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Abstract

Predicting protein functions from structures is an important and chal-
lenging task. Although proteins are often thought to be packed as tightly
as solids, closer examination based on geometric computation reveals that
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they contain numerous voids and pockets. Most of them are of random
nature, but some are binding sites providing surfaces to interact with other
molecules. A promising approach for function inference is to infer func-
tions through discovery of similarity in local binding pockets, as proteins
binding to similar substrates/ligands and carryingout similar functions have
similar physical constraints for binding and reactions. In this chapter, we
describe computational methods to distinguish those surface pockets that
are likely to be involved in important biological functions, and methods to
identify key residues in these pockets. We further describe how to predict
protein functions at large scale (millions) from structures by detecting
binding surfaces similar in residue make‐ups, shape, and orientation. We
also describe a Bayesian Monte Carlo method that can separate selection
pressure due to biological function from pressure due to protein folding.
We show how this method can be used to reconstruct the evolutionary
history of binding surfaces for detecting similar binding surfaces. In addi-
tion, we briefly discuss how the negative image of a binding pocket can be
casted, and how such information can be used to facilitate drug discovery.

I. Introduction

The structural genomics projects have made significant contributions to
our current body of knowledge of protein structures (Chandonia and
Brenner, 2006). They have further facilitated the establishment of a
comprehensive view of the global universe of protein structures, and
have provided a foundation with a wealth of information for developing
model and computational tools that can be used to understand the
molecular mechanism how individual proteins carry out their biological
roles and how protein functions evolve.

Functional characterization of proteins with unassigned functions is an
important task. By design, a large number of newly determined protein
structures from structural genomics are not related to other known pro-
teins, and bioinformatics tools based on sequence alignment often cannot
provide accurate information about the functional roles of these proteins.
Several early studies showed that reliable functional assignment will re-
quire sequence identity of 60–70% between the protein of unknown
function and a well‐studied protein (Rost, 2002; Tian and Skolnick, 2003).

Recently, the approach of inferring protein functions by detecting local
spatial regions on protein structures with similar patterns has been shown
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to be very effective (Binkowski et al., 2003a; Glaser et al., 2003; Gold and
Jackson, 2006; Laskowski et al., 2005; Najmanovich et al., 2005; Pazos and
Sternberg, 2004; Russell, 1998; Torrance et al., 2005; Tseng and Liang,
2006). The rationale behind this approach is intuitive and appealing.
For proteins binding to similar substrates or ligands and carrying out
similar functions, they are constrained by the requirement of providing
the necessary microenvironment for similar binding and biochemical
reactions to occur. These physical constraints are reflected by similarity
in the shape of local binding surfaces and in the physicochemical texture
of the binding surfaces. In order for similar functions to occur, the
evolution of residues involved in binding and reaction will be constrained
and this results in similarly allowed and forbidden residue substitution on
binding surfaces (Tseng and Liang, 2006).
In this chapter, we discuss our approach to predict and characterize

protein functions from protein structures by comparing local surfaces. We
first discuss the existence of voids and pockets, and their distribution in
proteins (Liang and Dill, 2001). We then describe how to identify those
that are likely to be functionally important, as well as the key residues on
them (Tseng and Liang, 2007). This is followed by a discussion on how to
match local surfaces and how to assess their similarity in both sequence
order‐dependent and ‐independent fashion (Binkowski et al., 2003a).
Next we discuss how to extract evolution patterns of small local regions
directly related to protein function and unaffected by folding requirement
using a Bayesian Monte Carlo method, and how this approach improves
protein function prediction (Tseng and Liang, 2006). We then describe
three examples of protein function prediction and characterizations using
proteins generated from the Midwest Center for Structural Genomics
(Binkowski et al., 2005). This is followed by a brief discussion on how
further information from computed protein local binding pockets can be
extracted in the form of negative image to guide for selecting inhibitors
from a collection of candidate compounds (Ebalunode et al., 2008).

II. Voids and Pockets in Protein Structures and Their Origins

Protein structure is known to be packed tightly. The packing density of
protein interior is comparable to that of solid, with low compressibility
(Gavish et al., 1983). Protein packing has been described as a jig‐saw puzzle
(Richards and Lim, 1994). However, detailed study using the technique of
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alpha shape (Edelsbrunner and Mücke, 1994; Edelsbrunner et al., 1998;
Liang et al., 1998a,b) revealed that there are numerous voids and pockets
in protein structures (Fig. 1) (Liang and Dill, 2001).

Here, voids are enclosed empty space that is inaccessible to a water
molecule modeled as a probe of 1.4 Å radius, and pocket is an empty space
in the protein that has a constricted opening to the bulk exterior and is
accessible to a water molecule (Fig. 1). The size of the void or pocket in
this study is required to be large enough to contain at least one water
molecule. In fact, there is a scaling relationship between the number of
voids and pocket and the chain length of the protein (Fig. 2A). On
average, there is an increase of 15 voids or pockets for every 100 amino
acid residues (Liang and Dill, 2001). For example, the binding sites of
HIV‐1 protease and phosphatidylinositol transfer protein (PITP) both
correspond to well‐defined surface pockets (Fig. 3).

Various scaling relationships suggest that protein packing is of random
nature (Liang and Dill, 2001). For example, if we use a simple solid ball
packing as a model of protein, we would expect that the volume
V ¼ 4pr 3=3 and the area A ¼ 4pr 2 should have a scaling relationship of
V ¼ A3/2. In reality, this scaling relationship is linear (Fig. 2B). This linear
relationship is reminiscent of the scaling relationship of clustered random
spheres in off‐lattice and on‐lattice models (Lorenz et al., 1993; Stauffer,
1985).

To further investigate the nature of protein packing and the origin of
voids and pockets, we have studied the packing behavior of random chain
polymer in off‐lattice three‐dimensional space (Zhang et al., 2003a). Other
than the requirement that these polymer chains are compact and self‐

Void

Depression

Pocket

FIG. 1. Pockets and voids in proteins. There are three types of unfilled space on
protein surfaces. Voids are fully enclosed and have no outlet, pockets are accessible from
the outside but with constriction at mouths, and shallow depressions have wide openings.
We use the general term surface pockets to include both pockets and voids. Adapted from
(Liang and Dill 2001).
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avoiding, there is no relationship between these studied chains and real
protein. The task of assessing the ensemble properties of packing of these
chain polymers in a statistically accurate manner is technically very chal-
lenging, as one needs to generate adequate samples that are independent
and properly weighted. This relates to the well‐known attrition problem:
the success rate of generating self‐avoiding chain polymers is rapidly
diminishing with the increase of chain length, as it becomes exponentially

FIG. 3. The binding pockets on HIV‐1 protease and phosphatidylinositol transfer
protein (PITP). Left: binding pocket (yellow) on HIV‐1 shown in van der Waals space
filling model. Ligand is colored red. Middle: the alpha shape of the HIV‐1‐binding site.
Its mouth opening is colored gold. Right: Binding pocket (green) on PITP for phospho-
lipid (red) and a regulatory site on a different region (yellow) of the same protein.
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FIG. 2. Voids and pockets in protein structures. (A) Number of voids and pockets
scale roughly linearly with protein length for a representative set of 636 proteins. Here,
circles and solid triangles represent the numbers of voids and pockets, respectively.
(B) The volume of protein as calculated using van der Waals model scales linearly with
the van der Waals area of protein. Adapted from Liang and Dill (2001).
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difficult to maintain the self‐avoiding requirement. For example, even for
a short chain of length 48, the success rate of using simple growth method
would be only 0.79% (Liu, 2001).

Using the sequential Monte Carlo method (Doucet et al., 2001; Liu and
Chen, 1998), we have overcome this technical difficulty, and succeeded in
generating properly weighted ensemble of thousands of self‐avoiding
chains up to length 2000 (Zhang et al., 2003a). We have carried out
the same geometric analysis on these chain polymer structures, just as we
did with protein structures. The results indicate that both the scaling
relationship of the coordination number, and the packing density with
the chain length show characteristically the same scaling relationship as
that of proteins (Zhang et al., 2003a). Altogether, these findings provide
strong evidence that proteins are not optimized by evolution to eliminate
voids and pockets. Rather, the majority of the voids and pockets simply
emerge from the requirement of packing self‐avoiding chains in a com-
pact space.

III. Identifying Functional Surfaces of Proteins

The existence of numerous voids and pockets poses two challenging
problems. First, how do we identify the void(s) and pocket(s) that are
biologically important, for example, how to distinguish those involved in
binding and biochemical reactions from those formed by random chance.
Second, for a given pocket or voids found on a protein structure, how do
we know if it is important for some biological functions known or yet to be
discovered?

We have developed a method to address these problems for enzymes. In
this method, we do not directly compare the structure or function of a
well‐characterized protein with the protein in question. Rather, we seek to
recognize pocket or void that might be involved in enzyme function based
on general characteristics. We discuss in later sections the comparative
approach when the unknown query protein is compared with a database of
protein structures.

Typically, about 10–30% of all residues in an enzyme participate in the
formation of the binding pocket (Tseng and Liang, 2007). Compared to
the full length primary sequences, the usage of residues in forming pocket
is biased. Often His, Asp, Glu, Ser, and Cys account for the most important
active site residues (Bartlett et al., 2002; Binkowski et al., 2003a; Laskowski
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et al., 2005; Tseng and Liang, 2007). These are residues known to be
important for catalytic functions. On the other hand, nonpolar residues
such as Val, Leu, Pro are far less frequent in enzyme‐binding pocket
(Tseng and Liang, 2007). Although these hydrophobic residues are fre-
quently conserved for maintaining protein structures and for protein
folding, they are often not directly involved in molecular functions of
enzymes. In fact, the composition of residue on binding surfaces of
enzyme is very different from that of the overall sequences (Fig. 4).
In our method for identifying functional region from enzyme structures

(Tseng and Liang, 2007), we examine the occurrence of the atomic pattern
of a residue with exposed surface in the binding pocket. That is, we record
the residue type and all of the exposed atoms from this residue, along with
the secondary structure environment this residue belongs to. A probability
function for each atom pattern, residue type, and secondary structure is
then constructed based on statistical analysis of a database of annotated
key residues of enzymes. After evaluating this probability function for each
residue in a candidate pocket, we can sum up the probability values for all
residues in the identified pocket, and if it is above a threshold value, a
functional binding pocket is predicted, and the few residues with the
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FIG. 4. The length distribution and residue composition of functional surfaces for
3275 enzyme proteins containing known functional key residues. (A) Functional sur-
faces usually consist of 8–200 residues, with the mean at 35 residues. (B) The amino acid
residue composition of functional surfaces is different from the composition of
sequences used to construct the Jones–Taylor–Thornton ( JTT) model. Adapted from
Tseng and Liang (2007).
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highest probability values are further predicted to be functionally impor-
tant key residues.

This method has been shown to work well in a 10‐fold crossvalidation
test of 3503 protein surfaces from 70 proteins, with a sensitivity of 92.9%
and specificity of 99.88% (Tseng and Liang, 2007). We have also shown
that for four enzyme families (2,3‐dihydroxybiphenyl dioxygenase, E.C.
1.13.11.39; adenosine deaminase, E.C. 3.5.4.4; 2‐haloacid dehalogenase,
E.C. 3.8.1.2; and phosphopyruvate hydratase, E.C. 4.2.1.11), the key resi-
dues predicted are also consistent with annotated information contained
in the Structure–Function Linkage Database (SFLD) (Pegg et al., 2006).
Figure 5 illustrates the example of predicted binding surface and key
residue on a structure of alpha amylase.

IV. Matching Local Binding Surfaces

A different approach that can potentially yield rich information is to
compare the local surface of a binding pocket to a database of local
surfaces, some of which have known biological characterization. Figure 6

A

B
ASP176 CG:OD1:OD2:c
HIS180  CD2:NE2:c
GLN208 CD:NE2:O:OE1:c
ASP269 CG:OD1:OD2:h

FIG. 5. The binding surface (green) and key residues predicted from a structure of
alpha amylase. Here, the predicted four key residues are colored yellow (D176), cyan
(H180), pink (N208), and blue (D269). They contain several high propensity atomic
patterns from our library of 1031 functional atomic patterns. Their classes of secondary
structural environment (sheet s, helix h, and coil c) are also listed. The substrate
molecule is colored red. Adapted from Tseng and Liang (2007).
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illustrates an example. The cAMP‐dependent protein kinase (1cdk) and
Tyr protein kinase c‐src (pdb 2src) share only 13% sequence identity.
However, the ATP‐binding pockets have similar shape and chemical tex-
ture. Once these ATP‐binding pockets are identified and computed from
their structures, we can select the residues located on the wall of the
binding pocket, and remove residues on the loops connecting these wall
residues. It is clear that the remaining sequence fragments have much
higher sequence identity (51%). In both cases, the residues forming the
pocket wall come from diverse regions in the primary sequences.
The simple example shown in Fig. 6 suggests an effective strategy that

can rapidly decide if two pocket surface are similar. We can derive surface
patterns from the residues forming the walls of pockets (called pvSOAR
patterns for pocket and void surface patterns of amino acid residues), and
rapidly compare these patterns. Once a pair of protein surfaces are found
to be similar, we can further examine their shape and chemical texture in
detail, and determine the statistical significance of their overall similarity.
This approach is generally applicable to any two surface patterns of
pockets and voids (Binkowski et al., 2003a).
There are several technical problems to be solved for this approach to

be generally useful. We need to identify and generate local surfaces
automatically and accurately. This can be achieved by applying void and
pocket algorithm for exhaustive identification and measurement of voids
and pockets from protein structures (Edelsbrunner et al., 1998; Liang
et al., 1998a,b). We also need to rapidly and accurately assess surface
similarity. Once a pair of similar local surfaces are found, we need to
evaluate whether the similarity is statistical significant.

A. Comparison of Sequence Patterns of Surface Pockets and Voids

Sequence order‐dependent method. By concatenating wall residues of a pocket
or voidonapeptide chain,wehavecompiledadatabaseofpvSOARsequence
patterns for all protein structures in the protein data bank (PDB). This
database is part of the CASTp database (Binkowski et al., 2003b; Dundas
et al., 2006). It currently (August, 2008) contains 46,071 protein structures,
with 1,582,472 voids and 1,555,994 pockets. We can rapidly query a protein
surface pocket against CASTp database through alignment of sequence
fragments using standard dynamic programming technique, allowing gap
insertion (Binkowski et al., 2003a). In this approach, we assume that the
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residues in the sequence pattern are positioned following their order of the
primary sequence.

Sequence order‐independent comparison. The alignment of pvSOAR
sequence fragments through dynamic programming can discover many
similar binding pockets. However, there are many cases where two pro-
teins with similar placement of amino acids in their tertiary structures have
different relative positioning of these amino acids in their primary struc-
tures (see Fig. 7 for stromelysin). When comparing two local surface
pockets, we also need to detect similar residue patterns while ignoring

>1cdk_A
KGSEQESVKEFLAKAKEDFLKKWENPAQNTAHLDQFERIKTLGTGSFGRVMLVKHKETGN
HFAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEYSFKDNSNLYMVMEYVPGGE
MFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDF
>2src_
SLRLEVKLGQGCFGEVWMGTWNGTTRVAIKTLKPGTMSPEAFLQEAQVMKKLRHEKLVQL
YAVVSEEPIYIVTEYMSKGSLLDFLKGETGKYLRLPQLVDMAAQIASGMAYVERMNYVHR
DLRAANILVGENLVCKVADF

B

C
1cdkA_ CASTP104
LGTGSFGRVAKLKVLQHTELVMMEYV---EDKENLTDF
2src_ CASTP51
LGQGCFGEVA-IKLMFAMVLVITEYMGSLDDRANLADF

A

FIG. 6. Functional surfaces on the catalytic domains of cAMP‐dependent protein
kinase (1cdk) and tyrosine protein kinase (2src). (A) In both cases, the active sites are
computed as surface pockets. (B) Residues defining the pockets are well dispersed
throughout the primary sequences (full sequence identity ¼ 16%). (C) The identity of
their surface sequence patterns is much higher (51%).
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their strict positioning in the primary structures. This is the problem of
finding which amino acid on the query protein surface pocket is equiva-
lent to which amino acid on the target protein surface pocket.
Sequence order‐independent matching of pockets can be formulated as

a maximum weight bipartite matching problem, where graph nodes rep-
resent amino acids (e.g., using Ca atoms) from the two protein pockets.
Directed edges are used to connect nodes from the query protein to nodes
of the target protein, if the two nodes share some similarity (e.g., by a

1hv5A pocket 24

1hv5A

1qicD

180

I

V

163

182

A

A

165

215

Q

L

197

216

V

V

198

219

H

Y

223

236

L

H

224

238

S

Y

220

241

Y

H

201

244

R

L

218

247

L

L

226

1qicD pocket 19

1hvA pocket 24 1qicD pocket 19

FIG. 7. The binding pockets from two different stromelysin catalytic domains (pocket
29 from pdb 1hv5.A and pocket 19 from 1qic.D). They are aligned in a sequence order‐
independent fashion with a cRMSD of 0.76 Å for 29 atoms from 10 residues. Top: the
binding pockets on the two protein structures, with pocket atoms shown in space filling
form. The aligned atoms are colored in red. Middle: the alignment of residues of these
two surface pockets. Atomic details of the alignment are not shown. Sequence numbers
are listed above and below the residue names for 1hv5 and 1qic, respectively. Residues in
1hv5 are arranged in order, but it is clear that the aligned residues in 1qic are not in
sequence order. This residue alignment is derived fromdetailed alignment of atoms from
surface pockets. Bottom: aligned atoms from these two surface pockets, with N atoms in
blue, O in red, and C in green.
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scoring function based on shape and chemistry). Each edge is given a
weight that is based on the similarity measure. The problem is to find a set
of edges connecting nodes in query pocket to nodes in target pocket, with
maximized total edge weight, while insisting only at most one edge is
selected for each residue (Cormen et al., 2001).

One way to solve this problem is by using the Hungarian algorithm
(Kuhn, 1955) as described in (Chen et al., 2005) with modifications. This is
an iterative method that uses the Bellman–Ford algorithm (Bellman,
1958). First, we add a fictitious source node s that connects to every
query node with 0‐weight. We then add a fictitious destination node d
that connects to every target node with 0‐weight. The Bellman–Ford
algorithm computes the distance F(i) of the shortest path(s) from the
source node to each of the remaining node i. The weight for each edge
that does not contain the source node is then updated. The new weight
w 0(i, j ) for edge e(i, j ) starting from node i to node j is

w 0 i; jð Þ ¼ w i; jð Þ þ F ið Þ � F jð Þ½ �:

An overall score Fall, initialized to 0, is now updated as F
0
all ¼ Fall � F dð Þ.

Next, we flip the directions of all edges in the shortest path from the
source s to the destination d.

We then apply the Bellman–Ford algorithm on this new graph, and this
is repeated until either there is no directed path from s to d as edges have
been flipped, or the shortest distance F (d) to the destination is greater
than the current overall score Fall. The output of the Hungarian algorithm
includes a set of directed edges starting from target nodes to query nodes,
and these provide the equivalence relationship, namely, which residue in
the target pocket should be aligned to which residue in the query pocket.
Based on this equivalence relationship, we can then compute the shape
similarity between these two surface pockets at atomic details, as described
below. When we use atoms as nodes instead of residues, the results will be
atomic alignment of pocket surfaces.

B. Comparison of Shapes of Surface Pockets and Voids

Once two voids or pockets are found to have significant sequence
similarity, we then follow up with more detailed shape analysis using two
methods. First, we compute the coordinate root mean square distance
(cRMSD) between the subset of equivalent residues or atoms. This
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equivalence relationship is established by the local alignment of pocket
sequence fragments. The cRMSD distance is measured when the subset of
residues are optimally aligned with rigid motion and has the least RMSD
value. This alignment and the cRMSD value can be computed from the
singular value decomposition of the correlation matrix of the coordinates
of the point sets (Umeyama, 1991).
cRMSD is not a perfect measure of shape similarity. It works well when

two structures are similar, but is sensitive to outliers. If a protein experi-
ences conformational change, its binding pocket may expand or shrink
and its residues may retain the relative orientational relationship, but with
significantly altered Euclidean distances. To address this deficiency, we
can use the orientational RMSD (oRMSD) measure (Binkowski et al.,
2003a). We first place a unit sphere at the geometric center of the pocket.
The location of each residue is then projected onto the unit sphere along
the direction of the vector from the geometric center. The projected
pocket is therefore represented by a set of unit vectors on the unit sphere,
which preserves the original orientational relationship. The RMSD of the
two sets of unit vectors for the two pockets in comparison can then be
measured, which gives the oRMSD value (Binkowski et al., 2003a).
For sequence order‐independent comparison of two surface pockets, we

start from a crude initial equivalence relationship that represents the
initial correspondence between residues from query and target pockets.
We then apply the optimal rotation matrix and translation vector com-
puted using (Umeyama, 1991) to this initial alignment. The Euclidean
distances between residues (or atoms) in the query pocket and target
pocket are then computed after the optimal superposition. Those that
are below a threshold are updated with new weights computed using a
similarity scoring function. The Bellman–Ford algorithm and the SVD‐
based optimal alignment and update of Euclidean distances are then
repeated iteratively. One can stop this iterative process if the improvement
is less then a threshold. As the overall alignment shape score may deterio-
rate temporarily when a new equivalence relationship is found and new
superposition applied, simulated annealing allowing a probability that
structural alignment may temporarily deteriorate can also be applied
here (Chen et al., 2005).
As an illustration, the sequence order‐independent alignment of surface

pockets in two structures of stromelysin shown in Fig. 7. It has an overall
cRMSD of 0.76 Å for 29 atoms from 10 residues. The Ca atoms from these 10
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residues align with a cRMSD of 1.05 Å. The alignment obtained in a
sequence order‐dependent fashion contains 16 residues. If we select the
subset of 10 residues from these 16 residues that overlap most with that of
the sequence order‐independent alignment, the alignment of their Ca

atoms has a cRMSD value of 3.71 Å. This example illustrates that this
method of sequence order‐independent comparison of two surface pockets
works well, and often can identify excellent surface matches that are chal-
lenging for other methods ( J. Dundas and J. Liang, unpublished results).

C. Statistical Significance

After the similarity of two surface pockets is calculated, we need to assess
its statistical significance to aid in biological interpretation. pvSOAR
sequence patterns are typically short, and are of different composition
from the full chain sequences. In addition, frequently the two pocket
sequence patterns in comparison have different number of residues.
Although the theoretical model of extreme value distribution (EVD) pro-
vides accurate description of gapless local alignment of random sequences
(Karlin and Altschul, 1990), no exact theoretical models are known in
general for local sequence alignment of very short sequences with gaps.

We have developed a heuristic approach to assess the statistical signifi-
cance of two pocket pvSOAR sequences aligned in sequence order. By
removing the largest peak in the low‐score region of the distribution of
alignment scores of random short sequences which often contain just one
or two matched residues, we found that the remaining distribution can be
described by an EVD well (Binkowski et al., 2003a). Specifically, the Smith–
Waterman scores of the search results of a query sequence pvSOAR
pattern to a database of randomly shuffled pocket sequences are collected.
They are then fitted to an EVD distribution, and the goodness of fit is then
evaluated using the Kolmogorov–Smirnov test (Pearson, 1991). If the
observed Kolmogorov–Smirnov statistic doe not indicate that the random
scores are inconsistent with an EVD distribution, we further estimate the
statistical significance p‐value using the calculated z‐score z ¼ S � mð Þ=s,
where S is the similarity score, m is the mean of random scores, and s is the
standard deviation. The p‐value can be estimated from the z‐score as
(Binkowski et al., 2003a)
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p Z > zð Þ ¼ 1� exp �e�1:282z�0:5772
� �

:

The expected number E of random pocket sequences with the same or
better score can be calculated as

E ¼ p � Nr;

where Nr is the number of randomly shuffled sequence fragments. The p‐
value or E‐value can be used to exclude matched pairs of pocket pvSOAR
sequences that are unlikely to be biologically relevant.
Once the cRMSDor oRMSD value is calculated for two surface pockets, we

also need to evaluate the statistical significance of shape comparison. As
illustrated above, a common practice for determining statistical significance
is to assume the similarity score are drawn randomly from a specific under-
lying distribution. The parameters of the assumed distribution are then
estimated by curve‐fitting the distribution of scores from the random com-
parison of protein pockets. The derived parameters can then be used to find
the Z‐score or p‐value of a given similarity score ( Jia et al., 2004; Levitt and
Gerstein, 1998; Ye and Godzik, 2004; Zhu and Weng, 2005). We found that
the distribution of both cRMSD and oRMSD for random surfaces on protein
structures do not follow known parametric model such as the EVD
(Binkowski et al., 2003a).We empirically estimate the probability p of obtain-
ing a specific cRMSD or oRMSD value for n number of matched positions
from a set of randomly generated surface pockets and voids. By collecting
cRMSD and oRMSD values of millions of randomly matched pockets with
different number of selected matched residues, we can estimate the p‐value
of a specific cRMSD or oRMSD with a specific number of matched residues.
This canbe foundbyfinding the closest valueof the rankorder statistic in the
randomly collected cRMSD or oRMSD data of the same number of residues
(Binkowski et al., 2003a; Russell, 1998).

V. Uncovering Evolutionary Patterns of Local

Binding Surfaces

Fast comparison of pvSOAR sequence fragments is a key step when
querying a specific surface pocket/void against a database of precomputed
pocket/voids, as the database can contain hundreds of thousands or
millions of entries. This is possible by applying fast dynamic programming
method to align the sequence fragments representing the two pockets/
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voids. This step is carried out before promising hits are identified and
further detailed shape comparison is carried out.

The specific scoring matrix used to assess the similarity of two aligned
pocket/void sequence fragments is critical for detecting functionally
related binding pockets/voids. A convenient choice is to adopt widely
used PAM matrices or BLOSUM matrices (Dayhoff et al., 1978; Henikoff
and Henikoff, 1992). A disadvantage of this approach is that these are
precomputed matrices and have implicit parameters with values prede-
termined from the analysis of large quantities of sequences, which
contain little information of the protein of interest. Another approach
is to use position‐specific scoring matrix (PSSM) such as those gener-
ated by the PSI‐BLAST program (Altschul et al., 1997). The drawback of
this latter approach is that it often leads to serious bias as the PSSM is
derived from all sequences aligned to the query sequence satisfying
certain statistical significance requirement. Bias comes from the fact
that all aligned sequences contribute equally to the derivation of
PSSM, regardless how closely or distantly they are related. This is
particularly problematic if the query result from the database is domi-
nated by closely related proteins.

A. Evolution Model

To resolve these issues, we have adopted an approach that models the
evolutionary process using a continuous time Markov process and an
explicit phylogenetic tree (Tseng and Liang, 2006). Markovian evolution-
ary models are parametric models and do not have prespecified parameter
values. These values are instead estimated from specific sequence data
relevant to the protein of interests (Whelan et al., 2001). This approach
has been shown to be more effective in deriving informative rate matrices
with significant advantage over matrices obtained from other methods
(Whelan et al., 2001).

We assume that a reasonably accurate phylogenetic tree T, the branch
lengths of the tree representing divergence time, and an accurate multiple
sequence alignment are known. These can be computed using maximum
likelihood method or Bayesian method (Adachi and Hasegawa, 1996;
Huelsenbeck et al., 2001; Yang, 1997). The subset of columns in the
multiple sequence alignment corresponding to the residues in the bind-
ing pocket are then identified based on pocket calculation (Binkowski
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et al., 2003a; Liang et al., 1998c; Tseng and Liang, 2006). Our model
assumes that the evolution of the residues in the binding pocket can
be modeled by a Markovian process characterized by a 20 � 20 matrix
Q ¼ {qij} of instantaneous substitution rates. The divergence time t is
measured in the unit of the expected number of residue changes per
100 sites between the sequences.
Once the instantaneous substitution rate matrix Q ¼ {qij} is known, the

matrix of probabilities of substitution of residue i by residue j in the time
interval t can be computed as

P tð Þ ¼ pij tð Þ
� � ¼ exp Q � tð Þ:

For symmetric Q, the matrix exponential can be conveniently computed
as

exp Q � tð Þ ¼ Uexp �tð ÞU�1;

where U is the matrix of right eigenvectors of Q, and U �1 is that of the left
eigenvectors. A technique to construct a more general nonsymmetric
instantaneous rate matrix Q that can be symmetrized can be found in
Tseng and Liang (2006) and Whelan and Goldman (2001).
For a column in the multiple sequence, we follow the phylogenetic tree

T and compute the transition probability pxixj tij
� �

for each of the edge in
the tree, whose length denotes the time interval ti,j. Here, xi and xj are the
residues at the positions corresponding to the nodes connected by
the edge. If we knew all the ancestral sequences (corresponding to the
internal nodes in the phylogenetic tree) of the extant sequences
(corresponding to the leaf nodes), the likelihood given the tree T and
the instantaneous rates Q for this column h can be obtained by combining
probabilities along all edges:

p xhð jT;QÞ ¼ pxk
Y

pxixj tij
� �

:

Here, the pxk is the prior probability of an arbitrarily chosen node k as
the starting node taking its residue as type xk at column h. pxk typically can
be computed as the composition of the aligned sequences. The product
sign � is over all edges in the phylogenetic tree. Since in reality we do not
know the identities of the residues in ancestral sequences, we sum over all
possible values the ancestral sequence might take in this column, and the
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probability p xhð jT;QÞ of observing this particular column h in the multiple
sequence alignment is

p xhð jT;QÞ ¼ pxk
XY

pxixj tij
� �

:

Here, the summation sign � is overall all possible residues in this
column for each of the ancestral sequences.

Treating each column independently, the probability P Sð jT;QÞ of ob-
serving all residues in the selected columns for the functional region S is

P Sð jT;QÞ ¼ P x1; . . . ; xsð jT;QÞ ¼
Y

p xhð jT;QÞ:

Here, the product � sign is over all columns.

B. Estimating Model Parameters Q and Bayesian Monte Carlo

We adopt a Bayesian framework, and each model parameter is described
with a distribution instead of a single value. The posterior probability
p Qð jS;TÞ of the rate matrix for a given aligned pocket region S and the
phylogenetic tree T integrates our prior information (represented by the
prior distribution p(Q)) on the model parameters, and the likelihood
function‐related probability P Sð jT;QÞ derived from the observed data:

p Qð jS;TÞ /
ð
P Sð jT;QÞ � p Qð ÞdQ:

Once this posterior distribution is known, we can calculate the posterior
mean of the parameters:

Ep Qð Þ ¼
ð
Q � p Qð jS;TÞdQ:

In practice, we generate correlated samples from the posterior distribu-
tion, and the posterior means of the model parameters are estimated from
these samples:

Ep Qð Þ �
X

Q i � p Qið jS;TÞ:

Samples drawn from the desired posterior distribution p Qð jS;TÞ are
generated by running a Markov chain. Briefly, we start with an initial set of
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parameter values for Q. The new parameter set Q tþ1 at time t þ 1 is
generated from a proposal transition function T Q t ;Q tþ1

� �
. It will be

either accepted or rejected by following the acceptance rule denoted as
r Q t ;Q tþ1

� �
. The criterion in designing the acceptance rule is to ensure

that the detailed balance

p Q t

� ��S;TÞ � A Q t ;Q tþ1

� � ¼ p Q tþ1

� ��S;TÞ � A Q tþ1;Q t

� �
is observed. This is necessary for the samples generated by the Markov
chain to follow the desired posterior probability distribution p Qð jS;TÞ.
The move set behind the proposal transition function that generates new
trial parameter set is very important for efficient computation. Its design is
discussed in Tseng and Liang (2006).
The Metropolis–Hastings acceptance rule

r Q t ;Q tþ1

� � ¼ min 1;
p Q tþ1

� ��S;TÞ � T Q tþ1;Q t

� �
p Q t

� ��S;TÞ � T Q t ;Q tþ1

� �
)(

is a rule that ensures detailed balance. It either accepts or rejects the
proposed new parameter set Q tþ1 by evaluating whether a random num-
ber u generated from the uniform distribution between 0 and 1 is no
greater than r Q t ;Q tþ1

� �
.

C. Deriving Scoring Matrices from Rate Matrix

Once the expected values for the rate matrix Q are obtained, we follow
the framework by Karlin and Altschul and derived scoring matrix used for
assessing the similarity between residues at different time interval
(Altschul et al., 1997). For residue i and residue j at time interval t, the
similarity score b ij(t) can be computed as

bij tð Þ ¼ 1

l
log

pij tð Þ
pj

¼ 1

l
log

mij tð Þ
pipj

;

where mij(t) is the joint probability of observing both residue type i and j at
the two nodes separated by time t, and l is a scalar (Altschul et al., 1997).
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D. Validity of the Evolutionary Model

The validity of this approach is confirmed by extensive simulation test.
In Tseng and Liang (2006), an explicit phylogenetic tree and 16 artificially
evolved sequences of carboxypeptidase A2 are used to test if the underly-
ing model of substitution rate parameters of Jones, Taylor, and Thornton
( JTT) ( Jones et al., 1992) used to generate the artificial sequences can be
recovered. In 50 independent simulations, the recovered rates and the
true JTT parameters all have the weighted mean error (as defined in
Mayrose et al., 2004) less than 0.0045. In addition, the parameters can
be recovered with acceptable accuracy when only about 20 residues in total
size are used (Tseng and Liang, 2006).

E. Evolutionary Rates of Binding Surfaces and Other Surfaces are Different

We have calculated the substitution rate matrix for both the binding
surface region and the remaining surface region of alpha amylase. The
distinct selection pressure for functional surface is also clearly evident in
the different patterns of the inferred substitution rates for binding region
and for the rest of the protein surface region (Fig. 8) (Tseng and Liang,
2006). In addition, both substitution patterns are also very different from
the precomputed JTT model ( Jones et al., 1992). This example illustrates
the need of extracting evolution pattern specific to the functional surfaces
of a particular protein for constructing sensitive and specific scoring
matrix for detecting functionally related protein surfaces. It also indicates
that selection pressure specific for protein function can be extracted
without being altered by selection pressure due to folding.

VI. Predicting Protein Function by Detecting Similar

Biochemical Binding Surfaces

Amylase and other enzymes. Alpha amylase (Enzyme Classification number
3.3.1.1) is an enzyme that breaks down starch, glycogen, and other related
polysaccharides and oligosaccharides. An objective test for protein func-
tion prediction is to take a known amylase structure and ask if it is used as a
template, whether we can find all other amylase structures in the PDB and
nothing else. This is a challenging task, as amylase exist in diverse species,
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and some of them have very low sequence identity (<25%), which is
challenging for function inference.
Using the template structure 1bag from B. subtilis, we are able to identify

one of the computed pocket‐containing 18 residues as the binding pocket
(Fig. 9). With multiple sequence alignment of 14 sequences homologous
to the template 1bag, all with <90% sequence identity to the template or
to each other, we have constructed a phylogenetic tree using the Molphy
package (Fig. 9A) (Adachi and Hasegawa, 1996). The rate matrix Q for the
binding region (which corresponds to the positions of the 18 residues) is
then estimated using the Bayesian Monte Carlo method we developed
(Tseng and Liang, 2006). Scoring matrices of different divergence time
are then generated from this rate matrix Q. These scoring matrices are
then used to evaluate the similarity for each of the >2 million precom-
puted pocket/void sequence fragment contained in the pvSOAR database
(Binkowski et al., 2004) with the query sequence fragment. This compari-
son is carried out using the Smith–Waterman method as implemented in
the FastA package (Pearson, 1991). Promising hits with E‐value <0.1 are
then selected for further shape analysis. Those with cRMSD or oRMSD

I
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Functional pocket
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Remaining surface
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FIG. 8. Substitution rates of residues in the functional binding surface and the
remaining surface of alpha‐amylase (pdb 1bag). (A) Substitution rates of residues on
functional binding surface (values represented by bubble sizes). (B) Substitution rates of
residues on the remaining surface on 1bag. The values and overall pattern of substitu-
tions that appear in both surface regions are very different. Adapted from Tseng and
Liang (2006).
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values with the template surface pocket at a statistical significance of p <

0.01 (Binkowski et al., 2003a) are then chosen as predicted hits, namely,
proteins that are predicted as alpha amylase.

Using this template, we are able to predict 58 other PDB structures as
alpha amylase. Indeed, all of them are found to have the same EC number
as that of 1bag. When following the same procedure but using a different
PDB template 1bg9 from the plant barley, we can predict 48 other PDB
structures to be alpha amylase, again in this case all are of the same E.C.
number as that of 1bg9 and 1bag (Tseng and Liang, 2006). Combining the

1BAG

AAA82875

CAA73775

CAB06622

BAA22082

ZP_00058434

O77015

AAA63759
NP_149331

NP_149261

CAE17325

BAA24177

AAC24760
AAC45781

0.1 substitutions/site

96
100

92

82

100

100
90

99

92

96

100

A

B C

FIG. 9. Function prediction of alpha amylases. (A) The phylogenetic tree for PDB
structure 1bag from B. subtilis. (B) The functional binding pocket of alpha amylase on
1bag. (C) A matched binding surface on a different protein structure (1b2y from
human, full sequence identity 22%) obtained by querying with the binding surface of
1bag. Adapted from Tseng and Liang (2006).
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hits using these two templates together, we are able to identify 69 PDB
structures of alpha analyses among the 75 known alpha amylase structures.
This method using specific matrix estimated by Bayesian Monte Carlo
compares more favorably than using the general JTT matrix, and than
using the iterative dynamic programming sequence alignment method
Psi‐blast. Details can be found in Tseng and Liang (2006).
This method has been tested for other enzymes. The results for

2,3‐dihydroxybiphenyl dioxygenase (E.C. 1.13.11.39), adenosine deami-
nase (E.C. 3.5.4.4), 2‐haloacid dehalogenase (E.C. 3.8.1.2), and phospho-
pyruvate hydratase (E.C. 4.2.1.11) are described in (Tseng andLiang, 2006),
where all other protein structures of the same E.C. numbers are correctly
predicted. In a recent study, we have selected a set of 100 enzyme families
with about 6000 structures and 770,000 precomputed binding surface pock-
ets/voids for testing. By taking the structure with the best resolution and R‐
factor as template, we test if our method can identify other members of the
sameprotein family andnothing else. After calculating the overall sensitivity
and specificity of predictions of all 100 protein families, the accuracy of
predictions for the functions of all 6000þ structures from the 100 protein
family is 92%, and the best Mathews coefficient is 86.6% (Y. Y. Tseng and J.
Liang, unpublished results).
Identifying metal cofactor of YecM from E. coli. The problem of predicting

ion specificity of YecM protein structure in studied in (Binkowski et al.,
2005). YecM protein (pdb 1k4n) from E. coli was chosen as a structural
genomics target, as it does not have recognizable similarity to other
proteins of known structures. Structural analysis indicates that YecM shares
some similarity to an isomerase and several oxidoreductases (Zhang et al.,
2003b). As these proteins all contain a divalent metal cation, it was pre-
dicted that YecM is a metal‐binding protein, but the preferred metal ions
were not known.
To predict themetal cofactormore accurately, the putativemetal‐binding

pocket on the YecM structure was compared against all known metal‐
binding surfaces in the PDB database using pvSOAR (Binkowski et al.,
2004, 2005). The results of surface alignment indicate that several zinc‐
binding surfaces from diverse species (Rattus norvegicus, Bacillus thermopro-
teolyticus, and Bacillus anthracis) share strong similarity to that of YecM, all
with significant p‐values (Binkowski et al., 2005). In fact, the top 30% of a
rank ordered list of all significant hits are zinc‐binding surfaces. In contrast,
binding surfaces for other metal ions (i.e., Co, Mn, Fe, and Mg) have less
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significant similarity to that of YecM. This result suggests that YecM is likely
to have zinc as its preferred metal cofactor.

Locating the active site of ribose‐5‐phosphate isomerase. pvSOAR analysis
helped to identify the active site of another protein from structural
genomics project (Binkowski et al., 2005). RpiB protein from E. coli (pdb
1nn4) is known to have ribose‐5‐phosphate isomerase activity. However,
the active site on this protein is unknown (Zhang et al., 2003c). Although
RpiA and RpiB have similar function, these two proteins belong to two
different structural folds (Binkowski et al., 2005). The active site of RpiA as
identified by mutagenesis and cocrystal structure with inhibitor is absent
on RpiB structure (Zhang et al., 2003c). A ligand docking study suggested
that the active site of RpiB from M. tuberculosis is located at the dimer
interface (Binkowski et al., 2005).

Pairwise comparisons of the active sites using pvSOAR show that the active
sites of RpiA and RpiB from E. coli and M. tuberculosis have similar area and
volume, and the active sites on RpiB from E. coli and M. tuberculosis have
almost identical geometry measured in both cRMSD and oRMSD, with
strongly conserved phosphate‐binding residues. Detailed analysis further
reveals that the most notable difference between RpiA and RpiB is in the
composition of basic residues, where His/Arg in RpiB are replaced by Lys in
RpiA. The surface patches of positively charged residues, and the orienta-
tion of acidic and basic residues important for catalysis are all conserved for
these proteins to carrying out similar functions.

Although biochemical assays clearly indicate that all three proteins have
the same substrate, and they are likely to have very similar binding
surfaces, the location and identities of the binding surfaces cannot be
detected without surface comparison, as RpiA and RpiB have no detect-
able similarity in overall sequence and structural fold. This study indicates
that pvSOAR analysis can help to understand how two seemingly different
binding surfaces performed the same function.

Putative adenine nucleotide‐binding site on CBS domain. CBS domains are
present in many species and have unknown specific functions, but are
thought to be part of an energy status sensor complex (Scott et al., 2004).
They appear in AMP‐activated protein kinase, IMP dehydrogenase‐2, and
chloride channel CLC2‐binding adenosyl moieties (such as AMP, ATP, or
S‐adenosyl methionine), and are often found in tandem pairs (Bateman,
1997; Scott et al., 2004). Their biochemical roles and the locations of the
active sites are uncharacterized.
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In the study of Binkowski et al. (2005), three structures of different
proteins from different species of archaea and bacteria‐containing CBS
domains are analyzed (Fig. 10). These domains have about 20% sequence
identities, which is insufficient for functional inference. Surface patches
from the structures of these domains are identified and searched against a
library of AMP‐ and ATP‐binding surfaces for potential matches. Among
these, well‐defined interface pockets are identified by CASTp computa-
tion, and strong hits of diverse AMP‐ and ATP‐binding surfaces are found
that are similar to these interface surfaces (Binkowski et al., 2005). The
results suggest that both tandem CBS domains from protein mt1622 (pdb
1pbj from M. thermoautotrophicum) and inosine‐50‐monophosphate dehy-
drogenase (IMPDH from S. pyogenes, pdb 1zfj) can bind to AMP and ATP,
consistent with experimental studies (Scott et al., 2004).
An unexpected finding for hypothetical protein Ta549 CBS from

T. acidophilum is that an alternative binding surface is found to have formed
by a C‐terminal additional insert of the singleton CBS domain, and a CBS
domain tandempair on adifferent chain.This binding surfacehas onlyweak
similarity to the above‐mentioned binding surface of the tandemCBS pairs,
but showed strong similarity to ATP‐binding surface on saicar synthase from
S. cerevisiae. This finding suggests the existence ofmultiple‐binding sites in a
CBS‐binding domain, stabilized by a third CBS domain.

VII. Adaptive Patterns of Spectral Tuning of Proteorhodopsin

from Metagenomics Projects

Our method can also be applied to protein sequences with only limited
structural information to gain biological insight (Adamian et al., 2006).
Proteorhodopsins (PR) are a class of newly discovered retinal‐containing
rhodopsins with structural and functional similarities to archaeal bacter-
iorhodopsins (Beja et al., 2000, 2001). They are found in numerous marine
bacteria and archaea through metagenomics studies of the communities
of marine organisms. A number of homologous proteorhodopsins were
functionally expressed in E. coli and found to form active, light‐driven
proton pumps in the presence of retinal (Beja et al., 2000; Friedrich et al.,
2002; Kim et al., 2008; Sabehi et al., 2005).
The absorption maxima of light wavelength of several subfamilies of

proteorhodopsins span the spectral range from blue (490 nm) to green
(525 nm) (Man et al., 2003). The absorption maxima correlate with the
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FIG. 10. Structures containing the CBS domain: (A) CBS domain protein mt1622
from M. thermoautotrophicum (PDB ID ¼ 1pbj), (C) inosine‐50‐monophosphate dehy-
drogenase (IMPDH) from S. pyogenes (PDB ID ¼ 1zfj), and (E) conserved hypotheti-
cal protein Ta549 from T. acidophilum (PDB ID ¼ 1pvm). The proposed nucleotide‐
binding surface of mt1622 (CASTp ID ¼ 9, cyan, A) is shown superpositioned to a
flavoprotein (PDB ID ¼ 1efp, white) with bound AMP molecule (B). The IMPDH‐
binding surface (CASTp ID ¼ 31, yellow) is show superpositioned with ATP bound
cyclin‐dependent kinase 2 (PDB ID ¼ 1b38, white) (D). Ta549 contains an addition-
al C‐terminus CBS domain (C, orange) opposite the tandem domain interface
surface (CASTp ID ¼ 27, C, green). The domain insert creates a novel surface
(CASTp ID ¼ 30, orange) that shares similarity to an ATP‐binding surface from
saicar synthase (PDB ID ¼ 1obd, white) (F).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

126 LIANG ET AL.



Comp. by: VElamathiRevises20000866694 Date:22/10/08 Time:11:30:22 Stage:
First Proof File Path:Z:/AIPC/AIPC 75/Appln/00004.3d Proof by: QC by:
ProjectAcronym:bs:AIPC Volume:75004

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

depth at which the samples were collected, for example, green‐absorbing
pigments (GPR) are found at the surface, and blue‐absorbing pigments
(BPR) are found at the deeper waters (Beja et al., 2001). Spectroscopic and
mutagenesis analyses indicate that a single residue difference at the
position 105 (Leu in GPR and Gln in BPR) functions as a spectral tuning
switch and accounts for most of the spectral differences (Man et al., 2003).
Residues A, E, M, and V also appear at the position 105 in the family of
green‐absorbing pigments, each with a specific absorption maximum
(Gomez‐Consarnau et al., 2007; Man et al., 2003).
Based on sequence similarity to the archaeal bacteriorhodopsin with

known structures, we have mapped out 13 nonredundant putative
retinal‐binding pocket sequence fragments from 99 sequences of proteor-
hodopsins (Adamian et al., 2006). The substitution rates for the amino acid
residues forming the putative retinal‐binding pocket are then calculated
using the Bayesian Markov chain Monte Carlo method (Tseng and Liang,
2006). Figure 11 shows the putative proteorhodopsin retinal‐binding pock-
et sequences, along with the phylogenetic tree and the bubble plot of amino
acid substitution rates. The amino acid substitution rates indicate very fast
exchange rate between the pairs of amino acid residues at position 105
(Fig. 11C), such as A/E, A/L, A/V, E/Q, L/Q, E/L, and E/V, indicating
that this position of the retinal‐binding pocket is the important location of
the functional adaptation of the proteorhodopsin. Results from this analy-
sis support the model that proteorhodopsins experience fast adaptation to
the environmental conditions (ocean depth) of their habitat by mutating at
position 105, rather than acquiring a new function (such as signal trans-
duction). As light is at a premium at ocean depth, spectral tuning is very
important, as a well‐tuned pigment would be more effective at capturing
light (Beja et al., 2001; Man et al., 2003; Sabehi et al., 2003).

VIII. Generating Binding Site Negative Images

for Drug Discovery

We can also construct the negative image of a binding pocket, and use it
as a shape template for understanding substrate/ligand and protein bind-
ing. With additional chemical texture mapped on the template, negative
images of binding pockets can be used for rapid screening of compounds
to identify those that might bind to the proteins (Ebalunode et al., 2008).
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FIG. 11. Amino acid substitution rates in the putative retinal‐binding pockets of
proteorhodopsins. (A) Alignment of putative pocket sequences. The 20 pocket residue
positions are mapped from retinal‐binding pocket in bacteriorhodpsin structure 1KGB.
Residues that are identical with the residues in the first sequence are substituted with
‘‘dots.’’ (B) Phylogenetic tree of the full‐length proteorhodopsin sequences. (C) The
plot of amino acid substitution rates for residues in the putative retinal‐binding pocket.
The area of the circles is proportional to the substitution rate. The exchange pairs with
the fastest rates are found at positions 93 and 137 in PR (following BR numbering). These
are A/L, A/V, A/E, E/Q, E/L, L/Q, L/V, andM/T. Adapted fromAdamian et al. (2006).
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The negative image of a binding pocket can be constructed using a set
of circumscribing spheres for the discrete set of Delaunay tetrahedra and
triangles that defines the binding pocket (Ebalunode et al., 2008;
Edelsbrunner et al., 1998). First, the orthogonal centers of each Delaunay
tetrahedron contained in the binding pocket are calculated. Circum-
scribed spheres are then generated with the orthogonal centers taken as
their spherical centers. The radii of the circumscribed spheres are then
further optimized so the resulting collection of spheres most faithfully
represents the negative shape of the binding pocket (Ebalunode et al.,
2008). Figure 12 gives an example of the negative image computed for the
isoflurane‐binding pocket in apoferritin, which provides the only soluble
protein model known to contain the structural motif thought to be
important for strong anesthetic binding (Liu et al., 2005).
When combined with pharmacophore information, the negative images

of protein‐binding pockets are found to be very effective in enriching
inhibitors when examining and ranking a long list of chemical compounds
for potential binding activities (Ebalunode et al., 2008). Results for HIV‐1
protease, phosphodiesterase 4B, estrogen receptor alpha, HIV‐1 reverse
transcriptase, and thymidine kinase show that the enriched compounds

A

B

C

FIG. 12. The generation of a negative image of a binding pocket. (A) The surface
pocket in apoferritin that binds isoflurane. (B) The atoms forming the binding pocket
and its computed negative image. (C) Negative image of the binding pocket.
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are of generally diverse chemical nature (Ebalunode et al., 2008). This
offers an advantage for further development of drug‐like compounds
based on these leads.

IX. Summary and Conclusion

Structural genomics projects have significantly advanced our under-
standing of the structural basis of the protein universe. It provides a wealth
of information for tackling the challenging problem of understanding
protein functions. By providing a large amount and standardized data, the
success of structural genomics enables development of new and well‐
tailored computational methodology to interrogate a variety of problems
in functional understanding of the biological roles of protein molecules.

In this chapter, we have discussed our approach of studying protein
local surfaces for function inference and function characterization. The
approach described in this chapter combines computational geometric
characterization of protein structure, sequence and shape matching, and
uncovers evolutionary signal of protein function. Our results suggest that
this approach is effective in detecting enzyme functional surfaces, in
inferring and characterizing protein functions, and in gaining biological
insight of the relevant cellular processes. An important advantage of
this integrated approach is that it gives clear location information about
the region of protein surfaces where biological function occurs. Another
important advantage is that by generating well‐defined surface pockets
and interior voids, by identifying those surfaces related to binding, and by
applying the Bayesian Monte Carlo method as developed in (Tseng and
Liang, 2006), we are now able to achieve the important task of separating
selection pressure due to protein function from that due to protein
stability and folding. This is evidence by the improved ability in predicting
protein functions when using customized scoring matrices computed
using our approach versus using precomputed scoring matrices.

It is envisioned that this approachof local surface analysis and comparison
can be generalized to study the challenging problem of physical protein–
protein interactions. Additional development in surface partition, shape
matching, and evolutionary signal detection will likely to yield new insight.
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