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We study folding dynamics of proteinlike sequences on a square lattice using a physical move set that
exhausts all possible conformational changes. By analytically solving the master equation, we follow the
time-dependent probabilities of occupancy of all 802 075 conformations of 16 mers over 7 orders of time
span. We find that (i) folding rates of these proteinlike sequences of the same length can differ by 4 orders
of magnitude, (ii) folding rates of sequences of the same conformation can differ by a factor of 190, and
(iii) parameters of the native structures, designability, and thermodynamic properties are weak predictors
of the folding rates; rather, a basin analysis of the kinematic energy landscape defined by the moves can
provide an excellent account of the observed folding rates.
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The dynamics of protein folding has been studied ex-
tensively [1,2]. A remarkable observation is that protein
folding rates are well correlated with their native structural
properties [1]. A native-centric view postulates that protein
folding rates are largely determined by the topology of
their native structure [3]. Theoretical models using the Go
potential, where only native contacts contribute energeti-
cally, are very successful in reproducing observed folding
rates [2,4].

However, the extent to which native structure determines
the folding rate remains unclear. By the native-centric
view, different sequences for the same protein structural
fold would all have very similar folding rates, as they share
essentially the same native structure topology. However,
this is not consistent with experimental results. As the
folding rates of simple single-domain proteins differ by
6 orders of magnitude [3], folding rates may be very
heterogeneous. A recent experimental study showed that
a designed artificial protein with no homologous sequence
in nature that adopts the same structure as a natural protein
can fold 4000 times faster [5]. A distinct possibility is that
the empirical correlation between properties of native pro-
tein structures and folding rates may arise from inadequate
sampling in the sequence space due to accumulated biased
natural selection and limited genetic drift, rather than from
intrinsic physical properties of proteins.

In this Letter, we use the two-dimensional hydrophobic
and polar (HP) lattice model [6] to study the relationship of
folding rates, native structure topology, thermodynamic
properties, and effects of sequence variation. We model
the physical movement of protein chains. Real protein
cannot immediately jump from one conformation to an-
other arbitrary conformation. Two conformations of the
same energy may be well separated kinetically. We regard
protein movement as a sequence of successive conforma-
tional changes, each represented by a physically realizable
primitive move. The physical move set we developed ex-
hausts all possible conformational changes for a structure.
We use the master equation to study the folding dynamics
of foldable sequences of length 16. While the master
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equation provides an exact solution [6,7], in the past it
was necessary to cluster conformations of larger systems
into macrostates to reduce the size of the transition matrix
[8], therefore making the use of physical moves infeasible.
Here we directly solve the eigenvalue problem of the
802075 X 802075 transition matrix and develop a method
to monitor the time-dependent probability of occupancy of
all conformations simultaneously from the first kinetic
move until reaching half-equilibrium concentration over
7 orders of time scale.

Our results show that the properties of native structure,
designability, and thermodynamic properties are inade-
quate to explain protein folding dynamics in our model
systems. We found that proteinlike sequences can fold into
the same native structure with folding rates differing as
much as 190 times and sequences of the same length and
energy gap can differ by 4 orders of magnitude in folding
rate. Instead of thermodynamic properties, we show that
properties of the move-connected energy landscape de-
fined by the connection graph of physical moves can
provide an excellent account for observed folding rates.

Model.—We use the following energy model for differ-
ent types of nonbonded HP contacts: Eyy = —1, Egp = 0,
and Epp = 0. By evaluating the energy level of all 2!°
sequences of 16 mers on all enumerated |Q| = 802075
conformations, we have identified 26 sequences that all
fold into the same ground state conformation (Fig. 1). This
set of sequences forms the largest protein family, where
each sequence adopts the same conformation, and all are
connected by (a series of) point mutations. Altogether,
there are 1539 foldable sequences with unique ground state
conformations. There are 456 conformations that are the
unique ground state for 1 or more foldable sequences.

We develop a set of physically possible primitive moves
[Fig. 1(c)]. They are generalizations of corner move, crank-
shaft move, and pivot move. We exhaust all possible
occurrence of such moves for every conformation. We
verified that this move set is ergodic, i.e., all conformations
are connected to each other by a series of primitive moves.
With this move set, the simple energy scheme of the HP
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FIG. 1. Proteinlike sequences and the set of primitive moves.
The largest protein family contains (a) 26 sequences that all fold
into (b) the same structure. Here solid circles are H residues.
(c) The move set includes: among (1, 2, and 3), single point
moves rotate around a single point; between (1) and (4), gener-
alized corner moves reflect around a diagonal axis connecting
any two residues; between (1) and (5), generalized crankshaft
moves reflect around a horizontal or vertical axis. Points of
rotation are on gray background. For a given conformation, we
exhaustively search all possible position for point moves, all
possible pairs of positions for possible generalized corner moves
and generalized crankshaft moves.

model leads to a complex energy landscapes, with numer-
ous local minima for a foldable sequence.

We use a Metropolis-type of dynamics to assign the
transition rate r;; from conformation i to a neighbor con-
formation j connected by a move: r;; = 1 if E(j) = E(i),
ry = e PO=EOVT if E(j) > E(i), and r;j = =3 1yt if
J = i. For non-neighbors, r;; = 0. We assume the effects
of viscosity and friction are negligible.

We follow [7,8] and use a master equation to study
protein folding dynamics. Let p,;(f) be the probability
that the HP molecule takes the ith conformation at the
time ¢, then dp(1)/dt=73 ;. [r;ip;(t) = r;jp;(t)]. Written
in vector form, we have: dp(t)/dt = Rp(t), where R is the
rate matrix whose entries are defined by the above expres-
sion. We choose temperature 7 = 0.2 in units of
AEyy/kg, which is below the folding temperature T,
when 50% of the molecules take the native conformation.
T; varies from ~0.2 to ~0.5 for different sequences.

A general solution of the master equation can be written
as p(r) = 3,;C;in;e” " with C; = v! p(0), where A; is the
ith eigenvalue of the rate matrix R, n; the corresponding
right eigenvector, v; the left eigenvector, and p(0) the
initial vector of distribution of conformations. In this study,
we use the high temperature condition and assign p(0) =
1/|Q]. Two eigenvalues are of particular interest: Ay = 0
corresponds to the equilibrium Boltzmann distribution, and
the smallest nonzero eigenvalue A; determines the slowest
mode of relaxation. Following [8], we take A; as the
folding rate k; of the protein. Although the full computa-

tion of all eigenvalues and eigenvectors for a 802075 X
802 075 matrix M is infeasible, A; and the corresponding
eigenvectors n; and v; can be computed by an Arnoldi
method.

Thermodynamics and folding rates.—Several thermody-
namic properties have been proposed to be determinants of
protein folding rates. We found that protein stability as
measured by the total contact energy is correlated with
logk/ (R?> = 0.71); i.e., more stable proteins fold slower in
general (Fig. 2). Because stable proteins have lower ground
state energy, some local minima will also have relatively
deep energy traps. As a result, more stable proteins will
have slower folding rates because they can be trapped in
such local minima. However, the folding rates of sequences
of the same ground state energy can still differ as much as
103. The heterogeneity of the folding rate was already
noted in an earlier study using the macrostate approxima-
tion [6]. Here we found that even sequences that fold into
the same conformation shown in Fig. 1(a) demonstrate a
wide range of rates, from 1.1 X 1073 to 5.8 X 107, which
is much larger than the difference between the average
folding rates for sequences of different native state ener-
gies. Protein stability therefore provides part, but not the
main explanation of the heterogeneity of folding rates.

The energy gap between ground state and excited state
was thought to be the necessary and sufficient determinant
of folding rate [9]. For all 1456 proteinlike sequences of
N = 16, the energy gap between the lowest state and the
next state is AE = 1. The diversity in folding rate k,
shown in Fig. 2 clearly indicates that energy gap is not a
determining factor for the folding rate. The correlation R?
between logk, and the energy gap normalized by standard
deviation is 0.01.

Another thermodynamic property thought to be an im-
portant determinant of folding rates is the collapse co-
operativity o = 1 — T;/Ty [10], where T, is as defined
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FIG. 2. The correlation of logk, and ground state contact
energy. A circle represents one of the 26 sequences shown in
Fig. 1, a cross represents one of the 79 singleton sequences, and
the diamond represents the G model. Native conformations for
a few sequences are also shown.
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earlier, and T, the temperature when heat capacity C(T)
reaches its maximum. Figure 3 shows that for the 26
sequences that fold to the same native structure in
Fig. 1(b), there is a weak correlation (R?> = 0.38) between
collapse cooperativity and logk,. Large variances in ob-
served folding rates exist for sequences of similar collapse
cooperativity.

The number of sequences that take a specific conforma-
tion as the unique ground state is thought to be correlated
with overall protein stability and folding rates [11]. We cal-
culated, in addition, k, for a group of 79 singleton sequen-
ces with no sequence homologs that fold to the same native
conformations. The distribution of ks for the singleton
sequences and the 26 sequences shown in Fig. 2 demon-
strate similarly large variation. For our model, designabil-
ity is not an important determinant of the folding rates.

The inverse participation ratio / is commonly used to
characterize the localization of eigenvectors. It is defined
as I = 3 ,v?, where v, is the kth coefficient of the nor-
malized eigenvector. The correlation between I for the
equilibrium eigenvector and the folding rate for the 26 se-
quences is rather poor (R? = 2 X 1073).

Kinematic determinants of folding landscape.—Protein
folding kinetics are intrinsically determined by physical
movement of molecules. Weak correlations of the folding
rate with thermodynamic properties are not surprising.
Thermodynamic properties of a sequence can be calculated
if its complete set of conformations are enumerated. Such
properties are not affected by the kinetic connections be-
tween conformations. A smooth energy landscape ensuring
fast folding can be easily permuted into a rugged landscape
by assuming different transition rules between conforma-
tions. Both will have the same thermodynamic properties,
but the resulting folding rates for the same sequence will be
very different. The energy landscape of folding is dictated
by the connection graph of states defined by the move set.
Characterizing such a kinematic energy landscape is there-
fore essential for studying protein folding dynamics.

Although the energy landscape contains 802075 con-
formations, each is connected by the move set to only a
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FIG. 3. Examples of the correlation of folding rate k; with
thermodynamic properties and kinetic landscape properties.
(a) k; and collapse cooperativity o have weak correlation (R* =
0.38). (b) k¢ has excellent correlation with the number of local
minima (R? = 0.85), a property of the kinetic landscape. The
diamond represents the Go model.

limited number (~30) of conformations. We can identify
states that are local minima, i.e., all the states connected to
which by moves have higher energy. A simple character-
ization of the kinematic energy landscape is then the
number count 7, of the local minima. Figure 3(b) shows
that an excellent correlation of logk, and n,y;, (R? = 0.85)
can be found for the 26 HP sequences that fold into the
same conformation.

Our conclusions are not sensitive to temperature 7.
When T is raised from 0.20 to 0.21 (equivalent to raising
T from 300 to 315 K), we found that the folding rate k of
the 26 sequences all increases. Although k, for a slow
folder increases more (by a factor of 2.0 versus a factor
of 1.4 for fast folders), k; at T = 0.21 is well correlated
with k; at T = 0.20. The correlation coefficients of logk,
with the number of local minima, collapse cooperativity
(Fig. 3), and other thermodynamic parameters are essen-
tially unchanged.

Time evolution and basin analysis.—Monitoring the
exact time evolution of all conformations simultaneously
until reaching equilibrium during folding is a challenging
task. Mathematically, the model of the master equation is
equivalent to a Markov process, where the population
vector of conformations at time # + kAt is given by p(¢ +
kAt) = M*p(t), where M = I + R - At, I being the iden-
tity matrix. However, the k time step Markov matrix M*
rapidly becomes a dense matrix, and following the time
evolution of folding by a straightforward matrix multi-
plication of O(|Q|* logk) steps, becomes impossible for a
large matrix of size | Q)] = 802075 and k = 10°~10'°. The
analytical solution of p(r) = ¥ ,C;n;e”*" through diago-
nalization is also impractical, as it is only possible to
calculate a few eigenvectors and eigenvalues for a large
matrix.

We seek an accurate solution without the approximation
of macrostates. Taking advantage of the sparsity of the rate
matrix R, we follow the approach of Sidje [12] and use the
analytical solution of matrix exponential: p(f) = % p(0),
where e®! is defined by the Taylor expansion e® = I +
tR+LCR>+ -+ LR+ ---. This expansion itself is
impractical, as it also involves a large matrix product of
increasing density. Plus, the entries in the matrix terms may
have alternating signs and hence cause numerical instabil-
ity. A better approach is to expand e®’p(0) in the Krylov
subspace XK, defined as

XK ,,(Rt, p(0)) = Span{p(0), ..., (R)" " 'p(0)}. (1)

Denoting || - ||, as the 2 norm of a vector or matrix, our
approximation then becomes p(r) = ||p(0)|[,V 41 X
e'Hni1e, where e, is the first unit basis vector, V,, ., is
a (m+1) X (m+ 1) matrix formed by the orthonor-
mal basis of the Krylov subspace, and H,; the
upper Heisenberg matrix, both computed from an
Arnoldi algorithm. The error can be bounded by
O[e™ IRl (¢]| R||,/m)™]. We now only need to compute
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FIG. 4. The time evolution of the native state and several local
minima states. The probability of occupation of native state
conformation (top) increases monotonically through a time
span of 1072-10°, but local minima conformations go through
transiently accumulating intermediate states.

explicitly effn+1'. Because m is much smaller than 802 075,
this is a simpler problem. A special form of the Padé
rational of polynomials instead of the Taylor expansion is
used for this [12]: e#»1 = N, (tH,,1)/N,,(—tH 1),
Npp(tH 1) = Y7o cx(tH 1 )F  and
Ci—1 @fﬁ%& In our calculation, we select m = 30.
Figure 4 shows an example of an HP sequence [sequence
C in Fig. 1(a)] and the time evolution of its native con-
formation and several local minima conformations. The
time evolution of the native conformation shows an initial
fast phase up to ¢t ~ 50 time units. In principle, the local
minima conformations can follow different kinetic pro-
cesses: Some could be transiently accumulating, and others
either monotopically accumulating or monotopically de-
creasing. Based on the computed trajectories of time evo-
lution, we find that the dynamic behavior of local minima
conformations can be predicted from basin analysis of the
move-connected energy landscape. We define the size of
the basin associated with each local minimum state i
computationally by artificially making every local mini-
mum an absorption state, i.e., a sink of infinite depth, such
that once reached, no molecule can escape. This is
achieved by assigning r;; = 0 and r; = 1 for each local
minimum state i [13]. pl(t = oo) therefore reflects the size
of the basin of the ith local minimum. We define the ac-
cumulation ratio as 0 = % If o > 1, state i is
most likely a transient accumulating state, i.e., the other
conformations in its basin first rapidly flow to state i before
transiting to conformations outside the basin. If o <1,
depending on its initial probability of occupancy and the
final Boltzmann factor, state i may be either a monotoni-
cally decaying or accumulating state. We find that among
the 493 local minima states for this sequence, all except 3
are transiently accumulating, indicating they are respon-

where cp =

sible for forming transient state ensemble of various time
scale.

To understand whether the formation of certain native
contacts facilitate folding, we examine the time evolution
of each of the 8 native contacts (a)—(h) in Fig. 1(b) for the
26 sequences. We found that fast folders have larger
amount native contact d (R? = 0.74-0.81 with logky),
and contact ¢ at the transient time of 50-100 (Fig. 4),
indicating that these contacts are critical for folding by
restricting favorably the conformational search space. The
formation of other native contacts seems not to be directly
related to folding rates.

To conclude, we studied protein folding dynamics using
a model based on detailed physical moves and the exact
solution of the master equation. We found that folding rates
vary enormously for sequences of the same length, energy,
energy gap, and even of the same ground state conforma-
tion. In contrast to the thermodynamic parameters which
are weak predictors of folding rates, properties of the
kinematic landscape defined by the physical moves pro-
vide excellent correlation with folding rates. With the
computation of time evolution of individual conformation
from the first move to the half time of equilibrium, we
show that many transiently accumulating intermediate
states can be identified by basin analysis.
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