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Detecting Positively Selected Sites From Amino Acid Sequences: An
Implicit Codon Model
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Abstract— Fixation of advantageous mutations is an impor-
tant evolutionary force driving the accelerated protein diversi-
fication. However, the standard phylogenetic approach to infer
positive selection is based on relative rate of nonsynonymous to
synonymous substitutions, and requires the knowledge of DNA
sequences, hence precludes its application to family of remotely
related sequences where saturated substitutions occur. In this
study, we develop a new method to detect positive selection
directly from amino acid sequences by treating codon usage as
hidden parameters.

For a given amino acid sequence set and a phylogenetic
tree, we use a reversible continuous time Markov process
as our evolutionary model. This model has fewer parameters
than normal amino acid evolutionary model, with only transi-
tion/transversion rate ratio, nonsynonymous/synonymous rate
ratio (w = dy/ds), and codon usage. Similar to earlier work, we
assume that w is a random variable with different probabilities
to take a set of discrete values. Those with w > 1 model sites
under positive selection. We use the Bayesian Monte Carlo
method to estimate model parameters, as it allows implementa-
tion of complex model of sequence evolution. Here unobserved
DNA sequences are sampled from protein sequences based on
distributions parametrized by codon usages, based on the fact
that both protein sequences and the native protein-encoding
DNA sequences have the same phylogenetic tree. The object is
that sampled DNA sequences should fit the same phylogenetic
tree as well as the native DNA sequences. Data set of 3-globin
sequences from vertebrates is used to verify our model. We
are able to detect all eight positive selection sites, which were
originally reported using native nucleotide sequences. Our work
shows that although nonsynonymous/synonymous rate ratio is
defined at codon level, it can be used to detect selective pressures
of amino acid sequences by our implicit codon-based model.

I. INTRODUCTION

Inferring selection pressure at individual amino acid sites
provides an important approach for studying the mechanisms
of protein evolution and function [23]. Several methods have
been developed that can detect functional important sites
based on evolutionary conservation [2,7,12,21]. However,
high levels of variability also signify functional importance
[1,9-11,14,17,25]. The presence of such residues experi-
encing positive selection can be inferred from the observation
that the rate of nonsynonymous nucleotide substitution dy
is higher than that of synonymous substitution dg in protein-
coding genes [6,24]. One expects w = dy/dg= 1 if no
Darwinian selection is acting on the DNA sequences; w
< 1 (selection against new mutations) if there is negative
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selection; and w > 1 (selection for new mutations) if there
is positive selection. Since dy/dg ratio is a proxy for the
strength of selection, it can be used to search for regions of
functional importance. For example, Sawyer et al. identified
a small segment of the primate TRIMS« protein that expe-
riences positive selection [18], including those involved in
mutagenesis, confirming the importance of the segment in
species-specific retroviral inhibition. In fact, many proteins
have been detected to be under positive selection, which may
be involved in immunity against viral attacks, reproduction,
and acquirement of new functions after gene duplications
[20].

Although several methods have been developed for detec-
tion of the presence of positive selection [11,19], they are
based on an explicit codon substitution model, and all re-
quires the knowledge of the DNA sequences. This precludes
the application of these methods to remotely related protein
families, where saturated substitutions occur. Pupko et al.
developed a method for detecting positive selection from
amino acid sequences [15]. However, this counting method
is based on the calculation of chemical-distances between
residues, and relies on definitions of conservative and rad-
ical substitution of residues solely on the physicochemical
properties of residues. This approach therefore is subjective,
and may lead to ambiguous conclusions.

In this study, we develop a new model to estimate selection
pressure and to infer adaptive evolution using amino acid
sequences alone as input. Taking a Markovian process as the
model of codon substitution, our method can estimate w =
dpn/dg ratio at individual amino acid sites through an implicit
codon model by translating the amino acid sequences back
into likely codon sequences. We use a Bayesian approach
to estimate our model parameters, including the w ratios [5]
and the probabilities of the usage of individual codons at an
amino acid site.

II. MATERIALS AND METHODS
A. Markov model of codon substitution

We use a reversible continuous time Markov process as
our evolutionary model [3]. We assume mutations occur
at the three codon positions independently, and therefore
only single-nucleotide substitutions to occur instantaneously.
Mutations involving more than one position will have very
small probabilities of occurrence and will be ignored. At
codon level, the states of the Markov process are the set C
of 61 sense codons. The three nonsense (stop) codons are not
considered in the model, as mutations to or from stop codons
can be assumed to affect drastically the structure and function
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of the protein and therefore will rarely survive. We use a
61 x 61 rate matrix @, whose entries ¢;; are substitution
rates of codons at an infinitesimally small time interval.
Specifically, we have: Q@ = {g;;}, where the diagonal
element is ¢; ; = — Zi’#i g;,j so that row sums of @ equal
zero. The codon substitution model specifies the relative
instantaneous substitution rate from codon ¢ to j at one site
is:

0, if ¢+ and j differ at 2 or 3 positions,
T, for synonymous transversion,

gij = § Km;, for synonymous transition,
wm;,  for nonsynonymous transversion,
wkm;, for nonsynonymous transition.

Parameter k is the transition/transversion rate ratio, w is
the nonsynonymous/synonymous rate ratio, and m; is the
stationary frequency of codon j. In this model, x and 7 are
common for all sites, and w = dy/dg ratio vary among sites,

The transition probability matrix of size 61 x 61 after time
tis [8]:

P(t) = {pij(t)} = P(0) exp(Q - 1),

where P(0) = I. Here p;;(t) represents the probability that
codon 4 will mutate into codon j in time interval ¢. To
ensure that the nonsymmetric rate matrix () is diagonalizable
for easy computation of P(t), we follow the reference [22]
and insist that @ takes the form of @ = S - D, where
D is a diagonal matrix who entries are the composition of
codons, and S is a symmetric matrix whose entries need to
be estimated.

B. Codon usage and DNA sequence sampling

Because of the degeneracy of the genetic code, the prob-
lem of generating a reliable nucleotide sequence from an
amino acid sequence of a protein is complex [13]. Since
the amino acid sequence has the same phylogenetic tree as
the native nucleotide sequence, our aim is to find probable
DNA sequences compatible to the amino acid sequences
which can fit the phylogenetic tree well. The probability
of each compatible DNA sequence will be estimated. This
is a more realistic goal than finding the exact native DNA
sequence. For amino acid residue type k, let the number
of synonymous codon for residue k£ be s;. The unequal
usage of the s codons can be modeled by assigning sy
weights wy, -+, wg, . Since they sum to 1, there are s, — 1
free parameters to be estimated. According to the number of
synonymous codon listed in Table I, there are 3 x (6 — 1) +
5x(4-1)+1xB-1D+9x(2-1)+2x(1-1)=41
free codon usage parameters. We use this set of parameters
W = (wq,--- ,wq1) to sample putative DNA sequences that
are compatible to the given amino acid residue sequence.

C. Likelihood function of a fixed phylogeny.

We assume that a reasonably accurate phylogenetic tree
T = (V,€) is given. Here V is the set of nodes, namely, the
union of the set of observed s sequences £ (leaf nodes), and
the set of s — 1 ancestral sequences Z (internal nodes). &

- - VAG ECY,QN
Amino acid | LSR | b | T p e | MW
#synonymous 6 4 3 2 1
codon

TABLE I: Amino acids and the number of synonymous
codon.

is the set of edges of the tree. For an alignment of s codon
sequences of length n, let the vector x;, = (z1,--- ,x4)7
represent the observed codons at position h for the s se-
quences, h ranges from 1 to n. Without loss of generality,
we assume that the root of the phylogenetic tree is an internal
node k. For node k£ and node [ separated by divergence time
txi, the time reversible probability of observing residue xy,
in a position £ at node k and residue z; of the same position
at node [ is:

kapxkxl (tkl) = lepxlxk (tkl)'

Given a set S of s DNA sequences (x1,--- ,x,) translated
from multiple-aligned amino acid sequences of length n
based on proposed codon usage W, the specified topology of
the phylogenetic tree T and the set of edges, the probability
of observing the s number of codons x; at position h is a
sum over all possible codon assignments to the interior nodes
of the phylogenetic tree :

f(xhlwaTa K, UJh,‘Tl') = Tz Z H Pziz; (tl])

i€ (i,j)e€
xiec( J)

Let w = (wy, - ,wy). Assuming independence of the
substitutions among residues, after summing over the set
C of all possible codon types for the internal nodes Z,
the probability of observing multiple-aligned amino acid
sequences is:

f(S|W,T,/-c,w,7'r) = f(wla’ o ,$n|W,T,KJ,w,ﬂ')
n
= H flepa W, T, k,w, ).
h=1
To detect positive selection, we follow the “M3” model of
Yang et al. (2000) [24]. There are three categories of the
nonsynonymous/synonymous rate ratio w at each site. Let the
proportions of codon sites in the different categories at a site
be pi1, p2, and p3, where p1 +p2 +p3 = 1, and let the corre-
sponding w be w; < wa < ws. Categories with w > 1 model
sites under positive selection. Let p; = (P11, - ,P1.n)
P> = (P21, "+ ,P2n), and p3 = (P31, -+ ,P3.n), and
denote p = (p;, Py, P3). The probability of observing data
S is:
f(S|W,T,/$,7'r,w,p) =

n 3 (1)
11 (Z f(Sh |W7T7/€,777wKi,Ki)pKi> ;

h=1 \K;=1

where K; is the selection category at position h and 7 is the
stationary frequency of codon. This can be used to calculate
the log-likelihood function ¢ = log f(SW, T, k, 7, w, ).
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When the tree is given and 7 is fixed to the empirical
frequencies in the sampled DNA sequences, this model
only has 47 parameters. Among these, w1, w2, ws, p1, P2 are
the 5 site-specific parameters to be estimated, k is a site-
independent parameter, and WV contains 41 parameters. We
use 6 to denote all these parameters that need to be estimated.

D. Bayesian estimation

Our goal is to estimate the values of the free parameters.
Here we adopt a Bayesian approach, where parameter esti-
mates are obtained from samples drawn from the posterior
probability distribution of the parameter.

We use a prior distribution 7(6) to encode our past
knowledge of the free parameters. We then describe
btheta by a posterior distribution 7(60|S), which summarizes
prior information available on
btheta and the information contained in the observations &
of multiple sequence alignment.

After integrating the prior information 7(6) and the like-
lihood function f(S|6,T) (Eqn 1), the posterior distribution
7(0]S,T) can be estimated up to a constant as:

7(0]S,T) / £(816,T) - 7(8)do.

Our goal is to estimate the posterior means of parameters
in 6:
E.(0) = /0 -m(0|S,T)do.

E. Prior distribution

We choose “noninformative” priors that have the smallest
effect on the results of the analysis. For ratio parameters «,
the prior is taken as a beta distribution B(k;a = 1.0,8 =
1.0). The other ratio parameters wy , wo and w3 are also drawn
from the beta distribution B(x;a = 1.0, 5 = 1.0).

The family of Dirichlet distributions is the obvious choice
for specifying priors of codon usage V. Dirichlet priors
assign densities to groups of parameters that measure pro-
portions (i.e., parameters that must sum to 1). For a specific
amino acid type k, the Dirichlet prior of codon usage
w(wy, - ,ws,) = Dir(wy,- - ,ws |ar, - ,as,) has sg
parameters, each corresponds to the relative frequencies of
one synonymous codon. We use uniform Dirichlet priors by
setting all o; to 1.0, which means that every combination of
the parameters is assigned the same prior density. The prior
distribution 7(p1, p2, p3) for the selection category of w fre-
quencies is similarly taken as Dir(py, p2, p3|aa, s, alphas),
with the assignment of a; = as = az = 1.0.

F. Positively selected sites

In this work, we follow an approach similar to Huelsen-
beck and Dyer 2004 [5] and take the advantage of a full
Bayesian approach to determine the probability that each
amino acid site is under positive selection. Assume that
wk;=3 > 1.0. The probability that the i-th codon site is
in positive class K; = 3 is obtained by integrating over all
possible combinations of transition/transversion rate ratios,
nonsynonymous/synonymous rate ratios and codon usage.

The likelihood of each site is calculated under several three
w values and then the values are summed to give the
site likelihood. The posterior probability of the site being
positively selected is the proportion of this sum originating
from categories that are positively selected ( w> 1).

F(SIK; = 3)ps
Yo F(SIK: = j)p

f(K;=3|8) =

Sites at which this probability is larger than a threshold
value (say, 90, 95, or 99%) are identified as potentially under
positive selection.

G. Markov Chain Monte Carlo

Since it is impossible to directly integrate the marginal
distributions for posterior probability calculation, we run a
Markov chain to generate samples drawn from the target
distribution 7(0|S,T). Starting from 6; at time ¢, we gen-
erate a new 6, using the proposal function: T(6;, 0;11).
The proposed new matrix 8,1 will be either accepted or
rejected, depending on the outcome of an acceptance rule
r(04,0:+1). Equivalently, we have:

0t+1 = A(9t79t+1) = T(9t7 0t+1) 'T(0t79t+1)'

To ensure that the Markov chain will reach stationary state,
we need to satisfy the requirement of detailed balance, i.e.,

7(0:|S,T) - A(Oy,0141) = m(0141|S, T) - A(0r41, 01).

This is achieved by using the Metropolis-Hastings acceptance
ratio r(6¢,60:11) to either accept or reject 01, depending
on whether the following inequality holds:

T(0141|S, T) - T(6141,0:)
77(0t|S,T) -T(Bt,Ht_H) ’

u < 7(0;,0:41) = min{1,

where u is a random number drawn from the uniform
distribution /[0, 1]. With the assumption that the underlying
Markov process is ergodic, irreducible, and aperiodic, a
Markov chain generated following these rules will reach the
stationary state [16].

We collect m correlated samples of the @ matrix after the
Markov chain has reached its stationary state. The posterior
means of the rate matrix are then estimated as:

=1

In this paper, the state space of this Markov chain includes
transition/transversion rate ratios k, codon usage parameters
W, probabilities of being in three selection classes and w
values for those selection classes. The chain is constructed
by randomly selecting a parameter, proposing a new state for
the parameter, and deciding whether the new state is accepted
or rejected.
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H. Move set

The move set determines the proposal function, which
is critical for the rapid convergency of a Markov chain.
For parameters w;, we and ws, they were initially set to
0.1, 1.0, and 3.0, respectively. Their current values were
changed by adding or subtracting with equal probability a
random value drawn uniformly from intervals of widths, 0.1,
0.5 and 1.0, respectively. If the proposed new value wf“
for current wf is outside of the range of allowed values,
lwitt — w!| is added/substracted to w! so the new value
is within the valid range (107° < w; < 0.1, 0.1<ws<3,
1<ws< 10%). The k parameter was initialized to 1.0, then
took new value as a ratio of two random variables, which
sum up to one and are drawn from beta distribution. The
valid range is between 0.001 and 1000. For the probabil-
ities of belonging to one of the three classes (p1,p2,ps),
the new values (p’i“,pé“,pgﬂ) are also sampled
from a Dirichlet distribution Dir((p1,p2,ps|ar, @, as),
where «; is set to pi/>,pt. Similarly, the parameters
WHL = (wit, .- wttl) for codon usage are drawn
from Dir(wy,--- ,ws, |oq, - ,as,) , where «; is set to
w!/ >, wi. Since the sampling space of codon usage is much
larger than that of other model parameters, we assigned 65%
of the moves for changes in W, and 35% of the moves for all
other model parameters. We assume residues in sequences
belonging to the same species are likely to adopt similar
codon usage, we constrain that amino acids in one sequence
has the same codon usage. This improves the mixing of the
Markov process. Further improvement can be obtained by
assigning initial values of codon usage parameters YV based
on statistics of codon frequency in genomic sequences.

1. Dataset

We use a dataset of 17 (-globin sequences from ver-
tebrate species. Each sequence contains 144 amino acids.
Protein sequences were translated from the dataset which
was originally collected by Yang et al. [24,26] from the
EMBL and GenBank databases. Phylogenetic tree was built
by ProML [4], which implements a maximum likelihood
estimator for protein amino acid sequences. To reduce the
computational complexity, we fix the phylogenetic tree dur-
ing entire Markov process. The amino acid sequences used
here is available at (http://gila.bioengr.uic.edu
/lab/dataset/beta-globin.fasta).

III. RESULTS

This method was implemented in C, and part of the
data structure, functions for matrix operation and statistical
distributions were adapted from the program MrBayes v3.1
[5]. Multiple amino acid sequences alignment of [-globin
sequences and the phylogenetic tree were used as input,
and the algorithm was run with different number of Markov
moves ranging form 10,000 to 400,000. Samples were taken
for every 100th moves. The first 200,000 samples were
discarded as the chain is still in the “burning-in” period.
In this study, we only collect samples if there are positively
selected sites with posterior probability > 0. Figure 1 shows

the log probability of observing the data for each sampled
state at different time steps. The chain was started with a
fixed tree and branch lengths. The likelihood of the initial
state is poor, and the chain quickly found parameters that
could explain the data better. After about 225,000 steps, a
plateau in the log likelihood is reached. The probabilities
that each site was under the three different types of selection
pressure were calculated for each sample. Figure 2 shows the
average posterior probability of individual site under positive
selection. When the threshold for the posterior probability
is set to 99.9%, the detected positively selected sites are
completely in agreement with results of Yang et al, which
were derived from native nucleotide sequences (Table II).
We also test protein sequences of HIV-1 env V3 region.
The DNA sequences were analyzed by Yang et al. (2000)
and sites 28, 66, and 87 are identified as under positive
selection pressure with high posterior probability. Among
these, our method detected site 28 to be under significant
positive selection pressure (p>98%), and site 66 under weak
positive selection pressure.
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Fig. 1: The log likelihood of the current state over the
course of the MCMC analysis.
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Fig. 2: The average posterior probability of each site
being in the positively selected class
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. Average Posterior Probability
Site MCMC(100,000 Samples) | MCMC(400,000 Samples)
w7 0.996870 0.999973
#42 0.999477 0.999979
#48 0.999562 0.999830
#50) 0.999998 0.999990
#54 0.973350 0.999897
67 0.999987 0.999521
70 0.977635 0.006991
74 0.897890 0.251067
#85 0.993659 0.999806
87 0.999981 0.333273
110 0.597621 0.355364
#123 0.999434 0.999060

TABLE II: Positively selected sites with high average
posterior probability.

IV. CONCLUSION

Studying the evolutionary history of proteins is an essential
task. A powerful method for detecting selection pressure is
considering the ratio of synonymous and non-synonymous
substitutions. However, the applicability of this method is
limited, as it cannot be applied to remotely related proteins
when saturated substitutions occur. In addition, it requires
the availability of DNA sequences, which are often difficulty
to obtain in practice. Currently, no method is available that
detects selection pressure based on this ratio using amino
acid sequences alone. In the current work, we have developed
an implicit codon model to infer positive selections directly
form amino acid sequences at relative high accuracy level.
Our method generates possible underlying DNA sequences
from known protein sequences. For a given amino acid
sequence set and a phylogenetic tree, a reversible continuous
time Markov process was used as the evolutionary model at
the amino acid level. Data set of §-globin sequences from
vertebrates was used to verify our method. We are able to
detect all of the eight residue sites known to experience
positive selection, which were originally derived from native
nucleotide sequences by Yang et al. For this test, our model
is as effective as the traditional DNA sequence based method,
but with the promise of much wider applicability. This work
opens a new way to detect selection pressure by examining
directly protein sequences, which are far easier to obtain than
DNA sequences. Although the rate ratio of nonsynonymous
and synonymous substitution is defined at codon level, our
work showed that it can be generalized for detecting selective
pressures using amino acid residues sequences by applying
our Bayesian Monte Carlo method on an implicit codon-
based model.
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