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ABSTRACT Since a protein’s dynamic fluctua-
tion inside cells affects the protein’s biological prop-
erties, we present a novel method to study the en-
semble of near-native structures (NNS) of proteins,
namely, the conformations that are very similar to
the experimentally determined native structure. We
show that this method enables us to (i) quantify the
difficulty of predicting a protein’s structure, (ii)
choose appropriate simplified representations of
protein structures, and (iii) assess the effectiveness
of knowledge-based potential functions. We found
that well-designed simple representations of protein
structures are likely as accurate as those more com-
plex ones for certain potential functions. We also
found that the widely used contact potential func-
tions stabilize NNS poorly, whereas potential func-
tions incorporating local structure information sig-
nificantly increase the stability of NNS. Proteins
2006;65:000–000. VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

Conformational fluctuations of a protein affect its func-
tional roles.1,2 Treating a protein as a single rigid object
can be misleading in tasks such as structure-based drug
design3 and prediction of protein–protein interactions.4

Instead of using a single structural snapshot as captured
by X-ray crystallography, we must consider an ensemble of
conformations that collectively describe the native state of
a protein.5,6 A popular approach to capture this intuition is
to consider the ensemble of near-native structures (NNS),
which is defined as the set of conformations with Ca root-
mean-square-deviation (RMSD) less than a threshold value
to the native structure (3 Å in this study, unless otherwise
stated). Other definitions of NNS will be discussed later.
Several methods have been used for studying NNS,

including NMR spectroscopy, molecular dynamics (MD)
simulations, Metropolis Monte Carlo,7 the Gaussian net-
work or elastic network models,8–10 and chain-growth-
based heuristic method.11 A recent study combines NMR
measurements with molecular dynamics simulation to

determine the ensemble of protein conformations and
associated dynamics.6 Because of computational limita-
tions, however, NNS as an ensemble of conformations
characterizing the native state of a protein is still poorly
understood. In this article, we show how to approximate
NNS using a sequential Monte Carlo (SMC) approach12

and how to use these approximations to address the fol-
lowing problems: (i) quantifying the difficulty in predict-
ing proteins of different topology, (ii) choosing an appro-
priate representation of protein structures for improved
efficiency with minimum loss in accuracy, and (iii) com-
paring different knowledge-based potential functions.

A structural representation is usually evaluated by the
proximity of its best-fitted structures to native ones, and
a potential function is evaluated by its ability to discern
the native structure from decoys.13–15 However, since a
single structure, even if it is the ‘‘best,’’ typically cannot
represent well the ensemble property of the protein, and
a protein’s conformational entropy plays an important
role in its stability,16 it is more desirable to evaluate rep-
resentations and potential functions according to how
well they describe the ensemble of NNS.

Let m denote a protein model, which consists of a struc-
tural representation and a potential function. The stabil-
ity of NNS under model m is determined by the change of
free energy of the system from the unfolded state to NNS:

DGNNS;m ¼ kBT lnðQU;mÞ � kBT lnðQNNS;mÞ;
where kB is the Boltzmann constant, T denotes the tem-
perature, QNNS,m ¼ Sx[NNSe

(�Ex/kBT) and QU,m are the par-
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tition functions of the NNS and the unfolded structures,
respectively, where Ex is the internal energy of structure x.
Since QNNS,m þ QU,m ¼ Z ¼ Sxe

(�Ex/kBT), we have:

DGNNS;m ¼ �kBT ln
PNNS;m

1� PNNS;m

� �
;

where PNNS,m ¼ QNNS,m/Z is the Boltzmann probability of
the NNS. A higher PNNS,m corresponds to a potentially
better model. However, having a good estimate of PNNS,m

requires good estimates of the partition functions, which
are generally difficult to get.17 Additionally, since the
subspace of NNS is a very small portion of the overall
space and is also very irregular due to the compact shape
of the native structures, Monte Carlo sampling is particu-
larly difficult.18

We here take a SMC approach,12,19 which can be viewed
as an extension of the chain growth method explained in
Ref. 20. The method generates properly weighted struc-
tural configurations of a polypeptide chain by sequentially
adding one or a few monomers at a time, just like
‘‘growing’’ a crystal. This general methodology has been fol-
lowed by several groups in studying protein structures.21–
25 Compared with iterative methods such as the Metropolis
algorithm, chain growth methods are especially suitable
for generating structural configurations under complicated
constraints.

STRUCTURAL MODELS
Discrete k-State Off-Lattice Representation
of Protein Structures

We use an off-lattice discrete k-state representation for
protein structures, in which backbone of each residue is
modeled by a pseudo-Ca atom14,26,27 (Fig.F1 1). The side-
chain of a residue (except glycine) is modeled by one addi-
tional atom attached to the backbone Ca atom, which, to-
gether with two adjacent Ca atoms, determines the side-
chain atom’s coordinate. Distances between backbone Ca

atoms and their side-chain atoms depend on residue
types.14 There are two radii associated with each residue
type: the contact radius and the self-avoiding radius.
Contact radius taken from Ref. 14 defines the formation
of contacts if the distance of two atoms i and j, di,j, is
smaller than the sum of their contact radii. Self-avoiding
radius models the excluded volume effect: for Ca atoms it
is set as 1.5 Å and for side-chain atoms it is 1.0 Å. In this
study, we consider only conformational spaces with self-
avoiding structures. We denote this representation as
Rk
SC, where k indicates the number of discrete states each

residue can be positioned. We use Rk
CA to denote another

representation, in which only the excluded volume effect
of Ca atoms is considered (i.e., self-avoiding radii of side-
chain atoms are set to zero).
In discrete k-state models, the backbone position of each

residue (excluding the two ends) can take one of k discrete
pairs of (a,s) angles, where a is the pseudo-bond angle
formed by three consecutive Ca atoms, and s is the pseudo-
torsion angle formed by four consecutive Ca atoms. A
study on the choice of k and the associated angle values of

(a,s) was reported in Ref. 27. For the four-state model, the
average RMSD between the native protein and its optimal
fit (for 978 proteins) is 2.3 Å. For 5, 6, and 8-state models,
the average RMSD between the native and the best fit is
1.9, 1.6, and 1.4 Å, respectively.

Potential Functions

Following potential functions will be considered in this
study to demonstrate the usefulness of the concept of
NNS for evaluating protein models.

i. Uniform potential (UP): It takes the form EUP ¼ 0.
The corresponding Boltzmann distribution is simply
the uniform distribution and the partition function is
the total number of self-avoiding conformations.

ii. Contact potential (CP): This is perhaps the most
widely used knowledge-based potential function,28–33

and takes the general form:

ECP ¼
XN
i

XN
j

ei;jIði; jÞ;

where i and j are atom (or residue) index, ei,j is the con-
tact energy of atoms i and j, and I(i,j) indicates whether i
and j are in contact. A recent survey of 29 such CPs con-
cluded that they can be organized into two classes so that
the potential functions within each class are highly simi-
lar to each other.34 There is also a strong correlation
between these two classes. The potential function used in
this study, referred to as HLPL in Ref. 34 belongs to the
larger class of the two.

J_ID: Z7E Customer A_ID: 21203 Cadmus Art: PROT2942 Date: 8-SEPTEMBER-06 Stage: I Page: 2

Fig. 1. Discrete state model for protein structures. Bond angle ai at
position i is formed by Ci � 1, Ci, and Ci þ 1. Torsion angle Ti is the dihedral
angle of the two planes formed by atoms (Ci � 2, Ci � 1, Ci) and (Ci � 1, Ci,
Ci þ 1).
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iii. Local structure potential (LSP): Its functional form is:

ELSP ¼
XN�1

i¼2

e0i;si ;

where i is the residue number from 2 to N � 1, si is the
actual state of that residue, and e0i,s is a function reflect-
ing the local structural ‘‘preference’’ of that residue. To
demonstrate that our NNS criterion can indeed help eval-
uate potential functions, we here choose an artificial
function expected to be helpful. We let

e0i;s ¼ � logðpi;sÞ;
where pi,s is the probability of state s at position i, which
is estimated from the ensemble of uniformly sampled
NNS. Since this probability is estimated from the true
native structure, the LSP we adopted here should reflect
the information of the true local structure. To compute
our LSP for a protein with a given native structure, we
estimate the values of pi,si from 10,000 NNS samples gen-
erated using SMC under potential UP.
iv. Contact and local structure potential (CALSP): It is

simply the sum of CP and LSP27:

ECALSP ¼ ECP þ ELSP;

which aims to study how a combination of global and
local interactions in the potential function can improve
the probability of NNS.

SMC for Generating NNS

Our goal here is to sample conformations that both fol-
low the Boltzmann distribution defined by an energy
function and are also close to a given native structure.
This gives rise to two constraints: conformational con-
straint and energetic constraint. Previous applications of
SMC deal mainly with one of the two constraints.
In our formulation, a protein’s structure is determined

by its residues’ states (the bond and torsion angles),
denoted as Sn ¼ (s2, . . ., sn � 1), where n is the length of the
sequence, and si takes values in {1, . . ., k}, representing one
of the k possible states of residue i. We let Xt ¼ {St} denote
a set of self-avoiding conformations of length t in our dis-
crete model space. Here we are interested in estimating

ZðXnÞ ¼
X

Sn2Xn

hðSnÞ; ð1Þ

where h(�) is an arbitrary function of interest. Our SMC
strategy for approximating Z(Xn) is a combination of sequen-
tial importance sampling and optimal resampling.12,23,35 In
importance sampling, one generates a set of configura-
tions according to a distribution g(�) and then estimates
Z(Xn) by weighted average of all samples. A key challenge
in using importance sampling is to design a good sampling
distribution. An effective approach as first explored by
Rosenbluth and Rosenbluth 20 is to construct g(�) sequen-
tially. That is, one ‘‘grows’’ the molecule by sampling one

residue a time conditional on the configuration of the pre-
viously grown residues; and then weighs the final configu-
ration according to the importance sampling principle.
However, this strategy is usually not enough to produce a
good estimate of Z(Xn) since the ‘‘attrition’’ becomes very
serious when the chain becomes moderately long. To over-
come the attrition problem, researchers introduced the
pruning and enrichment ideas.21,36 Recently, researchers
in statistics and engineering introduced an alternative
strategy-resampling,23,37 which is more flexible and effi-
cient than the pruning-enrichment approach in many
cases.12,23,37 The following scheme illustrates our algo-
rithm for sampling NNS.

1. We set the initial sample size to m1 ¼ 1, with weight
w1
(1) ¼ 1. The starting configuration contains the first

two residues. Suppose that at step t � 1, we have mt�1

partial configurations with corresponding weights,
denoted as {(S(j)

t�1, w
(j)
t�1), j ¼ 1, . . ., mt�1}.

2. Chain growth. For each partially grown configuration
S( j)
(t�1), we exhaustively test all possible attachments of

the protein’s next residue (a total of k different states),
which will generate no greater than k different partial
configurations of length t, St

(j,l) ¼ (S( j)
(t�1), st, with tem-

porary weights wt
(j,l) ¼ w( j)

(t�1) (the chain will be
removed from further consideration if St

( j,l)=2 Xt). We
denote all the samples such generated as {(St

(l), wt
(l)),

l ¼ 1, . . ., L} (clearly L � kmt � 1).
3. Resampling. If L � m, the upper bound of Monte Carlo

sample size, we keep all of the samples and their cor-
responding weights and set mt ¼ L. If L > m, we use
the optimal resampling procedure of Fearnhead and
Clifford35 to choose mt ¼ m distinct samples from them
with marginal probabilities proportional to a set of pri-
ority scores bt

(l). The steps of this resampling proce-
dure are as follows:
a. Solve the constant c such that SL

l¼1 min{1,cbt
(l)} ¼ m.

b. Choose a subset of distinctive members J1, J2, . . .,
Jm from the set {1, . . ., L} so that the marginal prob-
ability for the l to be selected is equal to pl ¼
min{cbt

(l), 1}. One way to achieve this is to (i) draw
U0 � Unif[0,1], and let Uj ¼ j � U0, for j ¼ 1, . . ., m;
and (ii) choose Jj ¼ l if p0 þ � � � þ pl � 1 < Uj � p1 þ
� � � þ pl, for l ¼ 1,. . ., L and P0 ¼ 0.

c. Let St
(j) ¼ St

(Jj), and update the new weight as

w
ðjÞ
t ¼ �w

ðJjÞ
t =minfcbðJjÞ

t ; 1g:

4. When the target length n is reached, Z(Xn) is esti-
mated by Sj¼1

mn wn
(j) h(Sn

(j), where mn is the number of
samples at length n, and wn

(j) is the importance weight
of sample Sn

(j).

An advantage of the above resampling method over the
previous SMC method23 and the pruning-enrichment
approach21 is that it guarantees to generate distinctive
configurations, yet without losing information.35

The priority score bt(St) can be understood intuitively
as a measure of the chain’s ‘‘growth perspective,’’ and is
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used to encourage the growth of chain St to certain direc-
tions. We can design different bt(St) for different h(�). For
example, to estimate the partition function of NNS, we
have

hðSnÞ ¼ IfSn : RMSDðSn;NSÞ < 3ge�EðSnÞ=T ;

where RMSD(Sn, NS) denotes the RMSD between confor-
mation Sn and the native structure and E(Sn) is the
energy of conformation Sn defined by the potential func-
tion and T is set to 1. In this case, we use the priority
score

bl
tðSðlÞ

t Þ ¼ IðSðlÞ
t 2 XtÞe�ðEðSðlÞ

t ÞþRMSDðSðlÞ
t ;NStÞÞ=Tt ;

where St
(l) is one of L sampled structures of first t resi-

dues, NSt is the corresponding partial native structure,
and E(St

(l)) is the energy of the conformation St
(l). This

priority score is based on both the energy of the confor-
mation St

(l) and its RMSD to the partial native structure
NSt. It encourages conformations that are both of low
energy and similar to the native structure. The auxiliary
temperature parameter Tt is used to control our reliance
on the priority score function, and is set as

Tt ¼ q
ffiffiffiffiffiffiffiffi
n=t

p
where q is set to 0.05 in all cases. Hence, we have a
higher temperature at the beginning of growth to induce
flexibility, and a cooling down as t increases to enforce
the constraint.

RESULTS
Validation of the SMC Method

To evaluate the performance of our SMC method, we
compared SMC estimates of several structural properties
of a few polypeptide sequences to exact answers obtained
by exhaustive enumerations. Subchains of length L of the
following eight small proteins are used in these compari-
sons: 1ail, a; 1nkd, a; 1fna, b; 1mjc, b; 1vie, b; 1pft,
coils; 1vcc, a and b; 2igd, a and b. These are chosen from
the set of 70 nonhomologous proteins with different folds
selected.38 The running time for generating m ¼ 10,000
distinctive conformations using SMC for a protein of
length 100 is about 20 min on a 0.5 GHz Linux machine.
FigureF2 2(a,b) present results for approximating the

partition functions of NNS for subchains of lengths 11 �
J � 15 for proteins 1mjc (under the uniform potential)
and 1nkd (under the contact potential). We can see that
the SMC estimates with m ¼ 10,000 are indistinguish-
able from the exact answers. Figure 2(c) shows estimates
of partition functions of all conformations (unconstrained)
under both potentials for subchains of 1ail. Figure 2(d)
displays the estimates of probabilities of NNS under the
Boltzmann distribution for three proteins.
Finally, Figure 2(e,f) demonstrate our SMC estimates

of probabilities of native contacts for two sets of NNS
(defined by different RMSD ranges) of 1nkd at length 15.
Contacts are formed by two atoms when their distance is
smaller than the sum of their contact radii. The probabil-

ity of a native contact in NNS is defined as the number of
NNS with that kind of contacts over the total number of
NNS. Estimating the probability for a certain contact is
challenging since it requires us to estimate both the total
number of NNS conformations and the size of the subset
of NNS containing that contact.

Quantifying the Difficulty of a Protein Structure
Prediction Problem

We can measure the level of difficulty of a protein
structure prediction problem by the probability that a
randomly chosen structure lies in the NNS of this pro-
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Fig. 2. Comparison of SMC estimations and exact values for: (a)
Partition functions of NNS (QNNS) for two sets of NNS defined by RMSD
cutoffs of 2 and 3 Å, respectively, under UP for protein 1mjc; (b) Same
as above under a contact potential (CP) for protein 1nkd; (c) Partition
functions of all conformations under both UP and CP for protein 1ail
from length 11 to 15; (d) The probability of NNS under CP with 3 Å
RMSD for these proteins (1ail, 1mjc, and 1nkd) at lengths from 11 to
15; (e) Probabilities of native contacts of NNS in the range of 1.0 Å <
RMSD < 2 Å of protein 1nkd; (f) Same as above in the range of 2.0 Å <
RMSD < 3 Å. For (e) and (f), we define a pair of residue to have a
‘‘native contact’’ if they contact with each other in the native structure,
and the x-axis in these plots indexes these contacts.
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tein. Here, we consider three sets of NNS determined by
RMSD cutoff values: 3 Å (NNS3), 4 Å (NNS4), and 5 Å
(NNS5), respectively. The size of the entire conforma-
tional space, and the size of NNS are estimated sepa-
rately, both under the uniform potential function for rep-
resentation R5

CA. FigureF3 3 displays average probabilities
of NNS for a set of 46 proteins with lengths ranging from
50 to 150. The 46 proteins are grouped according to their
lengths with a 5-residue interval, and averages of each
group are plotted. We can see that the log-probability of
NNS decreases linearly with the chain length at a slope
near �1. For example, for protein 1amx with 150 resi-
dues, the log-probability of random sampling a structure
within 3 Å RMSD to native structure is �157.7 � 0.7.

Comparing Effectiveness of Protein Models

A challenge in protein structure modeling is to find a
quantitative structural representation that allows for both
accurate modeling of important physical interactions and
efficient computation. Discrete state representations of
proteins, which are the focus of this article, provide a sig-
nificant advantage in computation,25,27,39,40 albeit at a
cost of reduced accuracy. In these models, the number of
discrete states, the values of a and s angles, the contact
radius, and self-avoiding radius of atoms, and so forth, are
all adjustable parameters, of which some can be obtained
from studying databases of native protein structures, but
others cannot be easily determined. Using two discrete
state representations, Rk

SC and Rk
CA, as an example, we

show here how one can compare the effectiveness of differ-
ent representations based on their abilities to stabilize
NNS (i.e., the probabilities of NNS).
We first estimate PNNS under the uniform potential for

representations RK
CA with k ¼ 4, 5, 6, and 8 for the same

eight small proteins used previously. The estimated log-
partition functions for fragments of the proteins (starting
from residue one with lengths ranging from 13 to 50) for
Rk

CA are shown in FigureF4 4(a). The estimated log(PNNS)
for segments of lengths ranging from 13 to the full length
of these proteins are shown in Figure 4(b). It is interest-
ing to observe that although the total number of confor-
mations increases significantly with the increase of k, the
estimated probability of NNS is nearly invariant under
different representations. Similar results were observed
under contact potentials. It has two implications: one is
that using a simpler representation is perhaps desirable
and justifiable, and the other is that the difficulty of the
protein prediction task for models with a larger number
of states (or even continuous model) may not be very dif-
ferent from what is shown here.
We then compared the estimated PNNS under two rep-

resentations, R5
SC and R5

CA, for understanding the effect
of modeling side-chains. FigureF5 5(a) shows that R5

SC and
R5

CA have very similar PNNS under UP for 23 proteins
with fewer than 100 residues. But for CP, R5

CA has a
much lower PNNS than R5

SC, implying that the side-chain
representation of R5

SC is more desirable for protein mod-
eling.

Comparing Potential Functions
for a Given Representation

Potential functions for successful structure predictions
must meet a basic requirement that the defined energy
landscape stabilizes the ensemble of NNS among all
other competing structures. Thus, we use PNNS again as
a criterion to evaluate potential functions. To illustrate
this approach, we compare potential functions UP, CP,
LSP, and CALSP under the same representation R5

SC.
We estimated PNNS for a set of 23 proteins that are no

larger than 100 residues. Figure 5(b) displays the com-
parison of PNNS under four potential functions. We can
see that the PNNS values are similar under CP and UP,
and are significantly lower than those obtained under
LSP and CALSP. This indicates that NNS are stabilized
poorly by CP for structural representation model R5

SC.
Potential function CALSP, which combines both local
structure and contact information, results in a slightly
smaller PNNS than LSP for small proteins, but have
slightly higher PNNS for larger proteins, which is prob-
ably due to the fact that long proteins have more core res-
idues forming contacts. It can also be seen that PNNS

decreases much slower with protein length under LSP
and CALSP than under UP and CP.

DISCUSSION

We have developed a new Monte Carlo technique for
estimating quantitative properties of NNS. The effective-
ness of this method was validated by comparisons with
exact answers for small polypeptide chains and also by a
systematic study of properties of NNS. To the best of our
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Fig. 3. Estimated probabilities of NNS defined by three RMSD cutoff
values (3, 4, and 5 Å, respectively) for 61 proteins with lengths ranging
from 31 to 150 residues. Error bars are too small to show on the figure.
An example with the standard deviation is given in the text.
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knowledge, this level of accuracy has not been achieved
in previous studies, especially for free energy and entropy
estimations.17,41

The problem of assessing the difficulty of protein struc-
ture prediction has been examined previously using
known protein structures or through curve fitting and
extrapolation of simulated data.42–45 Using the probabil-
ity of NNS (PNNS) to quantify a protein’s ‘‘difficulty’’, we
observed [Fig. 4(b)], to our surprise, that this ‘‘difficulty’’
measure is not affected by the number of states used in a
discrete-state structural representation, but is signifi-
cantly affected by side-chain representations: PNNS is
much higher for R5

SC than for R5
CA (i.e., favoring the side-

chain representation of R5
SC) when a contact potential

was employed. Although structures represented by Rk
CA

may have lower RMSD to native structure than those of
Rk

SC due to the side-chain excluded volume effect, the

excluded volume effect of side-chains may play a positive
role in favoring NNS since it also prevents some nonna-
tive conformations being packed too tightly, with a lower
energy than NNS.

Using the same criterion, we compared four potential
functions, and observed that the pair-wise contact poten-
tial employed is not suitable for studying protein folding,
a conclusion similar to that given in Refs. 46 and 47. We
found that samples generated under such contact poten-
tial function are often non-native, even though they have
lower energy values than NNS. Our method can also help
improve potential functions, since an analysis of struc-
tural features of the Monte Carlo samples we generated
both in NNS and in general space can provide an inform-
ative diagnosis of the problematic areas of a potential
function. For example, from the samples of low energy
non-native structures, we find that most of them,

J_ID: Z7E Customer A_ID: 21203 Cadmus Art: PROT2942 Date: 8-SEPTEMBER-06 Stage: I Page: 6

Fig. 5. Comparison of different representations and potential functions for 23 proteins with lengths rang-
ing from 31 to 99 residues using 5-state representations. (a) Estimated probability of NNS for UP and CP
using two different representations, R 5

SC (denoted by UP and CP, respectively, in the figure) and R 5
CA

(denoted by UPCA and CPCA); (b) Estimated probability of NNS for different potential functions using
R 5

s. UP, uniform potential; CP, contact potential; LSP, local sequence-structure potential; CALSP, contact and
local sequence-structure potential.

Fig. 4. Average properties estimated for eight small proteins. (a) Estimated numbers of conformations (N)
for models with 4, 5, 6, and 8 discrete states, respectively, with partial chain lengths ranging from 13 to 50;
(b) Estimated probabilities of NNS for models with 4, 5, 6, and 8 states, respectively, with chain lengths rang-
ing from 13 to the full length of each protein.
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although very compact, lack protein-like local structures,
suggesting the need for incorporating more accurate
descriptions of local structures. As a proof of principle,
we created two artificial potential functions, LSP and
CALSP, and found that they indeed improved the stabil-
ity of NNS dramatically.
Finally, we note some limitations and possible exten-

sions of the current method and models. Despite their im-
portance, NNS ensembles are not as well-defined experi-
mentally as native structures. NNS defined in this study
are those within certain RMSD range to a native struc-
ture. Different similarity measures can be used.48 For
example, in cases where a protein experiences large move-
ment, its alternative active structures may have large
RMSD to the native structure, but most of the local struc-
tures remain similar. In such cases, a local similarity mea-
sure can be used to define the set of NNS. In some studies,
NNS needs to be generated only for an interested part of a
native structure while keeping other parts of the structure
fixed. Algorithms have been developed to sample internal
sections of a chain molecule, such as the Internal configu-
rational biased Monte Carlo (ICB) algorithm,49 which can
be incorporated into the SMC framework. Although a sim-
plified model of protein structures is used in this study,
our method can be applied to all-atom models. While the
conformational space for large proteins become inhibitive,
NNS can be generated using all-atom representations for
certain functionally important regions of the target pro-
tein, which may provide us more information than the sin-
gle native structure for studying structure-based drug
design and protein–protein interactions.
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