Proceedings of the 29th Annual International
Conference of the IEEE EMBS

Cité Internationale, Lyon, France

August 23-26, 2007.

SaB06.6

Perturbation-based Markovian Transmission Model for Macromolecular
Machinery in Cell

Hsiao-Mei Lu and Jie Liang

Abstract— The study of the dynamics of a complex system
is an important problem that includes large macromolecular
complexes, molecular interaction networks, and cell functional
modules. Large macromolecular complexes in cellular machin-
ery can be modeled as a connected network, as in the elastic
or Gaussian network models as demonstrated by Bahar and
colleagues. Here we propose the Perturbation-based Markovian
Transmission Model for studying the dynamics of signal trans-
mission in macromolecular machinery. The initial perturbation
is transmitted by a Markovian processes, and the dynamics
of the probability flow is analytically solved using the master
equation. Due to the large size of macromolecular complexes, it
is very difficult to obtain analytical time-dependent Markovian
dynamics of all atoms from the first perturbation until station-
ary state. To overcome it, we decrease the level of complexity
of the transition matrix using a Krylov subspace method. This
method is equivalent to integrating all eigen modes, and we
show it can provide a globally accurate solution to the dynamics
problem of signal transmission for very large macromolecular
complexes with reasonable computational time. We give results
of the dynamics of the GroEL-GroES chaperone system by
applying uniform perturbation to all residues. We are able to
identify experimentally found important residues and provide
a set of predicted pivot, messenger, and effector residues, each
with distinct dynamic behavior. Further results of selective
perturbation on the surface of ATP binding pocket identifies
the path of maximal probability flow of signal. Our method
can also be applied to other large systems, for example, virus
capsid, ribosome, and large allosteric proteins.

I. INTRODUCTION

The functional activities of cellular machinery often in-
volves the dynamics of large macromolecules and their
assembly, as seen in molecular interaction networks and cell
functional modules. Understanding how the signal transmits
dynamically in a complex molecular system from the knowl-
edge of its molecular structures is therefore an important
problem.

A challenging problem when studying large molecular
assemblies is understanding the global dynamic behavior at
multiple time scales. Simulation methods such as molecular
dynamics study the molecules at atomic detail and cannot
access the dynamic behavior of large systems at extended
time scales. Instead, coarse grained models such as the
Gaussian network model and elastic network model treat
the molecules as connected graphs with nodes representing
amino acid residues and edges representing contacts between
residues [1-4]. By analyzing the dominant eigen modes of

This work is supported by grants from NSF (CAREER DBI0133856),
NIH (GM68958 and GM079804), and ONR (N000140310329).

Department of Bioengineering, SEO, MC-063 University of Illinois at
Chicago 851 S. Morgan Street, Room 218 Chicago, IL 60607-7052, U.S.A.
jliang@uic.edu

1-4244-0788-5/07/$20.00 ©2007 IEEE

molecular motion and the key residue sites, much insight has
been gained [1-4, 6].

It is difficult to decide a priori which modes are dynam-
ically important, furthermore, the combination of selected
subsets of eigen modes cannot guarantee the accurate de-
scription of the long term dynamics of the system. Analysis
of different eigen modes often leads to different conclusions,
especially when the system lacks dominant modes in the
eigen spectrum. As different initial conditions are applied,
different modes become important. It is possible that the
slowest mode, frequently thought to be important, may
contribute little to the overall dynamics of the system under
certain initial conditions.

Here we study the dynamic behavior of large molecular
systems by integrating the effects of all eigen modes at
arbitrary initial conditions of perturbation. Our approach
is to solve the master equation of the system, which is
a technically challenging problem. It is very difficult to
simultaneously follow the time-dependent dynamics of all
atoms and residues of a very large macromolecular complex
from initial perturbations until the stationary state [11, 12].
We solve this problem by decreasing the level of complexity
of the transition matrix using the Krylov subspace method,
which guarantees the solution to be accurate with in a
specified error bound [6]. This approach is general and can be
used to study very large macromolecular systems at multiple
time scales, without the need of pre-clustering the residues.

In this paper, we present results of a study of the dy-
namics of the GroEL-GroES chaperone system. We first
apply uniform perturbations to all residues in the chaperone
system. This enables us to recover experimentally identified
pivot, messenger, and effector residues, all with distinct
dynamic behaviors. We also predict previously unknown
residues playing the roles of pivot, messenger, and effector.
We then perturb only the surface of ATP binding pocket of
the GroEL-GroES system which enabled us to identify the
path of maximal flow of signal transmission on the structure
of GroEL-GroES.

This article is organized as follows. We first describe
the models and the theory of the master equation. We
then discuss the Perturbation-based Markovian Transmission
Model. This is followed by a brief discussion of the Krylov
subspace method. We then report our results on GroES-
GroEL chaperone with 7 bound ADP molecules under the
following initial perturbations: (1) uniform perturbation on
all residues and (2) perturbation on the surface of ATP
binding pocket. We conclude with a summary and remarks.
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II. MODEL AND METHODS

A. Connection Model, Initial Perturbation, and Markovian
Transition Model

In our model, the dynamic behavior of a large macro-
molecular complex is probed by applying a perturbation
as initial condition. This perturbation can be regarded as
a signal, which will be transmitted from the location of
perturbation to the rest of the macromolecule. Here we
follow others and model a large macromolecular complex
as a network whose architecture solely depends on its
three-dimensional structure. We use the Markovian transi-
tion model introduced by Chennubhotla and Bahar [2] to
model how a given perturbation is transmitted. The dynamics
of the macromolecular complex in our Perturbation-based
Markovian Transmission (PMT) model is fully defined by
the contacts.

In this model, each node represents a residue or an
atom of the protein complex, and each edge connecting
nodes represents the spatial contact in the structure. The
perturbations are signals and are transmitted from one node
to its neighboring nodes with a probability flow following a
Markovian processes. In each step of the Markovian process,
the initial perturbation is transmitted from residue ¢ to residue
j with the probability flow m;; defined as follows: m;; = 0
if there is no atom-atom contacts between residue ¢ and
7, i.e., the distance between any two atoms is greater than

45 A. m;; = 2 if there is at least one atom-atom

dj/ming
contacts between residue ¢ and j, where n;; is the number
of atom-atom contacts between residue ¢ and j, m; and
n; are number of atoms of residue ¢ and j, respectively.
d; = Zf\il \/ZJTJ, where NV is the total number of residues
in the macromolecular structure. m;; = —3>, . my; if
t = j. The collection of m;;s form the Markovian transition
matrix M = {m;; }

B. Master equation and Krylov Subspace Method

To analytically obtain the full dynamics of the PMT model,
we discuss the master equation method and the Krylov
subspace matrix reduction method for integrating the master
equation.

We use a master equation to model the probability flow
p,(t) at time ¢ for the i*" residue. Here i = 1, ..., N, where
N is the total number of residues in the macromolecular
complex. p,(t) is described as the difference between the
rates for transitions entering and leaving the residue ¢ in a
continuous time Markov process. We have:

dpi al
o Z[mjipj — mi;pil, ey

j=1

where m;; and mj ; are rate constants for the respective
transitions. The equivalent master equation in matrix form
is:

where p is the flow probability column vector
(py,P, - Py)., M is the rate matrix, i.e., Markovian
matrix, defined as before.

A given initial perturbation p, at t = ¢, whose compo-
nents sum to 1 may be applied to any subset of nodes. The
analytical solution of the master equation is

p(t) = MT)pg, 3)
and the stationary distribution is
d;
Sj=1%d;

which is independent to any initial condition. For a given
Markovian matrix, the master equation has an exact solution,
which provides an exact picture of the relaxation process
of the initial perturbation in the complex macromolecular
system. For any arbitrary perturbation on the system, the
final stationary state of the system only depends on the
connectivity of the network.

p;(t=00) = 4

C. Krylov subspace method

Simultaneously monitoring the exact time evolution of
probability flow for all individual residues from the first per-
turbation until reaching stationary state is a challenging task.
Mathematically, the model of master equation is equivalent to
a Markov chain, where the probability flow vector of residues
at the k' time step can be calculated by a straightforward
matrix multiplication of O(logkN?) steps [6]. However,
this becomes impossible for a large matrix. The analytical
solution of p(t) = >, Cin;e~ i through diagonalization is
also impractical, as it is only possible to calculate a few
eigenvectors and eigenvalues for a large matrix [6, 11].

We seek an accurate solution without the approximation
of macrostates, namely, merged states through clustering.
Taking advantage of the sparsity of the Markovian matrix M,
we follow the approach of Sidje [8] and use the analytical
solution of matrix exponential in Eq. (3) to expand eM‘p, in
the Krylov subspace /C,,, defined as:

’C’rn(Mta Po) = Span{pOa ) (Rt)milpo} (5)

Denoting || - ||2 as the 2-norm of a vector or matrix, our
approximation then becomes p(t) = ||pg||2Vms1eHm+1ey,
where e; is the first unit basis vector, V,,+1 is a (m +
1) x (m + 1) matrix formed by the orthonormal basis
of the Krylov subspace, and H,,,; the upper Heisen-
berg matrix, both computed from an Arnoldi algorithm.
The error can be bounded by O(e™ HRIl2(¢||R||y/m)™).
We now only need to compute explicitly efm+1* Be-
cause m is much smaller than the total number of states,
this is a simpler problem. A special form of the Padé
rational of polynomials instead of Taylor expansion is
used [8]: eHm+1 ~ N, (tHy41)/Npp(—tH,ni1), where

dp Npp(tﬁm_H) = Z:O Ck(th_H)k and ¢, = cCp_1 -
T M p, () %. In our calculation, we select m = 60.
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III. RESULTS

An application of the PMT model on the study of the
dynamics of the x-ray crystal structure of the asymmetric
GroEL-GroES-(ADP); chaperone complex in Escherichia
coli (PDB id: 1AON) [10] is shown in this paper. There
are 8,015 residues and 58,699 atoms in the GroEL-GroES
protein complex with 14 and 7 identical chains in GroEL and
GroES, respectively. This ATP regulated chaperone complex
assists the folding of unfolded and misfolded proteins. The
functional activity involved in the allosteric effect starts with
7 ATPs and a ligand (unfolded or misfolded protein) binding
to the trans-ring chains, this is followed by conformational
change of the trans-ring chains to the cis-ring chains. The
effect continues with GroES binding to the top of the trans-
ring chains and the releases of the ligand into the central
cavity. In the meantime, the ATPs are hydrolyzed to ADPs.
The whole process ends after another 7 ATPs and a ligand
(the unfolded protein) bind to the trans-ring chains. It causes
the cis-ring chains to take the same conformation as become
trans-ring chains by releasing the GroES, ligand (the partial
folded or folded protein), and 7 ADPs, and the cycle is
resumed.

A. Uniform perturbation on all residues

We virtually perturb all residues in the GroEL-GroES-
(ADP)7 chaperone protein complex. We then assess the roles
of different residues in transmitting signals.

a) Observation on the time trajectories of experimen-
tally verified residues: Pro33 and Thr90 are on the surface
of nucleotide binding pockets of the cis-ring chains, and
Asp398 plays an important role in ATP hydrolysis by a
large conformational change of its side chain atoms [5, 9, 10].
We observe these functional important resides experience
significant periodic fluctuations. They have either large or
small probabilities in the stationary state (in Fig. 1). Few
other residues that are not on the nucleotide binding pockets
experience these kind of periodic fluctuations.

Chennubhotla and Bahar [2] suggested that messenger
residues play important roles by passing signals between
domains or chains. For example, Glu461 and Argl97 are
inter-chain and intra-chain messenger residues, respectively.
As shown in Fig. 1, although these two residues do not make
many contacts with other residues, the periodic fluctuations
implies that they are involved in the constant transmission of
signals. Unlike residues on nucleotide binding pockets, the
messenger residues do not reach extreme probabilities in sta-
tionary state. That is once these residues receive perturbation
signal, they simply pass it on and do not hold onto it.

Each chain of the GroEL structure consists of three
domains: the equatorial, intermediate, and apical domain.
These names reflect the spatial position in the GroEL-
GroES chaperone complex structure. The three domains are
connected by four pivot residues: Gly192, Gly375, Gly410
and Prol37. The first two connect the apical and interme-
diate domains, and the others connect the intermediate and
equatorial domain. As shown in Fig. 2, Pro137 and Gly192
are found to have smooth time trajectories and extreme low
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Fig. 1: Time trajectories of residues on ADP binding
pocket: Pro33 (magenta), Asp398 (yellow), and Thr90
(red) and messenger residues: Glu461 (green) and
Arg197 (blue).

probabilities in the stationary state. Although, only these
two residues have the distinct dynamic behavior, the other
two pivot residues are in immediate contact with these two
residues.
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Fig. 2: Time trajectories of four pivot residues: Gly192
(red), Gly375(yellow), Pro137 (green), and Gly410
(blue).

b) Prediction on pivot, messenger, and effector
residues: According to what is learned from the dynamic
behavior of active site, messenger, and pivot residues, we are
able to make predictions and identify additional functionally
important residues.

We identify pivot residues by applying the rule of maximal
change and lowest minimal probability, without any temporal
increase in the time trajectory. By selecting the top 5% of
residues in the cis-ring chains that obey the above rule,
we identified thirteen pivot residues. Additional to the two
structure pivot residues (Prol37 and Gly192) that were
experimentally identified [10], seven pivot residues are found

5031

Authorized licensed use limited to: University of Illinois. Downloaded on January 12, 2009 at 15:02 from IEEE Xplore. Restrictions apply.



on the equatorial domain, and the other four were found on
the intermediate and apical domains. All thirteen residues
are located on the surface of the structure and at the turn
of helices. Because of the structural similarity of the cis-
ring and trans-ring chains, residues on the equatorial domain
have the same dynamic behavior in both of the cis-ring and
trans-ring chains of GroEL. On the other hand, residues on
the intermediate and apical domain in cis-ring chains are
no longer buried in trans-ring chains structure. Indeed, the
dynamics behavior is no longer as pivot-like (in Fig. 3).

Similarly, we identified pivot residues in GroES. We found
residues Gly23, ILE25, Gly29, and Ala32, which make
contacts with the cis-ring chains of GroEL and are located on
the experimentally verified mobile loop of GroES (residues
16-33) [7,10]. Additional pivots identified (Metl, SER75)
are at the inter-chain area in GroES, suggesting that these
residues may interact with neighboring chains.
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Fig. 3: Time trajectories of predicted pivot residues.

We also have identified effector residues, which greatly re-
spond to the perturbations by experiencing maximal changes
and attain highest maximal probability. By selecting the top
5% of residues in the cis-ring chains which obey the above
rule, we identified thirteen effectors residues (in Fig. 4).
Four of them are on the equatorial domain, two are on the
intermediate domain, and the others are on the apical domain.
Residues on the equatorial domain are near the nucleotide
binding site and have the same dynamic behavior in both
cis-ring and trans-ring. Effectors on the intermediate domain
are at the bend and experience largest conformational change.
Indeed, their dynamics also experience the largest change in
the cis-ring and trans-ring chains. Effector residues identified
on the apical domain in cis-ring chains are either facing
the center cavity or on the helix interacting with GroES.
It suggests that these effect residues may bind to unfolded
proteins and/or GroES.

According to what we have learned about known mes-
senger residues, we have identified additional messenger
residues that transmit signals with periodic fluctuations
during time evolution. We select the residues whose time
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Fig. 4: Time trajectories of predicted effector residues.

trajectories have minimal changes but contain many local
minimum and maximum. We further classify these residues
into four clusters based on their dynamics (in Fig. 5).

(a) Messenger residues on the interface between GroES
and GroEL.

Leu27 on the mobile chain of GroES and three residues
(Ala241, Lys242, and Val271) on the helix of the cis-ring
chains in GroEL communicate with GroES. They are selected
as messenger residues. They make direct contacts to each
other. According to the response time to the perturbation,
we can see the signal is transmitted from the cis-ring chains
of GroEL gradually to GroES. The much higher peak of
Leu27 indicates it collects and holds the signal from GroEL
before it transmits signal to GroES.

(b) Messenger residues on apical and intermediate domain.

They are messenger residues directly passing signal from
equatorial domain to apical domain.

(c) Messenger residues on equatorial domain and near
intermediate domain.

These are residues passing signal from the surface of
nucleotide binding pocket toward intermediate domain (in
rainbow color according to their response time).

(d) Messenger residues on equatorial domain and near the
trans-ring chains of GroEL.

These are residues passing signal from the surface of
nucleotide binding pocket toward the interface of cis-ring
and trans-ring chains of GroEL. (in rainbow color according
to their response time).

To sum up, our results suggest that the allosteric signal
transmission is from the nucleotide binding pocket in the
cis-ring chains of GroEL towards and propagates the GroES
and the trans-ring chains of GroEL.

B. Pocket perturbation

By applying uniform perturbations only on the residues
of nucleotide binding pocket, we can investigate the path of
maximal flow of the signal by monitoring the residues with
highest probability of fluctuation in each time point from
the beginning of the perturbation to the stationary state. In

5032

Authorized licensed use limited to: University of Illinois. Downloaded on January 12, 2009 at 15:02 from IEEE Xplore. Restrictions apply.



140
135

135
)
J
130

%0
s
\\

\\
<
)

)
/

125

probabilty*1e6
probabilty"1e6

120
120

115
115

135
135

130
130

probabilty*1e6
125

probabilty*1e6
125

120
[’
\
\
\
120

115
115

1e-02 16400 10402 Te404 16406 1e-02 10400 1e402 10404 10406
Time. Time

Fig. 5: Time trajectories of messenger residues. They
are classified by the dynamics. Four classes from (a) to
(d) described in the text are the figure in the order of
upper left, upper right, lower left, and lower right.

Fig. 6, the top ten residues with the maximal probability
of the fluctuation are selected at 4 time points. At time
t = 0.1, immediately after the perturbation on the 58 residues
on the nucleotide binding pocket, these residues respond
to the perturbation greatly, as all are on the center of the
perturbed surface. After time period ¢ = 100, the signal
starts to spread out and other residues which are not on the
nucleotide binding pocket are influenced. At time ¢ = 1, 000,
the majority of selected residues are not on the nucleotide
binding pocket and some are at the interface between cis-
ring and trans-ring chains of GroEL. At time ¢ = 10, 000,
the signals are further transmitted toward the direction of the
GroES. The highly fluctuated residues Asn265 is at the helix
communicating with GroES.

IV. CONCLUSION

In this paper, we studied the dynamics of GroEL-GroES-
(ADP)7 chaperone protein complex with PMT model. The
dynamics of the large macromolecular complex can be ob-
tained by the PMT model where perturbations are transmitted
by a Markovian processes on a connected network defined
by the contacts between residues. Analytically solving the
master equation with the Krylov subspace algorithm provides
a global solution to the dynamics problem of very large
macromolecular complexes from perturbation to stationary
state within reasonable computational time.

We have perturbed all residues in silico in the chaperone
structure. We have analyzed the response patterns of ex-
perimentally known pivot residues, messenger residues, and
residues on the nucleotide binding pockets that are func-
tionally important. Based on the distinct dynamic behavior
of these residues, we are able to predict additional residues
that may function as pivot, effector, and messenger residues.
We also applied perturbations on the surface of nucleotide
binding pocket and have identified the path of maximal

Fig. 6: The path of maximal flow transmission starts
from the nucleotide binding pocket of the cis-ring of
GroEL to both the trans-ring of GroEL and GroES.
Residues on the nucleotide binding pocket are in blue.
The top ten residues with the maximal probability of
fluctuation at time ¢t = 0.1 (upper left), 100 (upper right),
1,000 (lower left), and 10, 000 (lower right) are in red.

flow of signal transmission. By monitoring the residues with
maximal fluctuations at each time point, a clear pathway
of signal transmission is identified from the center of the
nucleotide binding pocket of the cis-ring chains of GroEL
toward the direction to the GroES and the interface between
cis-ring and trans-ring chains of GroEL.

The successful application of the PMT model on the
chaperone protein complex, consisting of 8,015 residues,
shows that the dynamics of signal transmission in large
macromolecular machinery is accessible to computational
studies. Although there is no current experimental confir-
mation, our predictions of pivot, effector, and messenger
residues suggest a plausible new hypothesis that can be fur-
ther tested experimentally. Our model can be easily applied
to other systems, for example, virus capsid, ribosome, and
allosteric proteins.
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