
Statistical geometry of lattice chain polymers with voids of defined shapes:
Sampling with strong constraints

Ming Lin,1 Rong Chen,1,2 and Jie Liang2,a�

1Department of Information & Decision Science, University of Illinois at Chicago, 845 S. Morgan St.,
Chicago, Illinois 60607, USA
2Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago,
Illinois 60607, USA

�Received 24 October 2007; accepted 13 December 2007; published online 28 February 2008�

Proteins contain many voids, which are unfilled spaces enclosed in the interior. A few of them have
shapes compatible to ligands and substrates and are important for protein functions. An important
general question is how the need for maintaining functional voids is influenced by, and affects other
aspects of proteins structures and properties �e.g., protein folding stability, kinetic accessibility, and
evolution selection pressure�. In this paper, we examine in detail the effects of maintaining voids of
different shapes and sizes using two-dimensional lattice models. We study the propensity for
conformations to form a void of specific shape, which is related to the entropic cost of void
maintenance. We also study the location that voids of a specific shape and size tend to form, and the
influence of compactness on the formation of such voids. As enumeration is infeasible for long chain
polymer, a key development in this work is the design of a novel sequential Monte Carlo strategy
for generating large number of sample conformations under very constraining restrictions. Our
method is validated by comparing results obtained from sampling and from enumeration for short
polymer chains. We succeeded in accurate estimation of entropic cost of void maintenance, with and
without an increasing number of restrictive conditions, such as loops forming the wall of void with
fixed length, with additionally fixed starting position in the sequence. Additionally, we have
identified the key structural properties of voids that are important in determining the entropic cost
of void formation. We have further developed a parametric model to predict quantitatively void
entropy. Our model is highly effective, and these results indicate that voids representing functional
sites can be used as an improved model for studying the evolution of protein functions and how
protein function relates to protein stability. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2831905�

I. INTRODUCTION

Proteins are the working molecules of cell. Understand-
ing how they maintain their stability and carry out their func-
tions is a fundamental problem of molecular biology. Al-
though it is well known that the structures of proteins are
well packed,1–3 there exist numerous packing defects in the
form of voids buried in the interior of proteins. The size
distributions of these voids are broad.4 Various scaling rela-
tionships indicate that their origin may be generic steric con-
straints of compact chain polymers.4,5 It is also well known
that a few voids on a protein may play key roles in enabling
protein functions,6–9 for example, for substrate and ligand
binding.

However, the shape space of voids of folded and un-
folded proteins is not well characterized, and the energetic
consequences and the kinetic effects by maintaining voids of
certain shape and size are largely unknown. In this paper, we
examine in detail the effects of maintaining voids of different
shapes in lattice models of chain polymers. Lattice models
have been widely used for studying protein folding, where

the conformational space of simplified polymers can be ex-
amined in detail.10–18 Despite its simplistic nature, lattice
model has provided important insights about proteins, in-
cluding collapse and folding transitions,16,19–23 influence of
packing on secondary structure and void formation,11,12,24,25

the evolution of protein function,26,27 nascent chain folding,18

and the effects of chirality and side chains.25

In this paper, we focus on conformations that enclose
voids of specific shapes. Our main objective is to study the
fraction of conformations with a specific void shape among
all possible conformations. This is related to the entropic cost
of maintaining such a void in a polymer structure. We also
study the location that voids of a specific shape and size tend
to form, and the influence of compactness on the formation
of such voids. The methodology we use is the sequential
Monte Carlo �SMC� approach designed for sampling confor-
mations under strong constraints, i.e., the requirement of the
existence of specific types of voids. SMC is a growth-based
method, in which residues are added to the chain polymer
one by one until the conformation of full length is obtained.
This method is first used in Ref. 28 to estimate the average
extension of molecular chains. The basic goal is to obtain a
set of conformational samples, along with the probabilities of
generating these conformations. Compared with other sam-
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pling methods, such as Markov chain Monte Carlo,29–31 se-
quential Monte Carlo can generate diverse samples and can
directly estimate the number of conformations containing
voids of specific shapes accurately. In this study, we develop
several new strategies to improve the effectiveness of se-
quential Monte Carlo in generating samples under strongly
constrained conditions.

Our paper is organized as follows. In Sec. II, we describe
briefly the lattice model and define void and shape of voids.
We then discuss the constrained sequential Monte Carlo
method used in our study. Results are presented in Sec. III.
The final section contains the summary and conclusion.

II. METHOD

A. Lattice model

In lattice models, chain polymers are self-avoiding walks
�SAWs� in the square lattice space Z2. A length n conforma-
tion is denoted by a connected chain Xn= �x1 ,x2 , . . . ,xn�,
where the ith monomer is located at the site xi= �ai ,bi�,
where ai and bi are integers. The Manhattan distance be-
tween bonded monomers xi and xi+1 is 1. The chain is self-
avoiding: xi�xj for all i� j. We consider the beginning and
the end of a polymer to be distinct. Only conformations that
are not related by translation, rotation, and reflection are con-
sidered to be distinct. This is achieved by following the rule
that a chain is always grown from the origin, the first step is
always to the right, and the chain always goes up at the first
time it deviates from the x axis. We denote the set of all
length n SAW polymers satisfying these constraints as Pn.

B. Voids and shape of voids

Given the conformation Xn�Pn of a chain polymer, the
unoccupied sites on the square lattice are divided by the
polymer into disconnected components,

Z2 \ Xn = u � v1 ¯ � vk,

where u is the outside component that connects to infinity,
and v1 , . . . ,vk are the voids that are enclosed by Xn. Here,
two components are considered connected if they share any
edges or vertices. By this definition, conformations �a� and
�b� in Fig. 1 both have a size-2 void, but conformation �c�
does not contain any void, since the internal two unoccupied
points are connected to the outside through a vertex. This
definition of void is arbitrary, but is consistent with the defi-
nition of contact for monomers in a chain, that is, only if two
sites in a void shares an edge, they are considered to be
connected.24

We are interested in the set of conformations with voids
of a particular shape S. Figure 2 shows some of those shapes
of sizes of 2–6. Note that those shapes are regular shapes, in
which sites are connected by edges. In this study we do not
consider shapes with sites connected by a vertex only, such
as the size-2 void formed by conformation �b� in Fig. 1.
Here, the voids are labeled by their shapes, where the first
digit represents the number of sites the void occupies, and
the second digit is the identification number of different
shapes.

C. Parameters of interest

To study the properties of conformations with specific
shaped, we consider the following parameters.

1. Propensity of void formation f1„S ,n…

Let �n�S� be the set of conformations with at least one
void of a specific shape S, that is,

�n�S� = �Xn�Xn

� Pn,Xn has at least one void of shape S� .

The fraction of conformations with void of this particular
shape S among all possible conformations is

FIG. 1. Conformations in square lattice model. �a� This conformation also
contains a size-2 void. �b� This conformation also contains a size-2 void. �c�
This conformation does not contain any void.
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f1�S,n� =
N�S,n�
Nall�n�

=
�Xn��n�S�1

�Xn�Pn
1

. �1�

This parameter represents the propensity of void formation,
i.e., the probability of forming a void of specified shape. This
relates to the question whether there are preferred shapes for
binding voids to occur.

2. Propensity of void formation with fixed loop length
f2„l ,S ,n…

The loop length of a void is defined as l= I1− I0+1,
where I0 and I1 are the smallest and largest indices of the
monomers forming the boundary of the void. Let
�n�l ,S���n�S� be the set of length n conformations with at
least one void of shape S of loop length l. The fraction of
conformations with void of a particular shape S and a par-
ticular void loop length l among all conformations with a
void of the same shape but without the restriction of void
loop length is defined as

f2�l,S,n� =
N�l,S,n�
N�S,n�

=
�Xn��n�l,S���Xn,l,S�/K�Xn,S�

�Xn��n�S�1
, �2�

where K�Xn ,S� is the number of shape-S voids in Xn,
��Xn , l ,S� is the number of shape-S voids with loop length l
in Xn. This special treatment on N�l ,S ,n� is to deal with the
cases when Xn has multiple voids of shape S. In such cases,
Xn is counted once in N�S ,n�, and counted 1 /K�Xn ,S� in
N�l ,S ,n� for each combination of shape-S void and loop
length l. For example, if conformation Xn has two voids of
shape S, then K�Xn ,S�=2. If both voids have loop length l
=14, then ��Xn , l=14,S�=2 and this conformation contrib-
utes 1 to N�l=14,S ,n�; if one void has loop length l=14 and
the other void has loop length l=16, then this conformation
contributes 1 /2 to N�l=14,S ,n� and 1 /2 to N�l=16,S ,n�.
Clearly, with this definition, we have

�
l

N�l,S,n� = N�S,n� .

The parameter f2�l ,s ,n� represents the propensity of
void formation with fixed loop length, i.e., the probability of
forming a void of specified shape with fixed void loop

length. In protein, a related interesting question is how easier
it is to form certain types of voids in shape and size with
more local compared to with more global sequence frag-
ments.

3. Propensity of void formation with fixed loop length
and starting position f3„I0 , l ,S ,n…

Let �n�I0 , l ,S���n�l ,S� be the set of length n confor-
mations with at least one void of shape S, loop length l, and
starting at residue position I0. The fraction of conformations
with void of a particular shape S, a particular loop length l,
and a particular starting residue I0 among the conformations
with a void of the same shape and the same loop length32,12

is defined as

f3�I0,l,S,n� =
N�I0,l,S,n�

N�l,S,n�

=
�Xn��n�I0,l,S���Xn,I0,l,S�/K�Xn,S�

�Xn��n�l,S���Xn,l,S�/K�Xn,S�
, �3�

where ��Xn , I0 , l ,S� is the number of shape-S voids with loop
length l and starting residue I0 in Xn. Similarly, this definition
ensures that

�
I0

N�I0,l,S,n� = N�l,S,n� .

The parameter f3�I0 , I ,S ,n� represents the propensity of
void formation with fixed loop length and starting position,
i.e., the probability of forming a void of specified shape with
fixed void loop length starting at a specific position. A related
question in protein is what is the propensity of forming voids
of certain shape with more local or more global sequence
fragments starting at specific positions of the chain.

4. Propensity of void formation at specific
compactness f4„� ,S ,n…

The compactness of a polymer � is defined as
t / tmax�n�,11 where t is the number of contacts in the confor-
mation, and tmax�n� is maximum number of contacts possible
for length n conformations. For square lattice space, we
have11

tmax�n� = 	n − 2b , if b2 � n � b�b + 1�
n − 2b − 1, if b�b + 1� � n � �b + 1�2,



where b is a positive integer. Let �n����Pn be the set of
length n conformations with compactness � and
�n�� ,S���n��� be the set of length n conformations with at
least one void of shape S and compactness �. The fraction of
conformations of a particular compactness � with void of a
particular shape S among all conformations with the same
compactness � is defined as

f4��,S,n� =
N��,S,n�
N��,n�

=
�Xn��n��,S�1

�Xn��n���1
. �4�

This parameter represents the propensity of void formation

FIG. 2. Regular shapes of voids of different sizes. Here, the first digit
represents the number of sites the void occupies, and the second digit is the
identification number for different shapes. All possible shapes for voids up
to size 4 are listed. Several samples for voids of sizes 5 and 6 are also listed.

084903-3 Voids of defined shape in lattice J. Chem. Phys. 128, 084903 �2008�

Downloaded 13 Sep 2008 to 128.248.155.225. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



with certain compactness, i.e., the probability of forming a
void of specified shape for length n chain polymers at a fixed
compactness.

D. Estimating void parameters using sequential
Monte Carlo

Exhaustive enumeration can be used to calculate the pro-
pensities defined above, but is only applicable to very short
polymer chains. For longer chain, we use a modified version
of the SMC method.

All the parameters described above are fractions, where
the corresponding numerators and denominators N�S ,n�,
N�l ,S ,n�, N�I0 , l ,S ,n�, and N�� ,S ,n� can be written in the
form of

�
Xn��n�S�

h�Xn� , �5�

where h�·� is a function of conformation Xn. Specifically, we
have

h�Xn� = 1 for N�S,n�;

h�Xn� = I�n�l,S��Xn�
��Xn,l,S�
K�Xn,S�

, for N�l,S,n�;

h�Xn� = I�n�I0,l,S��Xn�
��Xn,I0,l,S�

K�Xn,S�
, for N�I0,l,S,n�;

h�Xn� = I�n��,S��Xn�, for N��,S,n� ,

where I�n
�Xn� is the indicator function, I��Xn�=1 if Xn is in

set �n, I��Xn�=0 otherwise.
Suppose we can generate random samples of conforma-

tions Xn
�j�, j=1, . . . ,m, from a trial distribution g�Xn�. Follow-

ing the importance sampling principle,33,34 formula �5� can
be estimated as

1

m
�
j=1

m h�Xn
�j��I�n�S��Xn

�j��

g�Xn
�j��

� Eg�h�X� · I�n�S��Xn�

g�X�



= �
X��n�S�

h�X�
g�X�

· g�X�

= �
Xn��n�S�

h�Xn� . �6�

Note that to obtain an unbiased estimate, the trial distribution
g�Xn� must have a support larger than h�Xn�I�n�S��Xn�, that is,
g�Xn��0 must hold for all Xn in �n�S� that satisfy h�Xn�
�0. Let wn

�j�=1 /g�Xn
�j�� be the weight of sample Xn

�j�, then
Eq. �6� can be rewritten as

�
Xn��n�S�

h�Xn� =
1

m
�
j=1

m

wn
�j�h�Xn

�j��I�n�S��Xn
�j�� . �7�

The efficiency of the estimator of Eq. �6� depends on the
choice of the trial distribution g�Xn� and the computational
complexity for generating a sample. In general, if g�Xn� is
approximately proportional to �h�Xn�I�n�S��Xn��, with a sup-

port larger but close to �n�S�, the estimate can be reasonably
accurate.34

The original Rosenbluth and Rosenbluth growth method
generates samples in the space of Pn.28 Starting at x1

= �0,0�, monomers are added to the chain and the associated
weights are updated recursively, until the chain reaches
length n. Modifications of the algorithm can be found in
Refs. 24 and 34–36. However, the space under our consider-
ation is a highly constrained subspace of Pn. For example,
for void of shape 4.1 and chain length of 50, the size of the
constrained space �n�S� is less than 2�10−3 of the size of
Pn. With additional constraints such as fixed loop length, the
space becomes even smaller and sampling such conforma-
tions becomes more difficult. The simple growth method of28

is very inefficient in generating samples for such constrained
space. Below, we reformulate the sampling space and modify
the growth method to overcome this difficulty.

1. An equivalent representation of �n„S…

In order to avoid location ambiguity, the construction of
Pn is restricted to the set of SAW conformations starting at
x1= �0,0�, x2= �1,0� and going up at the first time the chain
deviates from the x axis. Since our main interests are sam-
pling conformations containing specific void, we adopt an
equivalent representation that is more efficient for our pur-
pose.

Specifically, let v=v�S� be a set of sites in Z2, whose
union takes the shape S. Let A�v�= �a1�v� , . . . ,a�A�v���v�� be
the set of neighboring sites of v, sharing either edges or
vertices with v. We call it the wall sites of v. If a SAW
completely occupies A�v� and does not intersect with v, then
this SAW has at least one void of shape S. Denote the set of
all such conformations as

Gn�v� = �Xn�Xn is a SAW,A�v� � Xn,v � Xn = �� .

Recall that, by definition, a conformations in Pn first grows
to the right, and always goes up when it first deviates from
the x axis. Note that the conformations in Gn�v� is not re-
stricted to Pn as they can start from any site on the lattice. In
Gn�v�, we consider two SAWs as equivalent if one SAW can
be transformed into the other through a combination of rota-
tion, reflection, and position translation. Then Gn�v� consists
of a number of disjoint equivalent classes.

It can be easily established that there is a one-to-one
mapping between conformations in �n�S� and the equivalent
classes of conformations in Gn�v� through transformation
consisting the primitives of rotation, reflection, and transla-
tion. Each of the transformations provides such a map that
the starting site x1 of Xn�Gn�v� becomes the origin �0,0�,
the second site x2 becomes �1,0�, and the first site that devi-
ates from x axis is up. Hence, if h�·� is a function of Xn that
takes the same value for equivalent conformations, we have

�
Xn��n�S�

h�Xn� = �
Xn�Gn�v�

h�Xn�
E�Xn,S�

,

where E�Xn ,S� is the number of equivalent conformations of
Xn in Gn�v�.
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The number E�Xn ,S� depends on K�Xn ,S�, the number
of shape-S voids contained in Xn �as in Eq. �2��, and the
symmetricity of the shape S. Let q�v� be the number of com-
bination of rotation and reflection that maps v to itself. In
two-dimensional lattice space, there are four possible rota-
tions and two possible reflections around the x and y axes.
Hence, q�v� can only take a value in �1,2,4,8�. For example,
q�v�=8 for shape 4.2 in Fig. 2, q�v�=4 for shapes 2.1 and
3.1, q�v�=2 for shapes 4.4 and 4.5, and q�v�=1 for shape
4.3.

When Xn contains only one S-shaped void, the size of its
equivalent class E�Xn ,S� is q�v�. Figure 3 shows four poly-
mers in a equivalent class for void 2.1. When Xn contains
total K�Xn ,S� S-shaped voids, then E�Xn ,S�=q�v�K�Xn ,S� as
each of the voids contributes q�v� number of members in the
equivalent class.

To simplify our analysis, we note that Gn�v� consists of
disjoint subsets,

Gn�v� = �
i,k

Gn�v,i,k� ,

where

Gn�v,i,k� = �Xn�Xn � Gn�v�, xk = ai, A�v� � �x1, . . . ,xk�� .

If Xn�G�v , i ,k�, then the void v is completely enclosed by
the prefix �x1 , . . . ,xk� of the chain, where xk is the last mono-
mer in the prefix and occupies the ith site ai�v� of the wall

sites. We have k� �A�v�� since some of the monomers in the
prefix �x1 , . . . ,xk� may not be on the wall of the void. The
remaining chain �xk+1 , . . . ,xn� does not intersect with the
void space v nor with the wall sites A�v�.

Using this partition, we have that for any function h�·�
that is constant within the equivalent classes,

�
Xn��n�S�

h�Xn� = �
Xn�Gn�v�

h�Xn�
q�v�K�Xn,S�

=
1

q�v��i,k �
Xn�Gn�v,i,k�

h�Xn�
K�Xn,S�

. �8�

In the following we develop procedures to estimate the quan-
tity

�
Xn�Gn�v,i,k�

h�Xn�
K�Xn,S�

,

for each subset Gn�v , i ,k�, i=1, . . . , �A�v��, k= �A�v�� , . . . ,n.

2. Algorithmic steps

The following procedure is used to generate Monte
Carlo samples in Gn�v , i ,k� for all v, i, and k, which are then
used to estimate the parameters listed in Sec. II C. First, we
set xk=ai�v� as defined by Gn�v , i ,k�. We then grow back-
wards sequentially to place xk−1 ,xk−2 , . . ., until we reach the

FIG. 3. The equivalent class of conformations. The union of the sites occupied by stars �*� is the fixed void v. Here, polymer a, b, c, and d are different chains
enclosing void v, as indicated by the different sites occupied by the starting monomer x1 and the next monomer x2. However, the shapes of the polymers taken
up by the union of the occupied sites for these chains are the same. As a consequence, these four polymers are equivalent.
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first monomer x1 of the chain. During this process, the wall
sites A�v� become fully occupied by monomers in
�x1 , . . . ,xk�, and the void space v remains unoccupied. Lastly,
as now that �x1 , . . . ,xk� are placed and the constraints for
void formation are satisfied, we complete the remaining con-
formation by sequentially placing monomers xk+1 , . . . ,xn.
The only constraint at this stage is that these monomers
avoid the partial chain grown so far. An illustration of the
procedure is shown in Fig. 4.

For ease of presentation, we rearrange the monomer la-
bels based on the above procedure. Define yn= �y1 , . . . ,yn� as
�xk , . . . ,x1 ,xk+1 , . . . ,xn�. Formally, ys=xk−s+1, for s�k, and
ys=xs, for s�k. In this notation, the chain prefix of length s
becomes ys= �y1 , . . . ,ys�.

We adopt the general framework of optimal sampling
method37 to generate sample conformations. Let mi be the
number of samples we retain in the ith iteration, and mmax be
the maximum value of �mi�. In the initial step, we set m1

=1, y1
�1�=ai�v�, and w1

�1�=mmax. For s=2, . . . ,n, we perform
the following procedure:

�1� At step s when adding the sth monomer, assume there
are ms−1 samples �ys−1

�j� , j=1, ... ,ms−1� with weights
ws−1

�j� .
�2� We now add the sth monomer to the partial chain ys−1.

For each sample ys−1
�j� , j=1, . . . ,ms−1, generate ls

�j� num-
ber of new samples ỹs

�l� by placing ys at each of the
vacant sites neighboring ys−1

�j� , where ls
�j� is the number

of vacant sites neighboring ys−1
�j� in sample ys−1

�j� . Set
weight w̃s

�l�=ws−1
�j� . Assume this step results in a total of

Ls=� jls
�j� samples �ỹs

�l� , w̃s
�l��. Note that the step k+1 is

slightly different. At steps 1 , . . . ,k, we grow the chain
backwards. But at step k+1, we start to grow the chain

forward. That is, we place yk+1=xk+1, which is con-
nected to y1=xk. Hence, at the step k+1, we consider
the vacant neighbor�s� of y1, not yk.

�3� Assign a priority score 	s
�l� to each resulting partial

chain ỹs
�l�. The choice of the priority scores will be dis-

cussed in details in the next section.
�4� If Ls�mmax, we keep all of the samples with their

weights, set ms=Ls and go to step s+1. If Ls�mmax, we
choose m distinct samples from �ỹs

�l� , l=1, ... ,Ls� ac-
cording to the priority scores as follows:

�a� Find a constant c such that �l=1
Ls min�c	s

�l� ,1�=mmax.
�b� Choose distinct integers J1 ,J2 , . . . ,Jmmax

from
l=1, ... ,Ls, with probability bs

�l��min�c	s
�l� ,1�. This

is achieved by the following steps:

�i� Draw a sample r0 from the uniform distribution
between 0 and 1. Let rj = j−r0 for j=1, ... ,mmax;

�ii� For each j=1, ... ,mmax, choose Jj as the integer
such that �l=1

Jj−1bs
�l��rj ��l=1

Jj bs
�l� holds.

�c� Let ys
�j�= ỹs

�Jj� and update its weight to be ws
�j�

= w̃s
�Jj� /min�c	s

�Jj� ,1�.

3. Priority scores

The priority score guides the growth of conformations,
and its design is critically important for obtaining accurate
estimates. Our priority scoring function has three compo-
nents addressing three important issues, namely, the support
of the target distribution, the weighting scheme of samples,
and the lookahead strategy.

The support of the target distribution. If a partial chain
ỹs

�l� at step s is impossible to eventually grow into the con-
strained space Gn�v , i ,k� at step n, it should be removed from
future steps of sampling immediately at step s, since it is
destined to be rejected. Define the support Ss of partial
chains of length s as

Ss = �ys�s.t. ∃ ys+1:n

= �ys+1, . . . ,yn� that �ys,ys+1:n� � Gn�v,i,k�� .

That is, Ss contains all possible prefix chains of length s of
desired polymers. However, it is difficult to evaluate if a
partial chain is in the support. Here, we use a sequence of the
support 
s that contains Ss but easy to work with. Specifi-
cally, let 
1= �ai�v�� where the chain starts according to the
definition of Gn�v , i ,k�. The support 
s is updated sequen-
tially as follows: For each partial chain ys−1�
s−1, find all
possible chains ys by adding a monomer to a vacant neigh-
boring site which shares an edge with ys−1. The new support

s is the union of all such chains satisfying the following
conditions:

�i� ys�ys−1=� �the self-avoiding constraint� and ys�v,
where v is the void space.

�ii� If s�k and if A�v� \ys is not an empty set �i.e., the
wall sites has not been filled by ys�, then A�v� \ys must
remain as a strongly connected set. Here, we define
that a strong connection exists between two sites if
they share an edge.

FIG. 4. The general procedure for growing chains. The union of the sites
occupied by stars �*� is the fixed void v. �a� The kth monomer y1=xk is first
placed to the position ai�v� of the wall sites of the void v. �b� We then grow
backward until we reach the first monomer yk=x1 of the chain to form void
v. �c� We continue by growing forward until we reach xn.
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�iii� If s�k and if A�v� \ys��, then the site ys must sat-
isfy

k − s � d�ys,A�v� \ ys� + �A�v� \ ys� − 1,

where d�ys ,A�v� \ys� is the minimum Manhattan dis-
tance between ys and the unoccupied wall sites,
�A�v� \ys� is the number of unoccupied wall sites of
A�v� \ys.

Condition �ii� reflects the property that both the filled
and unfilled sites on the wall of the void must remain
strongly connected at any time of the growth. Otherwise, the
unfilled wall sites A�v� has multiple not strongly connected
components. In such cases, the self-avoiding property must
be violated in order to fill all of them by yn�Gn�v , i ,k�. This
is the consequence of the Jordan curve theorem in plane.38

Condition �iii� is to ensure that the remaining chain
length is sufficient to fill all wall sites, i.e., A�v� \ys must be
filled by �ys+1 , . . . ,yk�, which is a length k−s chain connected
to ys.

The priority scores without lookahead. In the optimal
sampling method framework,37 the priority score serves both
as the propagation trial distribution as well as the resampling
priority score. Under the importance sampling principle,34

the ideal trial distribution should be proportional to
�h�x���x��, where ��x� is the target distribution. In our case,
it translates to w̃t

�l�h�ỹt
�l��I
t

�ỹt
�l��. Here, h�ỹt

�l�� is the value of
function h�·� applied to partial chain ỹt

�l�, which is always
non-negative.

For s�k, we simply set equally priority scores 	s
�l�

�1.0 to all partial chain samples ỹs
�l�, since this stage is rela-

tively easy.
For the more difficult part of the growth s�k where the

major constraints lie, we need to guide samples to grow into
the support region 
s in order to reduce the sample rejection
rate. Following Zhang and Liu,36 we use the priority score to
achieve this. Taking condition �iii� when updating the sup-
port into consideration, we define

Us�ỹs
�l�,v� = k − s + 2 − d�ỹs

�l�, A�v� \ ỹs
�l�� − �A�v� \ ỹt

�l��

if �A�v� \ ỹt
�l���0, Us�ỹs

�l� ,v�=0 if �A�v� \ ỹt
�l��=0. It evaluates

how much freedom and flexibility the remaining chain pos-
sesses. When �A�v� \ ỹt

�l���0, there are still some vacant sites
on the void wall needs to be occupied. In this case, if
Us�ỹs

�l� ,v��0, ỹs
�l� is not in the support 
s, as it violates con-

dition �iii�, we reject this sample. The larger Us�ỹs
�l� ,v� is, the

less constrained the remaining chain is.
Combining the value of the function h�ỹt

�l�� to be evalu-
ated, and Us�ỹs

�l� ,v� reflecting the desired flexibility of the
remaining chain, we design our priority score for s�k as

	s
�l� = w̃s

�l�h�ỹs
�l��I
s

�ỹs
�l��exp�− Us

−1/2�ỹs
�l�,v�/Ts� ,

where Ts is a temperaturelike variable. The choice of values
for Ts is important. In general, the constraint of forming void
is not of serious concerns at the beginning, so we can use
high values of Ts to enhance diversity in sampling. As the
chain grows, the concern of meeting the constraints become
stronger, since there are less freedom for the remaining

chains to grow. Hence, we gradually reduced the Ts, as in
simulated annealing algorithms. In this study, we use Ts

=�k−s+16 for s=1, . . . ,k−1.
Priority score with lookahead. An often used strategy to

improve performance of SMC is lookahead.36,39,40 Looka-
head enables us to use information from possible future steps
to construct priority scores, resulting smaller rejection rate of
the samples. In addition, it reduces the variance of samples
for estimation and hence improves sample efficiency.41

For a �-step lookahead, the priority score at time t is
determined by exploring all possible combinations of �-step
growth from the current sample ys. Specifically, the priority
scores we use are

	s
�l� = w̃s

�l� �
ys+1,. . .,ys+�

h�ỹs+�
�l� �I
s+�

�ỹs+�
�l� �

�exp	−
Us

−1/2�ỹs+�
�l� ,v�

Ts

 ,

where ỹs+� denotes �ỹs ,ys+1 , ... ,ys+��.
Note that as lookahead step � increases, the effectiveness

increases at the cost of exponentially growing computational
complexity. Hence, the choice of � is a tradeoff between
estimate efficiency and complexity. In this study we use �
=1.

4. Estimation

In our framework, it is possible to estimate the param-
eters described in Sec. II C for polymer chains of different
lengths up to n when generating conformation samples of
length n.

Specifically, when generating conformation samples for
Gn�i ,k�, at step s=k, k+1, . . . ,n, the generated partial con-
formations are ỹs

�l�= �x1
�l� , . . . ,xk

�l� , . . . ,xs
�l��, which are properly

weighted chain polymers of length s. Hence,
�xn*�Gn*�v,i,k�h�xn*� /K�xn* ,S�, n*=k, k+1, . . . ,n, can be esti-

mated by the following estimator:

ĥ�xn*;i,k� =
1

mmax
�
l=1

Ls

w̃s
�l�

IGn*�v,i,k��ỹs
�l��h�ỹs

�l��

K�ỹs
�l�,S�

,

at step s=n*. Here, the estimation is made after step �2� of
the algorithmic steps in the previous subsection.

After generating samples for Gn�i ,k� of all possible i ,k,
for any n*�n, we can estimate �Xn*��n*�S�h�Xn*� by

�
Xn*��n*�S�

h�Xn*� �
1

q�v��i,k ĥ�xn*;i,k� ,

according to Eq. �8�.

III. RESULTS

In this section, we present the results of estimation of the
parameters described in Sec. II C. We also develop a para-
metric model relating to void and chain properties for inter-
preting the estimated results and for prediction of propensity
of forming void of specific shape.
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A. Propensity of void formation

For propensity of void formation f1�S ,n� defined in Eq.
�1�, we first examine size-4 voids. There are five different
shapes for size-4 regular voids �Fig. 2�. To validate our pro-
cedure, the estimated propensity of void formation is com-
pared with the true values obtained by exhaustive enumera-
tion, for chains of length of 14–24. Figure 5�a� shows the
results for voids shapes 4.3 and 4.4. The estimated values are
indistinguishable from the true values. These results suggest
that our sampling method works well and can provide accu-
rate estimations.

The results for longer chains of length of 15–50 using
the SMC procedure are presented in Fig. 5�b�, where propen-
sity of void formation f1�S ,n� for void shapes 4.1–4.5 are
shown. It is clear that voids of different shapes have signifi-
cant difference in propensity of formation. This raises the
question whether voids and binding sites in proteins are simi-

larly biased, and whether the distribution of voids of differ-
ent shapes can be partly explained by these intrinsic propen-
sities analogous to what is observed here on lattice models.

1. Predictive models

To better understand our estimation results and to infer
general principles, we develop a predictive model for f1�S ,n�
using the following parametric form:

f̂1�S,n� =
1

q�v�
c1c2

−�A�v���n − �A�v�� + 1�c3�1 − c4��e�v�� − 4�� ,

�9�

where q�v� represents the degeneracy of the void shape as
we discussed in Sec. II D 1. We consider three factors other
than q�v� in our model: the the wall size �A�v��, the chain
length n, and the number of outer corners of void, �e�v��.
Here, the outer corners, e�v�, are defined as the sites on void
wall that connect to the void through a single vertex only.
The values of q�v�, �A�v��, and �e�v�� for different void
shapes are summarized in Table I.

In this model, c1, c2, c3, and c4 are positive constants. As
the wall size �A�v�� increases, it is expected that the propen-
sity of forming voids of the specific shape decreases
exponentially. This is reflected by the term containing
c2

−�A�v��. When the chain length n increases, it is expected that
the propensity of forming voids of the specific shape in-
creases by some power. This is captured by the term of

TABLE I. Geometric features of voids determining the fractions of chain polymers containing such voids. q�v� is related to the symmetry of the void v, �A�v��
is wall size of the void v, and �e�v�� is the number of outer corners of void v.

Void type 2.1 3.1 3.2 4.1 4.2 4.3 4.4 4.5 5.1 6.1 6.2 6.3

q�v� 4 4 2 4 8 1 2 2 4 4 1 2
�A�v�� 10 12 12 14 12 14 14 14 16 18 18 18
�e�v�� 4 4 5 4 4 5 6 6 4 4 5 6

FIG. 5. Estimating void propensity values. �a� Estimated propensity values
and true propensity values of forming size-4 voids of different specific
shapes for conformations of lengths of 14–24. They superimpose very well.
�b� Estimated propensity values of forming size-4 voids of different specific
shapes for conformations of lengths of 15–50.

FIG. 6. Propensity values of forming voids �size=2–5, a–d� of different
specific shapes for conformations of lengths of 25–50. These are used to
develop a regression model. Dashed line: results obtained by estimation
using sequential Monte Carlo. Solid line: fitted results from the regression
models.
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�n− �A�v��+1�c3. We also find that the number of outer cor-
ners, �e�v��, is an important determinant of propensity of void
formation. For void shapes with more outer corners, chain
polymers enclosing such voids have more concave turns on
the wall. This makes it more difficult for a self-avoiding
chain to enclose the void. The negative term of �e�v�� in
Eq. �9� models this effect.

We estimate the coefficients in model �9� using the esti-
mated f1�vn� from SMC for voids of sizes 2–5 and chain
length from 25 to 50. Taking log transformation and using
nonlinear regression, we found that ĉ1=47.46, ĉ2=2.28,
ĉ3=0.76, and ĉ4=0.21.

The propensity values estimated from SMC and the fit-

ted results of f̂1�S ,n� using model �9� are plotted in Fig. 6. It
can be seen that the parametric model fits the data very well.
Using the above estimated parameters obtained from the
training data, we develop a predictive model for the propen-
sity for void shapes 6.1, 6.2, and 6.3, which are not used in
deriving the regression model. The predictions are again
compared with those estimated by SMC �Fig. 7�. The models
works well, although it consistently underestimates by a
small amount for void shape 6.3.

B. Propensity of void formation with fixed loop length

Now we consider the propensity of void formation with
fixed loop length f2�S ,n� defined in Eq. �2�. We plot esti-
mated f2�l ,S ,n=50� for different specified loop lengths l and
shapes S in Fig. 8. Although voids with odd loop length do
exist, we can see that it is much easier to form void, with
even loop length. This is because the number of wall sites,
�A�v��, is always an even number on lattice. To form a void v
with odd loop length, the first monomer and the last mono-
mer of the polymer on the void wall A�v� cannot be adjacent,
which results in a more complicated shape. A conformation
enclosing a void of shape 4.1 with loop length of 17 is given
in Fig. 9. On average, void shapes 4.1 and 4.3 have larger
loop sizes than void shapes 4.4 and 4.5, because they have
fewer corners. These results suggest that voids of different
shapes have different propensity at specific loop lengths.

C. End effect for void formation

For propensity of void formation with fixed loop length
and specified starting position f3�I0 , l ,S ,n�, as defined in

FIG. 7. Estimated and predicted propensity values of forming size-6 voids
of different specific shapes for conformations of lengths of 25–50. Dashed
line: SMC results. Solid line: predicted results using the regression model
�9�.

FIG. 8. Estimated propensity values of forming size-4 voids of different
specific shapes with different specified loop length for conformations of
length n=50.

FIG. 9. Conformation with odd loop length. This conformation encloses an
void of shape 4.1 with loop length of 17.

FIG. 10. Estimated propensity values of forming size-4 voids of different
specific shapes with fixed loop length l=14 and different specified starting
position for conformations of length n=50.
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Eq. �3�, we plot estimated f3�I0 , l=14,S ,n=50� for voids of
shapes S with a loop length of 14 in chain polymers of length
50 with different starting positions I0 in Fig. 10. We find that
the propensities f3�I0 , l ,S ,n� at I0=1 and I0=2 are very dif-
ferent, indicating strong end effect for void formation. That
is, void is much easier to form at the end of the conforma-
tion. This is likely due to the tail effect. Void at the end of the
chain only need to have one tail, but has two tails if it is in
the middle of the conformation. It is difficult to constrain the
tails to satisfy the multiple restrictions for forming void of
certain shapes.

D. Propensity of void formation at different
compactness

Figure 11 shows estimated propensity values of void for-
mation at different compactness f4�� ,S ,n� defined in Eq. �4�
for chain length from n=30 to 50. Conformations with size-4
voids are dominated by those at compactness around 0.3–0.7.
If we normalize f4�� ,S ,n=50�, that is, we define

f̄4��,S,n� =
f4��,S,n�

�f4��,S,n�d�
,

where f̄4�� ,S ,n� can be considered as a distribution of �. We
plot the 0.25 quantile, median value, and 0.75 quantile of

distribution f̄4�� ,S ,n� for different chain length n and fixed
shape S in Fig. 12. We can see these values slightly increase
as n increases from 30 to 50. This indicates that the preferred

compactness range of forming these size-4 voids shifts
slightly to more compact regions as chain length increases.
We also compare the propensity values of forming voids of
all size-2 regular shapes �2.1�, voids of all size-3 regular
shapes �3.1, 3.2�, and voids of all size-4 regular shape �4.1,
4.2, 4.3, 4.4, 4.5� for chains of length of 50 at different
compactnesses �Fig. 13�. The results show that smaller voids
are easier to form as compactness increases. Our results from
lattice model suggests that there might be a preferred size for
void formation in proteins, which are all within a specific
narrow range of compactness.3

IV. SUMMARY AND CONCLUSION

Protein molecules contain many voids buried in the in-
terior of proteins, with broad distribution.4 Although most
voids are likely to originate from generic steric constraints of
compact chain polymers,4,5 some voids are the functional
regions for many proteins, such as enzymes, where substrates
and ligands bind and biochemical reactions occur.6,7

An important general question is how the need for main-
taining functional voids, which have to be of specific shape,
is influenced by, and affects other aspects of proteins struc-
tures and properties: e.g., protein folding stability, kinetic
accessibility, and evolutionary selection pressure. These are
broad and complex issues that require detailed studies.

In this work, we study the effects of maintaining voids of
defined shape using lattice model. Because the conforma-
tional space of simplified polymers can be examined in de-

FIG. 11. Estimated propensity values of forming size-4 voids of different specific shapes with certain compactness for conformations of length from n=30 to
50. ��a�–�d�� void 4.1, void 4.3, void 4.4, and void 4.5.

084903-10 Lin, Chen, and Liang J. Chem. Phys. 128, 084903 �2008�

Downloaded 13 Sep 2008 to 128.248.155.225. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



tail, lattice models have been widely used in protein studies
and have lead to important insight about protein folding. The
focus of our study is to generate large number of sample
conformations under very constraining restrictions to study
general properties of voids and their shapes. We use sequen-
tial Monte Carlo method and have developed an efficient
growth method to generate conformation samples in highly
constrained space.

We show that our approach is effective in estimating
entropy of void maintenance, with and without an increasing
number of restrictive conditions, such as loops forming the
wall of void with fixed length, with additionally fixed start-
ing position in the sequence. Our results also lead to a num-

ber of observations, including that polymers of certain com-
pactness range favors the formation of voids of specific size,
and that voids are far easier to form around the end of the
polymer. A finding is that voids tend to form at the chain
ends. This raises the interesting question whether voids and
pockets tend to form at either the N-terminal or the
C-terminal end in real proteins. A detailed analysis of voids
and pockets in real proteins will be necessary for answering
this question. In addition, we have developed a parametric
model for explaining the propensity of forming voids of par-
ticular shapes, or equivalently, the entropic cost of maintain-
ing such voids. Our model is highly effective in predicting
the propensity of void formation for different shapes. Such
lattice model of voids representing functional sites can be
used as improved model for studying the evolution of protein
functions,26 and how it relates to protein stability.27

Although in this study we treat the occurrence of all
conformations equally likely, our approach can be applied to
models with more realistic energy functions in a straightfor-
ward manner. The approach for sampling strongly con-
strained conformations we developed in this study will be
generally applicable for studying real proteins in three-
dimensional space.
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