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Abstract— Stochasticity plays central role in molecular
networks of small copy numbers, including those im-
portant in protein synthesis and gene regulation. The
combination of copy numbers of molecular species defines
the microscopic state of molecular interactions. With this
formulation, nonlinear reactions can be effectively modeled
through chemical master equations. However, currently
little is known about the state space associated with
stochastic networks, other than the defeatist admission
that it is exponentially large. There is neither closed-form
solution nor computational algorithm that can effectively
characterize the state space of molecular networks. Such
a characterization is a prerequisite for directly solving the
chemical master equation. In this study, we describe an
algorithm that can exhaustively characterize all possible
states of a molecular networks with small copy numbers
of species for a given initial condition. Our algorithm works
for networks of arbitrary stoichiometry, and is optimal in
both storage and time complexity. It allows the approach
of solving chemical master equation to be applicable to
a larger class of stochastic molecular networks. We show
an example of application of our method to the MAPK
cascade network.

I. INTRODUCTION

Networks of interacting biomolecules are at the heart

of the regulation of cellular processes. The temporal

dynamics of molecular networks are often modeled using

coupled ordinary differential equations (ODEs) based

on macroscopic reaction rates. These models can effec-

tively account for behavior of average concentrations of

molecules, and have found wide applications in networks

where concentrations of interacting molecules are large,

and fluctuations are negligible.

However, there are many situations where proteins and

mRNAs in a cell have low copy numbers. For example,

the regulation of transcriptions depends on the binding of

a single protein to a promoter site. The synthesis of pro-

tein peptides on ribosome also involve small copy num-

bers of molecular species. In such biological processes

where nanomolar concentrations of molecules interact,
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fluctuations due to the stochastic behavior intrinsic in

low copy number events play important and essential

roles [3]. For these processes, ODEs are inappropriate

and stochasticity needs to be considered.

The importance of stochasticity in cellular functions

is well recognized. Studies of simple genetic switches

and cascade models show that stochasticity plays central

roles in magnifying signal, sharpening discrimination,

and in inducing bistability [1, 6–8]. Noise is also found

to actively facilitate molecular communication in cells.

Therefore, understanding the stochastic nature and its

consequences of cellular processes involving molecular

species of small copy numbers is a fundamental problem

in studying molecular networks.

The chemical master equation provides the framework

that account for full stochasticity. By treating micro-

scopic states of reactants explicitly, this formulation can

model non-linear reactions effectively. The challenging

problem is to study a realistic system beyond simple

toggles and switches that involve a nontrivial number

of species. To approximate the master equation, Fokker-

Planck or Langevin equations can be obtained by adding

Gaussian stochastic terms to a deterministic equation.

Although they do not account for full stochasticity, they

are applicable when a modest number of molecules

are involved. A different approach is not to solve the

master equation directly, but to carry out Monte Carlo

simulations using the Gillespie algorithm [2, 7]. This

approach has found wide applications, although it cannot

guarantee an account of full stochasticity. It is also chal-

lenging to sample adequately when the network becomes

complex. As a single simulation follows high probability

path, this method is not efficient to explore rare events.

It is also difficult to determine whether a simulation is

extensive enough to obtain accurate statistics.

Another approach is to solve the chemical master

equation directly. This approach can account for full

stochasticity in small copy number events. However,

a critical issue is the lack of efficient computational

methods. A challenging problem is that a method real-

istic, and detailed enumeration and characterization of

the state space of molecular interactions is currently

lacking. Here the combination of the copy numbers

of all molecular species define a state of the reaction

system. Since the state space is usually thought to be
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exponentially large, the application of directly solving

the chemical master equations is precluded for many

realistic systems. In this paper, we study the problem

of enumerating the state space of networks of molecular

interactions.

Several routes can be followed to enumerate and

characterize the state space of molecular networks. One

obvious route is through simulation. In the spirit of the

Gillespie algorithm [2], one simply follows explicitly

simulated reaction events to whatever state of copy num-

bers one reaches. However, although one often reaches

the most frequented states, this approach cannot guaran-

tee that all important reachable states will be explored,

therefore cannot guarantee the full characterization of

rare events.

Another simple route is to predefine the maximum

copy number of the reactants. The state space will then

be bounded by the product of a maximum number. The

size of state spaces produced with this method will be

inflated and will be enormous. For example, if there are

10 species, and there is a total maximum of 6 molecules

at any time in the system. This naive method will not

take into consideration of the details of the network,

and the state space will have (6)10 = 60, 466, 176 ≈
6.05 × 107 states, as we cannot rule out a priori the

possibility that any species at some time may reach the

maximum copy number of 6. This method is intrinsically

inefficient. First, there may be many states which may

never be visited. For some states, no reactions may occur

and therefore are not needed. For others, no reactions can

lead to them. With this approach, the size of the state

space rapidly becomes unnecessarily the bottleneck for

computation. As a result, one can only study a very small

network with small copy numbers of molecular species.

In this study, we address the problem of defining

the state space of reactions involving a small copy

number of molecular species in a molecular network.

We describe an optimal algorithm that gives description

of the state space and the set of transitions optimal

in both space and time complexity. That is, all states

reachable from an initial condition will be accounted

for, and no irrelevant states will be included. All possible

transitions will be recorded, and no infeasible transitions

will be encountered. As a result, the state-transition

matrix used in formulating a chemical master equation

obtained by this algorithm is compact and efficient, with

no redundant information, and is of the minimal size. In

addition, the computational time is also optimal up to a

constant.
II. METHODS

A. The Algorithm

Suppose we have a biological model, which contains

m molecular species and can have n reactions. Given an

initial condition, namely, the copy numbers of each of

the m molecular species, we aim to calculate all states

that the biological system can reach starting from this

initial condition. These states collectively constitute the

state space of the network under this initial condition.

Formally, we have a biological model M = (S, R),
with m number of molecular species: S = (S1, . . . Sm),
whose copy numbers is specified as S1, . . ., and Sm,

and n reactions: R = {Ri|i = 1, . . . , n}. Here an

reaction can involve an arbitrary number (≥ 1 and

≤ m) of molecular species, with any arbitrary nonzero

positive integer coefficient (i.e., arbitrary stoichiometry).

The state space X is X = {S}, namely, the set of

m-tuples of copy numbers for each of the m molecular

species. The set of allowed transitions are T = {tij}.

We are given with an initial condition: S
t=0 = (S0

1
=

s1, S
0

2 = s2, . . . , S
0

m = sm), where si is the initial copy

number of the i-th molecular species at time t = 0.

The algorithm is written as Algorithm 1.

Algorithm 1 State Enumerator

Biological model M ← (S, R);
Initial condition: S

t=0 ← (s1, s2, . . . , sm)
Initialize the state space: X ← ∅;
Initialize the set of transitions: T ← ∅;
Stack ST ← ∅; Push(ST, S0);
while ST 6= ∅ do

Si ← Pop(ST );
for j = 1 to n do

if reaction Rj occur under condition Si then
generate state Si+R(j) that is reached by following
reaction Rj from Si;
if ti,i+R(j) /∈ T then

T ← T ∪ ti,i+R(j);
end if

end if
if (Si+R(j) /∈ X) then

X ←X ∪ Si+R(j);
Push(ST, Si+R(j))

end if
end for

end while
Output X and T .

The algorithm performs the following computation.

After initialization, we start with the initial state S
t=0.

We examine each reaction in turn to determine if this

reaction can occur for this state. If so, we generate the

state that this reaction leads to. If it was not encountered

before, we add it to our collection of states for the state

space, and declare this as a new state. We repeat this

for all new states, which is maintained by a stack data

structure. The algorithm terminates when all new states

are exhausted.

B. Correctness and Optimality

The algorithm will terminate. The state space and

the transitions under a given initial condition can be

considered as a directed graph G = (S, T ), in which
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vertices are the state vectors, i.e., the set of reachable

states S, or the m-tuples of copy numbers of the m

molecular species. Edges are the set of allowed tran-

sitions T between the states, i.e., reactions connecting

two state vertices: Two vertices si ∈ S and sj ∈ S are

connected by a directed edge ti,j ∈ T if and only if si

can be transformed to sj through a reaction Rk ∈ R.

Any reachable state can be transformed from the initial

state by one or more steps of reactions, and the directed

graph G is a connected graph.

Our algorithm implicitly generates this graph G. As-

sume the algorithm will not terminate in finite number

of steps. Because the set of reactions R is finite, G has

a limited tree-width at any steps away from the initial

condition. Then G must have an unlimited depth. That

is, there must exist a path p in the graph G that start

from the initial state and extend to infinite. According

to the algorithm, each state in the path p only appears

once. Therefore, p must contain an infinite number of

different states. However, this is impossible for a given

initial condition, as each molecular species has a limited

copy number, and the atomic mass is conserved in the

system. We conclude that the algorithm will terminate.

The algorithm gives correct answers, because all states

visited can be reached from the initial condition, and all

visited states is actually reached as each is brought to by

a chemical reaction, except the trivial case of the initial

state. In addition, all reachable states will be visited, as

the algorithm test at each state all possible reactions, and

will only terminates when all new states are exhausted.

It is easy to see all possible transitions between states

will be recorded.

The time complexity of our algorithm is optimal.

Since only unseen state will be pushed onto the stack,

every state is pushed and popped at most once. As access

of each state and push/pop operations take O(1) time,

the total time required for the stack operations is O(|S|).
As the algorithm examines each of the n reaction for

each reached state, the complexity of total time required

is O(n|S|), where n is usually a small constant (e.g.

< 50).

Using the same reasoning, it is also easy to see that

the algorithm is optimal in storage, as only valid states

and transitions are recorded. It is also optimal in time

complexity, as each state will be generated/visited at

most twice before it is popped from the stack.

C. Molecular network model.

We apply our algorithm to the MAPK cascade

model (BIOMD28 in BioModels database at EBI

(http://www.ebi.ac.uk/biomodels) [5]. The

SBML (Systems Biology Markup Language) model file

is parsed and the molecular species and reactions are ex-

tracted. This network contains 16 molecular species with

17 reactions [5]. Abbreviations used in this model are

listed in Table I. Fig 1 shows the topology of the model.

All 16 molecular species are labeled with numbers from

1 to 16. MEK and MKP3 are the key enzymes catalyzing

phosphorylation and dephosphorylation reactions in this

network. The rest of the molecular species are substrates,

intermediates, and products of MEK and MKP3 induced

reactions. Most of the reactions in this model (14 of 17)

are second-order.

III. RESULTS

a) Simple initial conditions: We generated the state

spaces of the MAPK cascade for different initial condi-

tions and record their sizes. In the first set of calculations,

we increase the copy number for one species from 1 to

20, and record the size of resulting state space, while

keeping the copy numbers of all other species to 0. We

repeat this process for each of the 16 molecular species

in turn. Altogether, we have 16×20 = 320 data points of

size of state space. In Fig 2, the x-axis lists the labels of

the 16 molecular species, the y-axis the copy number of

each species taken in turn, and the z-axis the computed

size of the state spaces.

It is clear that different molecular species in this model

affect the size of the state space differently. Increasing

the copy number of M-MEK-Y, M-MEK-T, and Mpp-

MKP3 molecules (species 9, 10 and 11) lead to large

state spaces (size 888, 030 at 20 copies), while the initial

conditions of 20 copies of any other species result in

modest state spaces. For example, species 7, 8, 15 and

16 when given 20 copies have a state-space size of 231.

For species 1-6, no reactions can occur at these initial

conditions, and the state space contains only the the

initial state.

The computing time increases with the copy number,

but the state space for each of the 320 initial conditions

can be computed within one minute. We found that when

any of S9, S10, or S11 has an initial copy of 28 and

all others 0 copies, namely, with 28 copies of one of

these molecular species initially in the network, the state

spaces increases to 6,724,520, and the computing time

also increase, although all can be computed within 10

minutes on a Linux workstation.

Fig. 1. Illustration of the model BIOMD28, labeled with species
number.
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TABLE I

ABBREVIATIONS USED IN BIOMD28 NETWORK.

# Abbreviation Description

1 M ERK, extracellular signal-regulated kinase

2 MpY ERK with Y phosphorylated

3 MpT ERK with T phosphorylated

4 Mpp ERK with dual phosphorylated

5 MEK ERK kinase

6 MKP3 ERK phosphatase

7 MpY MEK Binding of MpY and MEK

8 MpT MEK Binding of MpT and MEK

9 M MEK Y Binding of M and MEK at Y site

10 M MEK T Binding of M and MEK at T site

11 Mpp MKP3 Binding of Mpp and MKP3

12 MpY MKP3 Binding of MpY and MKP3

13 MpT MKP3 Y Binding of MpT and MKP3 at Y

14 MpT MKP3 T Binding of MpT and MKP3 at T

15 M MKP3 T Binding of M and MKP3 at T site

16 M MKP3 Y Binding of M and MKP3 at Y site

b) Biological initial conditions: We further test

biologically more reasonable initial conditions, in which

species M, MEK and MKP3 are all given an equal

number of i copies, while all the other species start

with zero copies. We increase i from 1 to only 11 due

to the limitation of our linux workstation. These initial

conditions correspond to a total of 3 × 1 = 3 copies to

3× 11 = 33 copies of molecules of three species in the

network. The results are shown in Table II.

IV. DISCUSSION

Stochasticity plays important roles in molecular net-

works for processes involving small copy numbers of

molecular species. By considering the state space of the

combination of copy numbers of all molecular species,

stochasticity and nonlinearity of molecular networks can

be studied in details by directly solving the chemical

master equation.

A prerequisite for studying full stochasticity by solv-

ing master equation is a full and accurate characteriza-

tion of the state space of molecular networks. Such a

characterization can also provide the basis for a global

probabilistic picture of the nature of molecular interac-

tions at low copy numbers.

We have developed in this work an algorithm to

enumerate the state space of chemical master equation

that is optimal in storage and time. It can also find all

Fig. 2. Sizes of state spaces for a model of the MAPK cascades
under the initial condition of 1 to 20 copies of each of the 16

species and 0 other species. Altogether the size of state space
for 16× 20 = 320 initial conditions are shown here.

TABLE II

SIZE OF STATE SPACES WITH DIFFERENT M, MEK AND MKP3

COPY NUMBERS.

M MEK MKP3 Sizes of state spaces

1 1 1 14
2 2 2 105
3 3 3 560
4 4 4 2,380
5 5 5 8,568
6 6 6 27,132
7 7 7 77,520
8 8 8 203,490
9 9 9 497,420
10 10 10 1,144,066
11 11 11 2,496,144

possible transitions between states, and can be further

used to compute transition rates. We show it can generate

the full state space for selected initial conditions of

MAPK cascade, a network of nontrivial size that is far

beyond toggles and switches usually studied for full

stochasticity using master equation.

In general, the state space of molecular networks

is necessarily large, but our work shows that with an

optimal algorithm, and perhaps with judicious choice

of biologically motivated initial conditions, the state

space of many networks can be fully characterized, and

perhaps the full stochasticity can also be studied by

solving the chemical master equation using techniques

such as in [4] for a wide class of molecular networks.
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