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Abstract

Background: Stochasticity plays important roles in many molecular networks when molecular
concentrations are in the range of 0.1 #M to 10nM (about 100 to 10 copies in a cell). The chemical
master equation provides a fundamental framework for studying these networks, and the time-
varying landscape probability distribution over the full microstates, i.e., the combination of copy
numbers of molecular species, provide a full characterization of the network dynamics. A complete
characterization of the space of the microstates is a prerequisite for obtaining the full landscape
probability distribution of a network. However, there are neither closed-form solutions nor
algorithms fully describing all microstates for a given molecular network.

Results: We have developed an algorithm that can exhaustively enumerate the microstates of a
molecular network of small copy numbers under the condition that the net gain in newly
synthesized molecules is smaller than a predefined limit. We also describe a simple method for
computing the exact mean or steady state landscape probability distribution over microstates. We
show how the full landscape probability for the gene networks of the self-regulating gene and the
toggle-switch in the steady state can be fully characterized. We also give an example using the
MAPK cascade network. Data and server will be available at URL: http://scsb.sjtu.edu.cn/statespace.

Conclusion: Our algorithm works for networks of small copy numbers buffered with a finite copy
number of net molecules that can be synthesized, regardless of the reaction stoichiometry, and is
optimal in both storage and time complexity. The algorithm can also be used to calculate the rates
of all transitions between microstates from given reactions and reaction rates. The buffer size is
limited by the available memory or disk storage. Our algorithm is applicable to a class of biological
networks when the copy numbers of molecules are small and the network is closed, or the
network is open but the net gain in newly synthesized molecules does not exceed a predefined
buffer capacity. For these networks, our method allows full stochastic characterization of the mean
landscape probability distribution, and the steady state when it exists.
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Background

Networks of interacting biomolecules are at the heart of
the regulation of cellular processes, and stochasticity plays
important roles in many networks, including those
responsible for gene regulation, protein synthesis, and sig-
nal transduction [1-5]. The stochasticity originates intrin-
sically from the small copy numbers of the molecular
species in a cell, which frequently occur when molecular
concentrations are in the range of 0.1 uM to 1nM (typi-
cally from about 100 to 10 copies in a cell) [2,6]. For
example, the regulation of transcriptions depends on the
binding of often a few proteins to a promoter site; the syn-
thesis of protein peptides on ribosome involves a small
copy number of molecules; and patterns of cell differenti-
ation depend on initial small copy number events. In
these biological processes, fluctuations due to the stochas-
tic behavior intrinsic in low copy number events play
important roles.

The importance of stochasticity in cellular functions is
well recognized. Studies of network models show that sto-
chasticity is important for magnifying signal, sharpening
discrimination, and inducing multistability [4,7-13].
Understanding the stochastic nature and its consequences
for cellular processes involving molecular species of small
copy numbers in a network is an important problem.

A fundamental framework for studying the full stochastic-
ity is the chemical master equation [14,15]. Under this
framework, the combination of copy numbers of molecu-
lar species defines the microscopic state of the molecular
interactions in the network. By treating microscopic states
of reactants explicitly, linear and nonlinear reactions
(such as synthesis, degradation, dimeric binding, and
multimerization) can all be effectively modeled as transi-
tions between microstates, with transition rates deter-
mined by the physical properties of the molecules and the
cell environment. The probability distribution or poten-
tial landscape [16-18] over these microstates and its time-
evolving behavior provide a full description of the proper-
ties of a stochastic molecular network.

However, it is challenging to study a realistic system that
involves a nontrivial number of species of small copy
numbers. Analytical solutions of the chemical master
equation exist only for very simple cases, such as self-reg-
ulating genes [19], and the toggle-switch network under
certain restrictions [8,18]. Instead of solving the master
equation, a widely used method is to carry out Monte
Carlo simulations using the Gillespie algorithm [14]. This
method generates samples from multiple runs of simula-
tion, and statistics properties are calculated from the sim-
ulation trajectories, which provide characterizations of
the network [13,14,20,21]. This approach has found wide
applications, although it cannot guarantee a full account
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of stochasticity, as this method usually does not generate
an exhaustive number of trajectories that cover all possi-
ble locations in the probability landscape. In addition, as
Monte Carlo simulations follow high probability paths, it
is especially challenging to sample adequately rare and
critical events that may be important in determining cel-
lular fate. It is also difficult to determine whether a simu-
lation is extensive enough to obtain accurate statistics. The
amount of computation necessary to obtain an accurate
result may be too large to be completed in a reasonable
amount of time, especially when the time scales of the var-
ious react ions involved are very different [8]. To address
these issues, Gillespie, Petzold, and colleagues further
developed numerical methods for speeding up the sto-
chastic simulation [20,21]. Munsky and Khammash
developed a method to approximate the solution of
chemical master equation by projecting the whole state
space of the system to a finite space [22]. Samant and Vla-
chos developed a multiscale Monte Carlo method for stiff
systems where partial equilibrium occurs [23]. An alterna-
tive approach is to approximate the master equation
using, for example, Fokker-Planck or Langevin equations
[15]. These are obtained by adding stochastic terms (often
Gaussian) to a deterministic equation [12,18,24]. Salis
and Kaznessis improved the stochastic simulation
method by partitioning the system into components with
fast and slow reactions. The fast reactions are approxi-
mated by the Langevin equations, and the slow reactions
are analyzed by stochastic Monte Carlo simulations [25].

A complete identification and characterization of the
space of the microstates is a prerequisite for obtaining the
full landscape probability distribution of a network. How-
ever, the state space of a network currently cannot be fully
characterized in general. There is neither closed-form
solution, nor computational algorithm describing the full
state space. In this paper, we study the problem of enu-
merating the state space of a molecular network with
small copy numbers of molecular species.

A naive method is to predefine the maximum copy
number of the reactants, and bound the state space by the
product of the maximum numbers. However, the size of
state spaces estimated by this naive approach will be
inflated to enormity. For example, if there are 16 species,
and there is a total a maximum of 33 molecules in the
whole system, this naive method does not take into con-
sideration of the details of the network, and the state space
will be estimated to be in the order of (33 + 1)16=3.19 x
1024 states. This naive method is intrinsically inefficient:
There may be many states which may never occur. For
some states, no reactions may occur and therefore are not
needed. For others, no reactions can lead to them under
the specified initial condition. An alternative approach is
carrying out simulation. One can simply follow explicitly
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simulated reaction events to whatever microstates of copy
numbers the system reaches. However, this approach can-
not guarantee that all reachable states will be explored,
therefore cannot guarantee full characterization of rare
events.

In this study, we develop an optimal algorithm that gives
full description of the state space and the set of transi-
tions. Our method works for networks of small copy
numbers under the condition that the net gain in newly
synthesized molecules in the network does not exceed a
predefined finite number. Our algorithm is optimal in
both memory requirement and in time complexity. All
states reachable from a given initial condition will be
accounted for by our method, and no irrelevant states will
be included. All possible transitions will be recorded, and
no infeasible transitions will be ever attempted. As a
result, our algorithm can generate the full state-transition
matrix under the framework of the chemical master equa-
tion. This matrix is compact without any redundant infor-
mation. It is also of the minimal size. In addition, the
computational time is optimal, up to a constant. We also
describe how to obtain the mean landscape probability
distribution over the enumerated state space of a network,
which is the same as the landscape distribution of the
steady state when it exists.

This paper is organized as follows. We first describe how
our method can be applied to the simple examples of a
self-regulating gene, a toggle-switch network, and the
more complex example of the MAPK network. This is fol-
lowed by conclusion and discussion. We finally describe
the technical details of the algorithm for enumerating the
space of microstates, and introduce a simple method for
computing the steady state landscape probability distribu-
tion.

Results and Discussion

Molecular network models

We apply our algorithm to three network models: the self-
regulating gene, the small toggle-switch network, and the
MAPK cascade network.

Self-regulating gene

Regulating the expression of even a single gene is a com-
plex process. We study the network of an idealized self-
regulating gene (Fig 1a and 1b). As a basic unit in biolog-
ical genetic networks, it consists of only one gene, and is
the simplest molecular network. We follow the study of
Schultz et al and assume that the dominant form of regu-
lation is the binding and unbinding of transcription fac-
tors to the operator site, which changes the rate of
transcription initiation [18]. In this model, there are sev-
eral stochastic processes: the synthesis and degradation of
the protein transcription factor at the reaction rate con-
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The network of a self-regulating gene. (a) The topology of
the network. A single copy of the gene in the chromosome
encodes a protein transcription factor (TF), which is synthe-
sized at the rate of sy or s, depending on whether the opera-
tor site is bound (state 0) or unbound (state 1). The TF binds
the operator site of the gene at a rate of b. It unbinds at a
rate of u. The TF is also subject to degradation at a rate of d
determined by the degradation machinery. Here the symbol
O represent the state of being degraded. (b) The chemical
reactions of the five stochastic processes and the corre-
sponding reaction rates.

stants of s, (or s,) and d, respectively, and the binding and
unbinding of the operator site of DNA by the transcrip-
tion factor at the reaction rate constants of b and u, respec-
tively. These processes are illustrated in Fig 1b. The
binding state of the operator site is either "on/unbound"
(state 1), or "off/bound" (state 0). The synthesis rate of
transcription factor is either s, or s5;, depending on the
binding state of the operator site.

We first calculate the state spaces. We use the same initial
condition of 1 copy of unbound gene, 0 copies of tran-
scription factor and bound gene, and set the buffer size to
allow different copy numbers of protein transcription fac-
tor to be synthesized. As there is only one copy of the gene
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in this model [18], the size of the state space increases
with the copy number of the protein transcription factor
that can be synthesized. Our results show that when the
buffer capacity takes the value of 100, 1,000, and 10,000,
the size of the state space is 201, 2,001, and 20,001,
respectively. In this model, the size of the state space
scales linearly with the copy number of the protein syn-
thesized. In biological condition, the copy number of a
transcription factor rarely exceeds 100.

We then calculate the exact steady state probability distri-
bution over the microstates of the self-regulating gene,
namely, the exact steady state density function of different
states of copy numbers of the transcription factor. In our
calculation, the parameter values are chosen as u = d/10
and b =d/250, in units of degradation rate d, following ref-
erence [18]. The steady state distributions P at different
values of synthesis rates in on/unbound and off/bound
states s; and s, are computed exactly and are shown in Fig
2 for the case of buffer size of 1,010 for illustration. Here
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Figure 2

The steady state landscape probability distributions of a self-
regulating gene network. The probability over the number of
free protein is plotted. Here this probability is the sum of
probabilities for two different gene binding states (bound and
unbound) at the same number of free proteins. When the
unbound/on state synthesis rate s, is greater, the network is
self-repressing. When the bound/off synthesis rate s is
greater, the network is self-activating. Although the self-
repressing (front profile) and the self-activating (back profile)
genes have overall similar distributions, the former has a
slightly higher probability in producing more free proteins
than the latter. When both synthesis rates are equal (middle
profile), the network follows a simple birth/death process,
with a Gaussian probability distribution.
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the marginal probability of having a specific number of
free proteins in the system is plotted, regardless whether
the gene is in off/bound or in on/unbound state. Follow-
ing reference [18], we use three different network condi-
tions: (so, $;) = (50, 10), (50, 50), and (10, 50) in units of
degradation rate d, respectively. When the on/unbound
state synthesis rate s, is greater, the network is self-repress-
ing. When the off/bound synthesis rate s, is greater, the
network is self-activating.

Our results and the results of Schultz et al obtained from
multiple runs of Gillespie simulations are identical [18].
As pointed out in [18], the self-repressing and the self-acti-
vating genes can have overall similar distributions. This
can be explained by the fact that the combined synthesis
rate of the protein s, + 5, = 60 is the same in both cases
(front profile and back profile in Fig 2). Closer examina-
tion shows that in the case of the self-repressing gene net-
work (s, = 10 and s; = 50, front profile), the first peak of
probability at smaller copy number of the free protein is
lower, and the second peak at higher copy number is
larger when compared to the distribution of the self-acti-
vating gene (s, = 50, and s, = 10, Fig 2, back profile). That
is, the self-repressing network has a higher probability in
producing more free proteins than the self-activating net-
work. This can be explained by the difference between the
protein-DNA binding rate b and unbinding rate u. In this
model network, unbinding rate u = d/10 is 25 times
greater than the binding rate b = d/250. As a result, this
gene is more likely to stay in the unbound state. Since the
self-repressing network has a higher synthesis rate in
unbound state (s; = 50 > s, = 10), it will produce more free
proteins. This results in an overall slightly higher proba-
bility for larger number of free proteins for self-repressing
network. This small difference in probability distribution
is also observed in [18]. As pointed out previously in [18],
when both synthesis rates are equal (s,= s, = 50), the bind-
ing state transition do not change the synthesis/degrada-
tion process, and the network is a simple birth/death
process, with a Gaussian probability distribution for pro-
tein number centered at s, = s, (Fig 2, middle profile).

Toggle switch

A toggle switch is a small network consisting of two genes,
A and B. The protein product of each represses the other
gene. Toggle switch is the smallest genetic network that
can present bistability. The insightful study of Schultz et al
provided detailed analysis of the stochastic behavior of
this model network [18]. To facilitate direct comparison,
we adopt the same toggle-switch model developed by
these authors (Eqns 5-8 in reference [18]). The molecular
species and the network topology are shown in Fig 3a.
There are a number of stochastic processes: the synthesis
and degradation of proteins A and B, with reaction con-
stants denoted as s and d, respectively; the binding and
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The network of a toggle switch. (a) The topology of the net-
work and variables representing the reaction rates. Single
copies of gene A and gene B in the chromosome each
encode a protein product. Two protein monomers can
repress the transcription of the other gene. The synthesis of
protein product of gene A and B depends on the bound or
unbound state of the gene. (b) The chemical reactions of the
8 stochastic processes involved in the toggle-switch network.
The reaction rates include s for protein synthesis, d for pro-
tein degradation, b for protein-gene binding, and u for pro-
tein-gene unbinding.

unbinding of the operator site of one gene by the protein
products of the other gene at rate b and u, respectively (Fig
3b). The binding states of the two operator sites are "on-
on/unbound-unbound" (state 11 for gene A and gene B),
"on-off/unbound-bound" (state 10), "off-on/bound-
unbound" (state 01), and "off-off/bound-bound" (state
00). The synthesis rates of both proteins A and B depend
on the binding state of the operator sites. The toggle
switch model used in this study and all possible chemical
reactions in the model are extracted directly from the mas-
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ter equations in [18]. In this model, no dimerizations are
explicitly modeled, and the model assumes that binding
of two proteins to the operator site simultaneously. This is
a valid approximation when the dimerization reaction is
fast compared to all other reactions [8]. Even for this sim-
ple network, except for the special cases when "fast transi-
tion" between on- and off- operator states and "small
noise" of high molecular concentration conditions are
assumed, no exact solutions are known [8,18].

We first calculate the state spaces under the initial condi-
tion of 1 copy of unbound gene A, 1 copy of unbound
gene B, 0 copies of bound gene A and bound gene B, and
0 copies of their protein products. We set the buffer size to
different copies of total protein A and protein B combined
that can be synthesized. When the buffer capacity is 20,
the size of the state space is 764. At buffer capacity of 200,
400, and 800 copies of proteins, the size increases to
79,604, 319,204, and 1,278,404, respectively.

We then calculate the exact steady state landscape proba-
bility of the toggle-switch network, namely, the exact
steady state density function of different microstates of
copy numbers of products of gene A and gene B. The
steady state distributions P are shown in Fig 4 for the case
of buffer size of 300. In our calculation, the parameter val-
ues are chosen as s = 100d, u = d/10, and b = d/100, 000,
in units of degradation rate d. These are the same as those
used in reference [18].

It is clear that a toggle switch has four different states, cor-
responding to the "on/on", "on/off", "off/fon" and "off/
off" states. At the chosen parameter condition, the toggle/

Figure 4

The steady state probability landscape of a toggle switch. A
toggle switch has four different states, corresponding to dif-
ferent binding state of genes A and B. At the condition of
small value of u/b, the off/off state is strongly suppressed, and
the system exhibits bi-stability.
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switch exhibits clear bi-stability, namely, it has high prob-
abilities for the "on/off" and "off/on" states, but has a low
probability for the "on/on" state. The "off/off" state is
severely suppressed. Our results are identical with the
results of Schultz et al obtained from multiple runs of
Gillespie simulations [18].

MAPK network

MAPK cascade network plays important role in signal
transduction. Here our purpose is to explore how to apply
our algorithm to more realistic network model. Our goal
in this paper is not to study the the stochastic nature and
the dynamic behavior of MAPK network.

The MAPK cascade network (BioModels ID:
BIOMDO0000000028) is taken from the BioModels data-
base at EBI [26,27]. The molecular species and reactions
are extracted from the SBML (Systems Biology Markup
Language) model file. This network contains 16 molecu-
lar species with 17 reactions [26]. As there is no synthesis
reaction, this particular network model is a closed system.
Abbreviations used in this model are listed in Table 1. Fig
5 shows the topology of the model. All 16 molecular spe-
cies are labeled with numbers from 1 to 16. Among them,
MEK (triangles in Fig 5) and MKP3 (squares) are the key
enzymes catalyzing all phosphorylation and dephosphor-
ylation reactions in this network. The rest of the molecular
species are substrates, intermediates, and products of MEK
and MKP3 induced reactions. Most of the reactions in this
model (14 of 17) are second-order.

Simple initial conditions

We generate the state spaces of the MAPK network for dif-
ferent initial conditions and record their sizes. We first
increase the copy number for one species from 1 to 20,

Table I: Abbreviations of the molecular species in the MAPK
network.

Num. Abbrev. Description
| M ERK, extracellular signal- regulated kinase
2 MpY ERK with Y phosphorylated
3 MpT ERK with T phosphorylated
4 Mpp ERK with dual phosphorylated
5 MEK ERK kinase
6 MKP3 ERK phosphatase
7 MpY_MEK Binding of MpY and MEK
8 MpT_MEK Binding of MpT and MEK
9 M_MEK _Y Binding of M and MEK at Y site
10 M_MEK_T Binding of M and MEK at T site
I Mpp_MKP3 Binding of Mpp and MKP3
12 MpY_MKP3 Binding of MpY and MKP3
13 MpT_MKP3_Y Binding of MpT and MKP3 at Y
14 MpT_MKP3_T Binding of MpT and MKP3 at T
15 M_MKP3_T Binding of M and MKP3 at T site
16 M_MKP3_Y Binding of M and MKP3 at Y site
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and record the size of resulting state space, while keeping
the copy numbers of all other species to 0. We repeat this
process for each of the 16 molecular species in turn. Alto-
gether, we have 16 x 20 = 320 data points of sizes of the
state space (Fig 6).

It is clear that different molecular species in this model
affect the size of the state space differently. Increasing the
copy number of M-MEK-Y, M-MEK-T, and Mpp-MKP3
molecules (species 9, 10 and 11, in bold fonts in Table 1)
lead to large state spaces (size 888, 030 at 20 copies, Fig
6), while the initial conditions of 20 copies of any other
species result in modest state spaces. For example, species
7, 8, 15 and 16 when given 20 copies have a state-space
size of 231. For species 1-6 (M, MpY, MpT, Mpp, MEK,
MKP3), no reactions can occur at these initial conditions,
and the state space contains only the the initial state.

The state space for each of the 320 initial conditions can
be computed within one minute. We further found that
when any of S,, S;,, or S;, has an initial copy of 28 and all
others 0 copies, the state spaces increases to 6,724,520,
and the computing time also increase, although all can be
computed within 10 minutes on a Linux workstation.

Biological initial conditions

We further calculate sizes of the state spaces with several
biologically plausible initial conditions, in which species
M, MEK and MKP3 are all given an equal number of i cop-
ies, while all the other species start with zero copies. We
increase i from 1 to 11. These initial conditions corre-
spond to a total number ranging from 3 x 1 = 3 copies to
3 x 11 = 33 copies of molecules of three species in the net-
work. The size of the state space increases with the copy
numbers. When there are 1 copy of M, MEK, and MKP3
each, the size of the state space is 14. For 5, 10, and 11
copies of M, MEK, and MKP3 each, the size increases to
8,568, 1,144,066, and 2,496,144, respectively. The com-
putation of the state space ati= 10 and i = 11 requires 156
seconds and 589 seconds of CPU time on a Linux desktop
machine, respectively.

Steady state distribution

We compute the steady state probability distributions of
the microstates of the MAPK network at the initial condi-
tion of 10 copies each of M, MEK and MKP3. That is, we
obtain the exact steady state density function of different
microstates of all possible 1,144,066 combinations of dif-
ferent copy numbers of the 16 molecular species in the
MAPK network. The computation is efficient. At this ini-
tial condition, the dimension of the Markovian transition
matrix M is 1, 144, 066 x 1, 144, 066, with 14, 574, 406
number of non-zero elements. It takes 1,341 seconds
(about 23 minutes) of CPU time to compute the steady
state probability distribution on a Linux workstation.
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The MAPK network model according to BioModel (id BIOMD28). The molecular species are labeled with integer numbers.
Reactions are labeled with variables representing the corresponding reaction rate, b, for binding rates, u;for unbinding rates,
and k; for rates of first order reactions. Solid arrows in this figure represent binding reactions, and empty arrows for unbinding

reactions. The parameter values of this model are taken as is from the SBML model. We have: b, = 0.005, b; =
0.01,b4=
0.5, and k; = 0.47.

b, = 0.005, by = 0.045, b, =
0.008, ug = 0.45, u,, = 0.086, u,, = 0.14, k, = 0.092, k, =

0.01,b,,=0.01,b,,=0.0011,b,;=

0.025, bs = 0.05,

0.0018, Uy 3579101113 = |, up = 1.08, uy = 0.007, u, =

As it is impossible to directly visualize the landscape den-
sity distribution in a 16-dimensional space, for ease of vis-
ualization, we plot the marginal distribution of different
combinations of copy numbers of extracellular signal-reg-
ulated kinase (ERK) in unphosphorylated state, in single
phosphorylated state, and in dual phosphorylated state.

Specifically, we plot the marginal probabilities of different
copy numbers of unphosphorylated ERK (M), and ERK
with either Y or T site phosphorylated (Mp, including
both MpY and MpT), after integrating different copy num-
bers of all other 14 molecular species in Fig 7a. We plot
the marginal distribution of different copy numbers of
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Figure 6

Sizes of state spaces for a model of the MAPK cascades
under the initial condition of | to 20 copies of each of the 16
species in turn and 0 in all other species. Altogether the size

of state space for 16 x 20 = 320 initial conditions are shown
here.

unphosphorylated ERK (M), and ERK with both Y or T'site
phosphorylated (Mpp) Fig 7b. We plot the marginal dis-
tribution of different copy numbers of uni-phosphor-
ylated ERK with either Y or T site phosphorylated (Mp,
including both MpY and MpT), and ERK with both Y or T
site phosphorylated (Mpp) in Fig 7c. At this parameter
condition, the steady state distribution has a single peak
centered around two copies of unphosphorylated ERK
(M), two copies of uni-phosphorylated ERK (Mp), and
zero copy of dual phosphorylated ERK (Mpp).

Conclusion

Stochasticity plays important roles in molecular networks
for processes involving small copy numbers of molecules.
Models of molecular networks based on macroscopic
reaction rates and coupled ordinary differential equations
are not applicable in these cases, as they can only model

high concentrations of interacting molecules with negligi-
ble fluctuations.

The stochastic nature of molecular interactions at low
copy numbers can be fully characterized if the time-vary-
ing landscape probability distribution on all of the micro-
states of a molecular network can be computed. This is a
difficult task, as the state space of the combination of the
copy numbers of molecular species needs to be explicitly
enumerated, the probability distribution over these
microstates and changes of this distribution across many
decades of time scale need to be fully computed.

http://www.biomedcentral.com/1752-0509/2/30
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Figure 7

The marginal landscape probability distribution of different
copy numbers of molecular species in the MAPK network in
steady state. (a) Marginal probability distribution of the com-
bination of the number of unphosphorylated ERK (M) and
uniphosphorylated ERK (Mp, including both MpY and MpT),
regardless of the copy numbers of all other molecular spe-
cies; (b) Marginal probability distribution of the combination
of the copy numbers of unphosphorylated ERK (M) and dual-
phosphorylated ERK (Mpp); (c) Marginal probability distribu-
tion of the combination of the copy numbers of uniphospho-
rylated Mp and dual phosphorylated Mpp.
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In this study, we have developed an algorithm to enumer-
ate the state space of a molecular network of small copy
numbers with a buffer containing a finite number of mol-
ecules that can be synthesized. It can also be used to find
all possible transitions between states, and to compute the
transition rates between these states. We also demonstrate
how to obtain the steady state probability distribution
based on the enumerated states when it exists.

Our example of the toggle-switch network shows that this
method can be used to study the rise of important net-
work properties such as bistability. The enumeration of
the full state space of the MAPK cascade network at vari-
ous initial conditions demonstrate that our method can
be used to study a realistic network of nontrivial size,
which is more complicated than the simple networks that
are often studied for full stochasticity. Although naively
the state space at the initial condition of each of 11 copies
of unphosphorylated, uniphosphorylated, and biphos-
phorylated ERK kinase might be as high as (33 + 1)1¢=
3.19 x 1024, a truly astronomical size, our method showed
that the relevant space is only about 2.50 x 106, which is
amenable for computation using a desktop computer.

Our method is applicable to study various carefully con-
structed model network systems. It complements the
Monte Carlo simulation method, as it can be used to char-
acterize the full probability landscape of networks with
enumerable state space. For example, it will allow the cal-
culation of the probabilities of the occurrence of rare and
critical events. For theoretical studies, one can predefine a
fixed number of net molecules that can be synthesized,
and investigate the nature of the landscape probability
distribution. This is similar to the studies of semi-grand
canonical ensemble in statistical physics [28]. Exact char-
acterization of probability landscape is useful, as most
network studies are based on stochastic simulation, and
relative little is known at the level of the full stochastic
landscape probability distribution, even for simple toy
systems. For example, analytical solutions to the simple
toggle switch model is known only when the model
parameters follows the restrictions of small noise and fast
transition [8,18]. We believe our method can be used to
study well designed model systems beyond self-regulating
genes and simple toggle switches, and the exact results
obtained will be helpful for understanding the basic prop-
erties and design principles governing stochastic net-
works. A useful analogy to illustrate the utility of such
model studies can be found in the field of protein folding,
where a large number of studies using simple short chain
HP lattice models revealed remarkable insights about how
complex proteins fold [29-36].

Our method can also be applied to more realistic biolog-
ical networks, such as the MAPK network model, which is
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a closed system according to the annotated BioModels
database [27]. Such closed systems could arise when one
focus on a submodule of a larger network. For the major-
ity of realistic networks which are open systems, an
important determining factor of the applicability of our
method is the limit of the capacity of a buffer, which has
to be greater than the maximum copy number of the net
gain in protein molecules that can be synthesized. In a
cell, this maximum number is determined by the life time
of the cell, and the net synthesis rate of protein molecules.
The latter depends on both protein synthesis and degrada-
tion rates. A simple approach is to estimate the net
number of protein molecules that can be synthesized dur-
ing the life time of a cell. For example, the lifespan of an
E. coli cell is about 30 minutes [37]. Estimation based on
the rate limiting processes of transcription initialization
and elongation indicate that the protein synthesis rate
ranges from 0.0077/s (for the C1 protein) [2,38] to
0.0534/s for the Cro protein [2,39,40] in the lambda
phage system. Their degradation rates are about 0.0007/s
and 0.0025/s, respectively [2]. This suggests that a useful
bound of the copy number of newly synthesized mole-
cules for studying the lambda switch network system
could be in the order of 150-200 copies under reasonable
initial conditions. Naturally, the exact number will
depend on the details of the chosen network model and
the parameter values. For example, models of cells under
stress with retarded synthetic rates may require a relatively
small buffer capacity.

In this study, we have described a method to compute the
steady state landscape probability distribution. Steady
state distribution is of general interests when it exists, as
has been shown in previous studies [17,18]. For realistic
network, another approach is to compute the time-
dependent dynamic change of landscape probability dis-
tribution, using techniques such as those used in [36]. We
will describe this approach in more details in future stud-
ies.

As the number of molecular species and their copy num-
bers increase, the state space will eventually become pro-
hibitively large for explicit computation even with an
optimal algorithm. In these cases, our method can be used
to select important states and to control error bounds at a
specific tolerance for developing approximation methods,
an approach well demonstrated in [22].

Methods

The Algorithm

Suppose we have a model of a biological network, which
contains m molecular species and can have n reactions.
Given an initial condition, namely, the copy numbers of
each of the m molecular species, we aim to calculate all
states that the biological system can reach starting from
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this initial condition, under the condition that the net
number of molecules that can be synthesized does not
exceed a predefined limit. These states collectively consti-
tute the state space of the network under this initial con-
dition.

Formally, we have a model of a biological network N =
(M, R), with m + 1 number of molecular species: M =
(M,,...M,,, ), and n reactions: R = {R;,..., R,}. Here m of
the species are from the network. A buffer of predefined
capacity is used to represent a pool of virtual molecules
for open systems, from which synthesis reactions can gen-
erate new molecules, and to which degradation reactions
can deposit molecules removed from the network. We use
the m + 1-th species to represent this buffer pool. The com-

m+1

binations of copy numbers of all molecular species S =
(¢1s+-sCpy €ppyq) form the microstate of the system, where

C,ns1 denotes the number of net new molecules that can

still be synthesized at this state. A reaction can involve an
arbitrary number (= 1 and < m) of molecular species as
reactants and/or products, with any arbitrary positive inte-
ger coefficient (i.e., arbitrary stoichiometry). Synthesis
reaction is allowed to occur only if the buffer pool is not
exhausted, namely, only if ¢,,,; > 0. The set of all possible
states S that can be reached from an initial condition fol-
lowing these rules constitute the state space of the system:
X = {S}.The set of allowed transitions is T = {t;}. We are

given with an initial condition:

§=0 =(c?,¢9,..,¢2,c2.,,), where ¢! is the initial copy
number of the i-th molecular species at time t = 0, and
c2 ., =B is the predefined buffer size. The maximum

copy number of net gain in newly synthesized molecules
of the system is restricted by this constant B. Our aim is to
enumerate the state space X under this given initial con-
dition.

The algorithm is written as Algorithm 1 (see Appendix). It
performs the following computation: After initialization,
we start with the initial state St=0. We examine each reac-
tion in turn to determine if this reaction can occur for the
current state. If so, and if the buffer is not exhausted, we
generate the state that this reaction leads to. If the newly
generated state was not encountered before, we add it to
our collection of states for the state space, and declare it as
a new state. We repeat this for all new states, which is
maintained by a stack data structure. This terminates
when all new states are exhausted.

In this algorithm, a stack data structure is used. Descrip-
tion of the stack data structure can be found in computer
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science textbooks such as [41]. A stack is used here to store
individual states. These states are "Push"ed onto the stack:
If we encounter a previously unseen state, we create it and
push it onto the stack so further calculations on this state
can be carried out at a later stage. We use the "Pop" oper-
ation to obtain a state previously stored on the stack to
carry out these calculations. In this case, we pop a state to
examine what reactions can occur and what other states
these reactions can lead to.

We can compute the transition coefficient {a; ;} between
two microstates S; and §; using Algorithm 2 (see Appen-
dix) following the approach outlined in references
[14,18,22]. We give further details in later sections on
how this is done for the three networks studied here.

Correctness and optimality

The state space and the transitions under a given initial
condition can be considered as a directed graph G= (X,
T), in which vertice are the state vectors, i.e., the set of
reachable states X, or the m + 1-tuples of copy numbers
of the m + 1 molecular species, including the buffer. Edges
are the set of allowed transitions T between the states, i.e.,
reactions connecting two state vertice. Two vertice S;e X

and S;e X are connected by a directed edge ¢; ;€ T if and
only if §; can be transformed to §; through a reaction. Any

reachable state can be transformed from the initial state
by one or more steps of reactions, and the directed graph
G is a connected graph.

Our algorithm implicitly generates this graph G. Because
the set of reactions R is finite, G has a finite tree-width at
any finite steps away from the initial condition. Assume
the algorithm will not terminate in finite steps. Since in
this algorithm each state is only visited no more than
twice, G must have an unlimited depth. That is, there must
exist a path p in the graph G that starts from the initial
state and extends to infinite. Therefore p must contain an
infinite number of different states. This is impossible for
any given initial condition, as each molecular species has
a limited initial copy number, and the size of the buffer
limits the number of new molecules that can be synthe-
sized in open systems. The algorithm therefore must ter-
minate.

This algorithm gives correct answers, assuming that the
newly synthesized molecules does not exceed the prede-
fined buffer capacity. This is because all states visited in
the algorithm can be reached from the initial condition,
and all visited states is actually reached as each is brought
to by a chemical reaction. In addition, all reachable states
will be visited, as the algorithm test at each state all possi-
ble reactions, and will only terminates when all new states
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are exhausted. It is easy to see all possible transitions
between states will be recorded.

The time complexity of our algorithm is optimal. Since
only unseen state will be pushed onto the stack, every
state is pushed and popped at most once, and each state
will be generated/visited at most twice before it is popped
from the stack. As access to each state and to push/pop
operations take O(1) time, the total time required for the
stack operations is O(] X' |). As the algorithm examines
each of the n reactions for each reached state, the com-
plexity of total time required is O(n| X |), where n is usu-
ally a modest constant (e.g. < 50). Based on the same
argument, it is also easy to see that the algorithm is opti-
mal in storage, as only valid states and valid transitions
are recorded.

Computing mean and steady state probability distribution

We can calculate the expected landscape probability distri-
bution over the microstates, namely, the exact mean den-
sity function of different microstates of copy numbers in
the network. It is the same as the steady state probability
distribution function if the steady state exists. Instead of
calculating the time trajectories of changes in the proba-
bility distribution and wait until it reaches equilibrium,
we use a simpler approach applicable to networks in
which a steady state exists. Following Kachalo et al [36],
we obtain the Markovian state transition matrix M from
the reaction rate matrix A: M = I + A-At, where I is the
identity matrix, and At is the discrete time unit and is cho-
sen to be 1. The probability distribution function P of the
microstates can be obtained by solving the equation P =
MP. The calculation of the steady state distribution P is
not sensitive to the precise choice of the discrete time unit
At. The steady state distribution corresponds to the eigen-
vector of M with eigenvalue of 1. We use the Arnoldi
method implemented in the software ARPACK to com-
pute the steady state distribution P [42].

Computing transition coefficients

The transition coefficient between different states con-
nected by a reaction is calculated by multiplying the
intrinsic rate of this reaction with the reaction order
dependent combination number of copies of reactants in
the "before" state [14]. We provide more details using
examples from the three networks.

Self-regulating gene
Suppose the first order reaction

d
Protein — &

http://www.biomedcentral.com/1752-0509/2/30

enables the transition of the system from the microstate i
to j. This reaction denotes the degradation of the protein
molecule at an intrinsic rate of d. The stoichiometry of this
reaction dictates that the copy number of protein n, ; in
the "after" state j is one less than the copy number n, ;in
the "before" state i. From the reaction formula, the transi-
tion coefficient g; ; for the matrix A is calculated as:

ij My, i

Recall that since a microstate is uniquely determined by
the combination of copy numbers of all molecular spe-
cies, n, ; therefore is known as a state attribute.

For the second order reaction

b
Protein + Gene — BoundGene,

the transition coefficient connecting the "before" state i to
the "after" state j can be computed as:
a

b-n,;n

ij = g ir

where b is the intrinsic reaction rate, n, ; is the protein
copy number at state i, and n, ; is the copy number of gene
in state i, which is 1, as we assume there is only one copy
of the gene in this network model.

We can similarly compute the transition coefficient a; ; for
the reaction

u
BoundGene — Protein + Gene

as a; j= u-my, ;, where n, ;is the number of bound gene in
the "before" state, which takes the value of 0 or 1 in this
model, depending on whether the gene is in protein-free
or in protein-bound state. For the simpler reaction:

So
BoundGene — Protein,

we have g; ;= s, n,, ; where n,,, ;is the number of bound
gene in state i, which takes the value of 0 or 1. For the syn-

thetic reaction of

$1
Gene — Protein,

we have a;=s,-n, ;.
We have described how to compute the transition coeffi-
cient for all reactions in the represser gene network. In
Algorithm 2, we can compute the transition coefficient a;
jbased on the formula of the reaction leading from state i
to state j.
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Toggle switch
For the third order reaction

b
2 X ProteinA + GeneB — BoundGeneB,

the transition coefficient a; ; can be computed as
aij=b-ngg i Nyp i (Npa, - 1)/2,

where b is the intrinsic reaction rate, n,, ;is the copy
number of protein A in state i, and ng ; is the copy
number of unbound gene B, which takes the value of 0 or
1. For this third order reaction, the number of possible
ways of choosing two protein molecules from n,, ; copies

n .
is ( pzA" ]= Npai - (npa; —1)/2. Transition coefficients

for the other reactions in this network can be computed
similarly following this reaction and the reactions
described earlier for the represser gene network.

MAPK network
We consider the second order binding reaction

b14
M+ MKP3 —-M_MKP3_Y.
If the "before" state i is transformed to the "after" state j by
one step of this reaction, the corresponding transition
coefficient a; ; can be computed as

a; ;= big My i Mk, i

where b, , is the intrinsic reaction rate, n,, ;and nyp; ;are
the copy numbers of M and MKP3 molecules in state i,
respectively. The other transition coefficients in this net-
work can be computed similarly using the intrinsic reac-
tion rates given in Fig 5 and the copy numbers of reactants
determined by the "before" state i.
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Appendix
Algorithm 1 State Enumerator(M, R, B)

Network model: N « {M, R};

Initial condition: §'=° « {c},¢9,...,c2}; Set the value of

buffer capacity: ¢J,, < B;

http://www.biomedcentral.com/1752-0509/2/30

Initialize the state space and the set of transitions: X <«
D, T« Q;
Stack ST « &; Push(ST, St =9); StateGenerated < FALSE
while ST # J do
S; < Pop (ST);
fork=1tondo
if reaction R, occurs under condition S; then

if reaction Ry, is a synthetic reaction and generates u,
new molecules then

Cm+1 «c

ifc

m+1 - Uk

> 0 then

m+1 =

Generate state S(i, R,) that is reached by following
reaction R, from S;

StateGenerated < TRUE
end if
else

if reaction R, is a degradation reaction and breaks
down u;, molecules then

Cims1 < Cpa1 + Uy,
end if

Generate state S(i, R,) that is reached by following
reaction R, from S;

StateGenerated <— TRUE
end if

if (StateGenerated = TRUE) and (S(i, R,) ¢ X ) then

X « X US(i, R);
Push(ST, S(i, R,));
T<—Totg sir,)
a;, ;< Transition Coefficient(S; S(i, R), Ry)
end if
end if
end for
end while

Output X, Tand A = {a, ;}.

Algorithm 2 Transition Coefficient(S; S; Ry)
Read in reaction rate parameters for R,

Retrieve the copy numbers of molecular species occurring
in the reaction formula of R, from the state vector S;
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Compute the combination copy numbers of each reactant
molecular species

Compute transition coefficient g; ; based on the reaction
rate parameters for R,, and the combination copy num-
bers.

Output a; ;.
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