,

which is too small for a four-fold cross-validation test, we
carried out leave-one-out tests, again without including
any gapless threading decoys during training. Even though
only 40 proteins are available for training each time, our
results are encouraging: we have 28 proteins ranked
number 1, with an average z-score of 4.16 (Table III).

For both LKF decoy sets and the Baker decoy set, we
found that inclusion of gapless threading decoys does not
offer significant improvement in performance. As dis-
cussed in Hu et al.,26 this is because only a small number
of training examples will contribute in determining the
boundary between proteins and decoys. In the study of
LKF and Baker decoys, few such training examples come
from gapless threading decoys when the combined train-
ing sets are used. This confirms earlier observations that
decoys from gapless threading are indeed less challenging.
High quality decoys are very much in need for the develop-
ment of potential functions by optimization methods.

Other decoy sets:

4state-reduced, LMDS, and lattice-ssfit

We also test the CALSP potential function using the
4STATE-REDUCED decoy set, LMDS decoy set, and LAT-TICE-
SSFIT decoy set. Because the number of proteins in these
decoy sets are relatively small, we combined several
training sets, including gapless threading decoys, the near
native structures produced by the greedy build-up method,
and decoys from LKF decoy set. Performance of CALSP on
these decoy sets is listed in Table IV. We compare CALSP
with three other residue-based potential functions, namely,

TABLE III. The number of Misclassifications Using CALSP
and Other Residue-Based Potential Functions†

Potential function Misclassified proteins z-Scorea

LKF decoy set
CALSP 11/151 6.42
RCALSP1 14/151 6.15
LKF 58/151 3.08
TE13b 87/151 2.01

Baker decoy set
CALSP 13/41 4.16

†CALSP: Contact And Local Sequence–structure Potential; RCALSP1:
Reduced Contact And Local Sequence–structure Potential with 455
descriptors; TE13: potential function developed by Tobi and Elber;12

LKF: potential function developed by Loose et al.57

az-score is defined as (E � En)/�, where E� is the average score of the
decoys for a protein, En is the score of native conformation, and � is the
standard deviation of the scores of decoys.
bResult obtained from Loose et al.57 It is not trained on LKF decoy set.
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TE13, LL,15 and MJ. Performance of CALSP in general is
better or comparable to other potential functions. It per-
forms better than other potential functions on the LMDS
decoy set. Again, although all potential functions are of
residue level, only CALSP can be applied to simplified
models represented by C� and C� atoms, or by backbone
atoms only.

CONCLUSION AND DISCUSSION
Discrete-State Representation

In this study, we aim to develop an effective potential
function for simplified protein models. We use a discrete-
state model for representation of protein structures. We
obtained discrete-state values of bond angle � and torsion
angle � from 3–10 states (see supplementary data). By
generating near native structures of low RMSD to native
structures using the discrete state model, we show that
these models lead to accurate modeling of native proteins.

The discrete-state representation can provide a concise
way to represent protein structures by a sequence of
states. Unlike representation of secondary structure types
(such as H for helices, E for � strand, and C for coil and
turns), the sequence of discrete states at each residue
position uniquely determines the three-dimensional confor-
mation. Methods in secondary-structure prediction are
well-developed with prediction accuracy as high as 80%.67

Prediction of discrete states can benefit from algorithms

developed for secondary-structure prediction.68 Predicted
discrete state may be more useful for tertiary-structure
prediction than predicted secondary structures, since the
residue-specific discrete states are more informative. Al-
though there have been various attempts to define second-
ary-structure types other than the three basic types, we
argue that discrete states provide a natural and flexible
representation, where a different number of discrete states
can be used for different amino acids. This provides a wide
range of models with different complexity and accuracy for
studying proteins.

Reduced Amino-Acid-Residue Alphabet

We have simplified amino-acid-residue alphabet using
neighboring residue interactions measured by the first-
order-state transition probability. Hierarchical clustering
divides all amino acids into two groups with PRO (proline)
and GLY (glycine) separated from the rest of amino acids.
Clearly, geometric properties rather than chemical proper-
ties dominate at the top level of the clustering. Glycine is
very small and the distribution of its (�, �) angles has more
accessible regions than any other residue types. On the
other hand, proline has a very rigid side chain and the
distribution of its (�, �) angles has very limited accessible
regions than other amino-acid types. These two amino
acids are indeed found more frequently in turn/loop confor-
mations among these three secondary structure types (�,
�, and turns).69,70 The remaining amino acids are clus-
tered into two groups with one group being {ILVYFWCM}
and the other group being {DNHSTEKAQR}, which follows
roughly their hydrophobicity at the second level of cluster-
ing. This indicates that the local neighboring interaction is
also affected significantly by the hydrophobicity of the
amino acids.71

Geometric properties also play important roles in the
detailed clustering of amino acids both in the hydrophobic
group and the polar group of amino acids. For example, N
(Asparagine) and D (Aspartic acid) are clustered together
and have large distances to the other polar amino acids.
This is quite different from other clustering results based
on chemical properties or mutational propensities. This
difference is probably due to the fact that both of these
amino acids can form favorable intra–residue hydrogen
bond between their main chains and the polar group on the
side chain. This would affect significantly the geometry of
their backbones. Compared with two other similar amino
acids, E (Glutamic acid) and Q (Glutamine), D and N are
preferred for turn/loop conformations.69,70 The simplifica-
tion of amino acids based on local sequence–structure
propensities observed in native proteins provides an alter-
native simplified amino-acid alphabet, which will be useful
for representation and geometric modeling of protein
structures. This simplified alphabet would also be useful
in building fragment libraries and in predicting local
structures from sequences.

Choice of Descriptors

The choice of a specific set of descriptors is critical for the
success of potential functions for simplified representa-

TABLE IV. Performance of CALSP for Three Decoy Sets†

Decoy sets CALSP LL8 TE13 MJ

A) 4state28

1ctf 1 1 1 1
1r69 1 1 1 1
1sn3 2 1 6 2
2cro 2 1 1 1
3icb 1 5 N/A N/A
4pti 2 1 7 3
4rxn 3 51 16 1

B) LMDS66

1b0n-B 1 2 N/A N/A
1bba 436 217 N/A N/A
1ctf 1 1 1 1
1fc2 83 500 14 501
1dtk 1 2 5 13
1igd 1 9 2 1
1shf-A 3 17 1 11
2cro 1 1 1 1
2ovo 4 3 1 2
4pti 1 9 N/A N/A

C) lattice_ssfit62,63

1beo 1 1 N/A N/A
1ctf 1 1 1 1
1dkt-A 1 1 2 32
1fca 7 40 36 5
1nkl 1 1 1 1
1trl-A 56 5 1 4
1pgb 1 1 1 1
4icb 1 1 N/A N/A

†The numbers are the ranking of the native proteins. Results not
available from the references are labeled as “N/A.”
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tions. With a fixed representation, it is always desirable to
extract as much useful information as possible by choosing
an appropriate set of descriptors. Conversely, since the
extractable information from a particular structure is
limited by the representation, the consideration of descrip-
tors always affects the choice of representation. Many new
descriptors incorporating a variety of different types of
information have been developed, such as atomic pairwise
contact calculated by alpha-shape method15 or Voronoi
tessellation,9 distance-dependent contact instead of simple
distance cut-off,7,12,72 contact-order-dependent contact,46

and secondary structure dependent contact.73 We replaced
the 210 contact descriptors by distance-dependent contact
descriptors with several different distance intervals, but
did not observe any noticeable improvement. This is
probably because of the limitation of the contact informa-
tion that can be extracted from simplified representation.

Improving Potential Function for a Fixed
Representation

Potential functions using a weighted linear combination
of residue-level contact descriptors defined by simple
distance cut offs have been shown to be inadequate in
discriminating many native structures from a large num-
ber of decoys.26,74 Among many possible improvements,
the modification of descriptors without changing the repre-
sentation is convenient. Recent study on the conforma-
tional biases used in Monte Carlo simulations by several
successful folding methods suggest that such conforma-
tional biases likely serve as an energy term missing in
current potential function.75 Our work can be regarded as
an effort in searching for the missing information of the
potential function. In this study, we combine local sequen-
ce–structure descriptors with contact descriptors, while
keeping both the functional form and representation as
simple as possible. Although the current local sequence–
structure descriptors are quite simple, the performance of
the potential function has been significantly improved
compared to the one using only contact propensity.

It is likely that the best potential function will be
different if a different protein model is used. Our potential
function can be adapted for use with other protein models
generated by different sampling methods. The discrimina-
tion surface between native proteins and decoys is deter-
mined by points (namely, proteins and decoys) along the
boundary surface.26 This surface is determined by the
protein model and the method of structure generation, but
is invariant once the model and the method are fixed.
Therefore, it is necessary to develop different optimized
potential functions for different protein models. An im-
proved potential function can be obtained by adding new
decoys that are challenging for this particular protein
model to the training set. This case-by-case approach is
also practical. In applications where a potential function is
used to discriminate native structures from decoy struc-
tures, a researcher usually decides upon choosing a favor-
ite protein model and a structure-generation method, as is
the case in research works of protein-structure prediction.
Since the user has access to a method to generate a large

number of candidate structures, decoy structures can be
easily obtained for training an improved potential func-
tion. This improved potential function can be based on the
descriptors and functional form of the original CALSP
potential. The effectiveness of this approach can be seen
from the performance of our potential functions on LKF
and Baker decoy sets, where only decoy structures from
LKF and Baker decoy sets are used in training.

Although it is impossible to develop a one-size-fits-all
potential function for all simplified models, our study
showed that the new set of descriptors, the method for
their simplification, and the simple functional form to
combine them are generally applicable to other protein
models. Our study suggests a novel approach to develop
effective potential functions for simplified protein models.

Further Improvement of Potential Function

Potential functions RCALSP1 (using reduced amino-
acid alphabet in deriving contact descriptors) and
RCALSP2 (further incorporating sequence-separation in-
formation in the descriptors) show slightly better perfor-
mance compared to CALSP in discrimination of gapless
threading decoys, even though they have reduced numbers
of parameters, that is, 455 for RCALSP1 and 565 for
RCALSP2, compared to 610 for CALSP. Although more
detailed studies are needed to assess the effectiveness of
these two potential functions, these results point to a
promising direction to further improve the potential func-
tion. We expect that many local sequence–structure de-
scriptors are redundant, for example, some local sequences
have no preference for local structure. This indicates that
the current set of descriptors can be further simplified,
which will provide additional room for incorporation of
more informative descriptors. Identification of important
descriptors will also shed light on the determinants of
protein folding and stability.

The local sequence–structure propensity currently used
considers only two adjacent residues on the sequence,
which cannot capture more complex local interactions
beyond the two neighboring residues. Additional descrip-
tors can be derived from two residues not adjacent on the
sequence or from more than two residues. The addition of
more descriptors will need to be done carefully to avoid the
problem of over-fitting.

Local Sequence–Structure Relationship and
Protein Folding

Experimental study has shown that the unfolded state
of proteins still maintain much of the native topology
under strong denaturing condition.76 The origin of interac-
tions between neighboring residues has been studied
recently by electrostatic calculations of peptide solva-
tion.71 Our results in clustering amino acids based on
sequence-neighbor interactions suggests that this mainly
originated from the geometric properties of amino acids,
but is also significantly influenced by their physicochemi-
cal properties. Experimental studies and successful appli-
cation of local sequence–structure relationship in struc-
ture predictions clearly indicate that local sequences or
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sequence fragments also have strong preference for adopt-
ing certain native local structure. Such local sequence–
structure relationship could be important for decreasing
the large entropy during the folding process. Local sequen-
ce–structure correlations induced by neighboring residue
interactions may play important roles in the unfolded
states, such that the majority of unfolded conformation
may be located around the native conformation, although
not in the sense of close RMSD.77 The realization of local
and strong sequence–structure correlations may induce
more distant but weaker sequence–structure correlations
spontaneously at many locations on the peptide sequence,
which could be a part of the cooperative folding process.
Therefore, the entropy of unfolded state may be dramati-
cally reduced at the very beginning of protein folding due
to the correlations between local sequence and structure,
which can take effect even during the protein synthesis.
The folding entropy, considered as the major force oppos-
ing protein folding, therefore may not be so large as
thought before.

Summary

Simplified protein representation can effectively reduce
the conformational search space and provides an attrac-
tive model for computational studies of protein structures.
However, currently there are no empirical potential func-
tions that are applicable for simplified protein models. In
this work, we develop an empirical potential function for
simplified protein models by combining descriptors de-
rived from residue–residue contact and local sequence–
structure relationship. The parameters are obtained by
optimizing discrimination of native proteins and decoys.
Based on testing with a variety of decoy sets, our results
show that this strategy is effective, and the empirical
potentials developed here requiring only C� or backbone
atoms have better or similar performance in decoy discrimi-
nation compared to other residue-level potentials requir-
ing in addition either full atom structure or models of side
chains. We also showed that for a large representative set
of proteins, discrete state model can be very accurate. We
also found that the conformations of nearest sequence
neighbors often strongly influence each other, and such
correlation can be employed to provide additional discrimi-
nation in addition to contact interactions. We further
develop a reduced alphabet of amino acids based on
analysis of local sequence–structure correlation of neigh-
boring residues. The results indicate that there are charac-
teristic properties in adopting local conformations among
groups of residues, and such grouping is different from
grouping based on contact interactions. We showed that a
reduced alphabet helps to improve discrimination. The
rich information contained in local sequence–structure
descriptors suggest that local effects may play important
role in reducing entropic cost in protein folding.

Details of the parameters of the potential functions, the
angles for the reduced state models of amino acid residues,
and information on the set of 978 proteins can all be found
at (gila.bioengr.uic.edu/pub-data/potential05-proteins/).

REFERENCES

1. Anfinsen C. Principles that govern the folding of protein chains.
Science 1973;181:223–230.

2. Dill K. Dominant forces in protein folding. Biochemistry 1990;29:
7133–7155.

3. Dobson C. Protein folding and misfolding. Nature 2003;426:884–
890.

4. Levinthal C. Are there pathways for protein folding? J Chem Phys
1968;65:44–45.

5. Head-Gordon T, Brown S. Minimalist models for protein folding
and design. Curr Opin Struct Biol 2003;13:160–167.

6. Kolinski A, Skolnick J. Reduced models of proteins and their
applications. Polymer 2004;45:511–524.

7. Lu H, Skolnick J. A distance-dependent atomic knowledge-based
potential for improved protein structure selection. Proteins 2001;
44:223–232.

8. Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state
improves structure-derived potentials of mean force for structure
selection and stability prediction. Protein Sci 2002;11:2714–2726.

9. McConkey B, Sobolev V, Edelman M. Discrimination of native
protein structures using atom–atom contact scoring. Proc Natl
Acad Sci USA 2003;100:3215–3220.

10. Bastolla U, Farwer J, Knapp E, Vendruscolo M. How to guarantee
optimal stability for most representative structures in the protein
data bank. Proteins 2001;44:79–96.

11. Miyazawa S, Jernigan R. Residue–residue potentials with a
favorable contact pair term and an unfavorable high packing
density term, for simulation and threading. J Mol Biol 1996;256:
623–644.

12. Tobi D, Shafran G, Linial N, Elber R. On the design and analysis
of protein folding potentials. Proteins 2000;40:71–85.

13. Park B, Levitt M. The complexity and accuracy of discrete state
models of protein structure. J Mol Biol 1995;249:493–507.

14. Cline M, Karplus K, Lathrop R, Smith T, Rogers Jr R, Haussler D.
Information-theoretical dissection of pairwise contact potentials.
Proteins 2002;49:7–14.

15. Li X, Hu C, Liang J. Simplicial edge representation of protein
structures and alpha contact potential with confidence measure.
Proteins 2003;53:792–805.

16. Simons K, Kooperberg C, Huang E, Baker D. Assembly of protein
tertiary structures from fragments with similar local sequences
using simulated annealing and bayesian scoring functions. J Mol
Biol 1997;268:209–225.

17. Hunter C, Subramaniam S. Protein local structure prediction
from sequence. Proteins 2003;50:572–579.

18. Hou Y, Hsu W, Lee M, Bystroff C. Remote homolog detection using
local sequence–structure correlations. Proteins 2004;57:518–530.

19. Shortle D. Composites of local structure propensities: evidence for
local encoding of long-range structure. Protein Sci 2002;11:18–26.

20. Kolodny R, Koehl P, Guibas L, Levitt M. Small libraries of protein
fragments model native protein structures accurately. J Mol Biol
2002;323:297–307.

21. Pei J, Grishin N. Combining evolutionary and structural informa-
tion for local protein structure prediction. Proteins 2004;56:782–
794.

22. Lezon T, Banavar J, Maritan A. Recognition of coarse-grained
protein tertiary structure. Proteins 2004;55:536–547.

23. Lazaridis T, Karplus M. Effective energy functions for protein
structure prediction. Curr Opin Struct Biol 2000;10:139–145.

24. Hao M, Scheraga H. Designing potential energy functions for
protein folding. Curr Opin Struct Biol 1999;9:184–188.

25. Buchete N, Straub J, Thirumalai D. Development of novel statisti-
cal potentials for protein fold recognition. Curr Opin Struct Biol
2004;14:225–232.

26. Hu C, Li X, Liang J. Developing optimal nonlinear scoring
function for protein design. Bioinformatics 2004;20:3080–3098.

27. Thomas P, Dill K. Statistical potentials extracted from protein
structures: How accurate are they? J Mol Biol 1996;257:457–469.

28. Park B, Levitt M. Energy functions that discriminate X-ray and
near-native folds from well-constructed decoys. J Mol Biol 1996;
258:367–392.

29. Wang G, Dunbrack RLJ, PISCES: a protein sequence culling
server. Bioinformatics 2003;19:1589–1591.

30. Adamian L, Jackups Jr R, Binkowski A, Liang J. Higher order
interhelical spatial interac-tions in membrane proteins. J Mol Biol
2003;327:251–272.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

EMPIRICAL POTENTIAL FUNCTION FOR SIMPLIFIED PROTEIN MODELS 959



31. Fain B, Xia Y, Levitt M. Design of an optimal Chebyshev-
expanded discrimination function for globular proteins. Protein
Sci 2002;11:2010–2021.

32. Riddle D, Santiago J, Bray-Hall S, Doshi N, Grantcharova V, Yi Q,
Baker D. Functional rapidly folding proteins from simplified
amino acid sequences. Nat Struct Biol 1997;4:805–809.

33. Li T, Fan K, Wang J, Wang W. Reduction of protein sequence
complexity by residue grouping. Protein Eng 2003;16:323–330.

34. Cannata N, Toppo S, Romualdi C, Valle G. Simplifying amino acid
alphabet by mean of a branch and bound algorithm and substitu-
tion matrices. Bioinformatics 2002;18:1102–1108.

35. Murphy LR, Wallqvist A, Levy R. Simplified amino acid alphabets
for protein fold recognition and implications for folding. Protein
Eng 2000;13:149–152.

36. Wang J, Wang W. A computational approach to simplifying the
protein folding alphabet. Nat Struct Biol 1999;6:1033–1038.

37. Dill K. Theory for the folding and stability of globular proteins.
Biochemistry 1985;24:1501.

38. Sagot M, Viari A, Soldano H. Multiple sequence comparison—a
peptide matching approach. Theor Comp Sci 1997;180:115–137.

39. Gan H, Tropsha A, Schlick T. Generatin folded protein structures
with a lattice growth algorithm. J Chem Phys 2000;113:5511–
5524.

40. Liang J, Zhang J, Chen R. Statistical geometry of packing defects
of lattice chain polymer from enumeration and sequential Monte
Carlo method. J Chem Phys 2002;117:3511–3521.

41. Zhang J, Liu J. A new sequential importance sampling method
and its application to the two-dimensional hydrophobic–hydro-
philic model. J Chem Phys 2002;117:3492–3498.

42. Zhang J, Chen R, Tang C, Liang J. Origin of scaling behavior of
protein packing density: a sequential Monte Carlo study of
compact long chain polymers. J Chem Phys 2003; 118:6102–6109.

43. Zhang J, Chen Y, Chen R, Liang J. Importance of chirality and
reduced flexibility of protein side chains: a study with square and
tetrahedral lattice models. J Chem Phys 2004;121:592–603.

44. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan
S, Karplus M. CHARMM: A program for macromolecular energy,
minimization, and dynamics calculations. J Comp Chem 1983;4:
187–217.

45. Pearlman D, Case D, Caldwell J, Ross W, Cheatham T, DeBolt S,
Ferguson D, Seibel G, Kollman P. AMBER, a computer program
for applying molecular mechanics, normal mode analysis, molecu-
lar dynamics and free energy calculations to elucidate the struc-
tures and energies of molecules. Comp Phys Commun 1995;91:1–
41.

46. Betancourt M. A reduced protein model with accurate native-
structure identification ability. Proteins 2003;53:889–907.

47. Tobi D, Shafran G, Linial N, Elber R. On the design and analysis
of protein folding potentials. Proteins 2000;40:71–85.

48. Chiu T, Goldstein R. Optimizing energy potentials for success in
protein tertiary structure prediction. Folding Des 1998;3:223–228.

49. Mirny L, Shakhnovich E. How to derive a protein folding poten-
tial? A new approach to an old problem. J Mol Biol 1996;264:1164–
1179.

50. Vendruscolo M, Domany E. Pairwise contact potentials are unsuit-
able for protein folding. J Chem Phys 1998;109:11101–11108.

51. Dima R, Banavar J, Maritan A. Scoring functions in protein
folding and design. Protein Sci 2000;9:812–819.

52. Goldstein R, Luthey-Schulten Z, Wolynes P. Protein tertiary
structure recognition using optimized hamiltonians with local
interactions. Proc Natl Acad Sci USA 1992;89:9029–9033.

53. Friedrichs M, Wolynes P. Toward protein tertiary structure
recognition by means of associative memory hamiltonians. Sci-
ence 1989;246:371–373.

54. Schölkopf B, Smola A. Learning with kernels: support vector

machines, regularization, optimization, and beyond. Cambridge,
MA: The MIT Press, 2002.

55. Joachims T. Making large-scale support vector machine learning
practical. In: Scholkopf B, Burges C, Smola A, editors. Advances in
kernel methods: support vector machines, Cambridge, MA: MIT
Press, 1998.

56. Maiorov V, Crippen G. Contact potential that recognizes the
correct folding of globular proteins. J Mol Biol 1992;227:876–888.

57. Loose C, Klepeis J, Floudas C. A new pairwise folding potential
based on improved decoy generation and side–chain packing.
Proteins 2004;54:303–314.

58. Guntert P, Mumenthaler C. Torsion angle dynamics for NMR
structure calculation with the new program DYANA. J Mol Biol
1997;273:283–298.

59. Simons K, Bonneau R, Ruczinski I, Baker D. Ab initio protein
structure prediction of CASP III targets using ROSETTA. Pro-
teins 1999;3:171–176.

60. Tsai J, Bonneau R, Morozov A, Kuhlman B, Rohl C, Baker D. An
improved protein decoy set for testing energy functions for ptoein
structure prediction. Proteins 2003;53:76–87.

61. Samudrala R, Levitt M. Decoys “R” us: a database of incorrect
conformations to improve protein structure prediction. Protein Sci
2000;9:1399–1401.

62. Samudrala R, Xia Y, Levitt M, Huang E. A combined approach for
ab initio construction of low resolution protein tertiary structures
from sequence. Pac Symp Biocomput 1999;505–516.

63. Xia Y, Levitt M. Extracting knowledge-based energy functions
from protein structures by error rate minimization: comparison of
methods using lattice model. J Chem Phys 2000;113:9318–9330.

64. Fletcher R. A new approach to variable metric algorithms. Com-
put J 1970;13:317–322.

65. Vriend G, Sander C. Quality control of protein models—
directional atomic contact analysis. J Appl Cryst 1993;26:47–60.

66. Levitt M. Molecular dynamics of native protein: I. computer
simulation of trajectories. J Mol Biol 1983;168:595–620.

67. McGuffin L, Bryson K, Jones D. The PSIPRED protein structure
prediction server. Bioinformatics 2000;16:404–405.

68. Kuang R, Leslie C, Yang A. Protein backbone angle prediction
with machine learning approaches. Bioinformatics 2004;20:1612–
1621.

69. Crasto CJ, Feng J. Sequence code for extended conformation: a
neighbor-dependent sequence analysis of loops in proteins. Pro-
teins 2001;42:399–413.

70. Xia X, Xie Z. Protein structure, neighbor effect, and a new index of
amino acid dissimilarities. Mol Biol Evol 2002;19:58–67.

71. Avbelj F, Baldwin R. Origin of the neighboring residue effect on
peptide backbone conformation. Proc Natl Acad Sci USA 2004;101:
10967–10972.

72. Bahar I, Jernigan RL. Inter-residue potentials in globular pro-
teins and the dominance of highly specific hydrophilic interactions
at close separation. J Mol Biol 1997;226:195–214.

73. Simons K, Ruczinski I, Kooperberg C, Fox B, Bystroff C, Baker D.
Improved recognition of native-like protein structures using a
combination of sequence-dependent and sequence-independent
features of proteins. Proteins 1999;34:82–95.

74. Vendruscolo M, Najmanovich R, Domany E. Can a pairwise
contact potential stabilize native protein folds against decoys
obtained by threading? Proteins 2000;38:134–148.

75. Przytycka T. Significance of conformational biases in Monte Carlo
simulations of protein folding: lessons from Metropolis-Hastings
approach. Proteins 2004;57:338–344.

76. Shortle D, Ackerman M. Persistence of native-like topology in a
denatured protein in 8 m urea. Science 2001;293:487–489.

77. Fitzkee N, Rose G. Reassessing random-coil statistics in unfolded
proteins. Proc Natl Acad Sci USA 2004;101:12497–12502.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

960 J. ZHANG ET AL.


