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Computationally efficient structure-based virtual screening methods have recently been reported that seek
to find effective means to utilize experimental structure information without employing detailed molecular
docking calculations. These tools can be coupled with efficient experimental screening technologies to improve
the probability of identifying hits and leads for drug discovery research. Commercial software ROCS (rapid
overlay of chemical structures) from Open Eye Scientific is such an example, which is a shape-based virtual
screening method using the 3D structure of a ligand, typically from a bound X-ray costructure, as the query.
We report here the development of a new structure-based pharmacophore search method (called Shape4)
for virtual screening. This method adopts a variant of the ROCS shape technology and expands its use to
work with an empty crystal structure. It employs a rigorous computational geometry method and a deterministic
geometric casting algorithm to derive the negative image (i.e., pseudoligand) of a target binding site. Once
the negative image (or pseudoligand) is generated, an efficient shape comparison algorithm in the commercial
OE SHAPE Toolkit is adopted to compare and match small organic molecules with the shape of the
pseudoligand. We report the detailed computational protocol and its computational validation using known
biologically active compounds extracted from the WOMBAT database. Models derived for five selected
targets were used to perform the virtual screening experiments to obtain the enrichment data for various
virtual screening methods. It was found that our approach afforded similar or better enrichment ratios than
other related methods, often with better diversity among the top ranking computational hits.

INTRODUCTION

Drug discovery and development is a lengthy and costly
process. It has been widely reported that, on average, over
10 years and 800 million dollars are needed to bring a drug
from early discovery to the market.1,2 Thus, it is not sur-
prising that pharmaceutical companies and biotech startups
have invested so much in the development of new enabling
technologies to help reduce the cycle time and cost as well
as to increase the productivity of drug discovery research.3

Among the enabling technologies are high-throughput screen-
ing (HTS),4 combinatorial chemistry,5 high-throughput X-ray
crystallography,6 computer-aided drug design (CADD),7 and
cheminformatics tools.8 Of special interest to us are the
development and application of novel computational methods
for lead generation and lead optimization in the drug
discovery process. These computational methods are gener-
ally categorized as ligand-based methods and (receptor)
structure-based methods.

Ligand-based computational methods are often employed
when detailed structural information is not available for the
target of interest, or the biological target is completely
unknown as is the case in many phenotypic assay based
discovery.9 In such cases, similarity search around an initial

HTS (high throughput screening) hit based on either 2D or
3D similarity measure is often quite useful. When biological
activities of multiple hits are known, a more sophisticated
class of computational techniques known as pharmacophore
identification methods is often employed to deduce the
essential features required for the biological activity.10 If a
significant number of confirmed SAR (structure–activity
relationship) data becomes available for a discovery project,
one can also apply QSAR (quantitative structure–activity
relationship) methods to build statistical models that can be
used to predict new active molecules via virtual screening
or inverse-QSAR process.11–13 One key prerequisite for all
these methods to be successful is the availability of confirmed
chemical and biological data for a series of molecules. In
other words, one has to know some active compounds in
order to search for other active compounds in the hope that
one may obtain either better molecules or perhaps a novel
series of compounds (scaffold hopping). These ligand-based
methods proved to be especially useful for targets of GPCR
and ion channel gene families.14,15 However, the often cited
drawback of the ligand-based methods is that they do not
provide detailed structural information to help medicinal
chemists design new molecules, which is critical especially
during the lead optimization stage of the discovery process.
Because of this pitfall, structure-based methods are often
employed in this phase.

The structure-based methods are typified by various
docking technologies that have been widely adopted by the
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pharmaceutical industry for virtual (in silico) screening,
library design and one-off molecular design. They are often
the computational tools of choice for both lead generation
and lead optimization because of the detailed structural
information and testable hypotheses provided by these
methods. In the past 20 years, docking methods have evolved
from the initial development of the DOCK program16 to
many flavors of state-of-the-art commercial and academic
docking tools. Widely used docking programs today include,
but not limited to, FRED,17 GOLD,18 FlexX,19 Glide,20

DOCK,21 AutoDock,22 ICM,23 and Surflex-docking,24 just
to name a few. Despite many reports of successful applica-
tions of off-the-shelf docking methods, serious issues remain
unsolved. For example, docking tools in some cases still can
not reliably generate docking poses consistent with X-ray
experimental data. Frequently, docking scores are not well
correlated with known binding data and should best be used
as a guide or filter rather than a quantitative ranking tool.25

In practice, empirical docking methods have often been used
to augment regular docking scores such as SDOCKER26 and
PharmDock27 to overcome these problems.

Recently, more intuitive and computationally more ef-
ficient structure-based pharmacophore methods have been
reported that seek to find effective means to utilize experi-
mental structure information without employing detailed
docking calculations. These tools can (should) be coupled
with efficient, experimental screening technologies to im-
prove the probability of success in the discovery process.
For example, LigandScout has been successfully applied in
several virtual and experimental HTS projects.28 They are
used as effective virtual screening tools and provide testable
hypotheses for medicinal chemists to study experimentally.29

Other commercial tools that have similar functionality
include Catalyst30 and MOE.31 However, most of these
structure-based pharmacophore methods ignore the geometric
or topographic constraints imposed by the receptor binding
site. Even though some methods can use excluded Volumes
to impose rough geometric and topographic constraints, they
are computationally inefficient. To our best knowledge, no
methods have been reported on using accurate shapes derived
from rigorous computational geometry analysis of the binding
site to construct shape-based pharmacophore queries and use
them for large scale virtual screening.

Here, we report the development of a new structure-based
pharmacophore search method (called Shape4) for virtual
screening. This method adopts a variant of the commercial
ROCS (rapid overlay of chemical structures) technology from
Open Eye Scientific and expands its use to work with an
empty crystal structure. It employs a rigorous computational
geometry method and a deterministic geometric casting
algorithm to derive the negative image (i.e., pseudoligand)
of a target binding site. Once the negative image (or
pseudoligand) is generated, an efficient shape comparison
algorithm in the commercial OE SHAPE Toolkit32 is adopted
to compare and match small organic molecules with the
shape of the pseudoligand. We report the detailed compu-
tational protocol of our method and its computational
validation using known biologically active compounds
extracted from the WOMBAT database.33 Five protein
targets (phosphodiesterases, HIV reverse transcriptase, HIV
protease, estrogen receptors and thymidine kinase), and their
ligands (inhibitors, agonists) have been selected as the

validation sets because of the availability of their crystal
structures and their use as validation targets in other related
studies.34 Models derived for these targets are used to
perform the virtual screening experiments to obtain the
enrichment data for various methods. It is found that our
new approach (dubbed Shape4 for shape pharmacophore)
affords better or similar enrichment ratios than other methods
studied in this work.

MATERIALS AND METHODS

We describe in this section the details of the computational
methods used for virtual screening in this work. These
methods include our new development, the Shape4 program
and two related existing methods, FRED and ROCS, which
were used as benchmarks for comparative studies. We also
describe in detail the database used for virtual screening and
five sets of known biologically active compounds used to
validate the computational hits obtained with the aforemen-
tioned virtual screening methods.

1. Structure-Based Shape Pharmacophore Program
(Shape4). As mentioned earlier, current pharmacophore
based virtual screening methods often ignore the intricate
details of the binding site shapes and focus only on the key
pharmacophore elements as the query.28,30 Thus, they miss
critically important information during the virtual screening
process, resulting in more false positives than they should.
For example, large molecules with multiple side chains
attached to a central scaffold may be selected as (false)
positives, simply because their core structures have the
required pharmacophore elements. This situation may be
alleviated if binding site excluded volumes are considered
during the virtual screening process. However, the compu-
tational efficiency of such processes is dramatically reduced
due to the required frequent checks for ligand clashes with
the excluded volumes. Shape4 is thus designed to increase
the efficiency of such methods for database searching while
taking into account the topographical constraints of the target
binding site to help reduce the false positive rate.

1.1. OVerall Workflow of Shape4. To address the pitfalls
and shortcomings of current structure-based pharmacophore
methods, we have been engaged in the study of a new
structure-based shape pharmacophore method for virtual
screening. It is based on the shape technology developed by
Open Eye Scientific. It also employs the computational
geometry algorithms (Delauney tessellation/R-shape analysis)
to detect the binding site atoms35 and generate a negative
image of the target binding site. This negative image is first
represented by a set of spheres of different sizes. A variety
of techniques can then be applied to represent the overall
surface shape of this set of spheres. Currently, we use the
shape representation and comparison functions in the Shape
Toolkit provided by OE Scientific32 due to the well-
documented computational efficiency of the Gaussian-based
shape algorithms. Other computer vision methods are also
being explored to improve the accuracy and efficiency of
our method. The overall flow of Shape4 is shown in Figures
1 and 2, which involves the following steps: (a) The r-shape
based program is first used to detect potential binding site
(pocket) atoms and the Delauney tetrahedra formed by these
atoms for a given protein structure. (b) nCast (section 1.3)
is then used to calculate orthogonal centers defined by the
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vertices of the above Delauney tetrahedra and (c) generate
inner spheres around each orthogonal center. Filters may be
applied to eliminate the spheres that are unlikely to be useful
for ligand discovery. (d) The overall shape of this collection
of spheres (stored as image.pdb) is then represented by
Gaussian functions based on the OE SHAPE library. (e) The
shape representation is then used by Shape4 to query a
database of molecules whose conformers are pregenerated
(e.g., using the program Omega).36 This protocol implements
an efficient, basic structure-based shape matching method
for virtual screening. To allow for more detailed information
to be used in the virtual screening, we have added pharma-
cophore group information in the shape matching process.
We have implemented in Shape4 the combination of Ligand-
Scout37 generated pharmacophore elements, the R-shape
derived binding site image, and the OE shape matching
function. The overall similarity score between the query and
a matching ligand is calculated as the weighted average
between the Fit Tversky score and the pharmacophore
matching score (the color score).

1.2. Identification of the Binding Site Atoms. The binding
site was first identified by the R-shape based program.38 It
was developed from a large set of precomputed protein
surfaces. A probabilistic model was used to predict whether
a residue located in a surface pocket is functionally important
based on the analysis of bias of functionally important key
residues in composition, in secondary structure, and in atomic
patterns. This method is sequence and fold independent. It
is able to identify systematically functional surfaces of

enzyme proteins with 91.2% accuracy. The details are
provided in that publication.38

1.3. Generation of Binding Site NegatiVe Images (nCast).
The protein’s binding pockets are first generated by
CASTp.39,40 The topological relationships among atoms in
the protein are first established using Delaunay tessellation
in 3D space.41 Alpha shapes are then obtained by removing
Delaunay edges and triangles whose corresponding Voronoi
edges and vertices are not contained within the molecule.
Further analytical measurements are used to identify the shape
of a ligand pocket, which is a subset of alpha shape. Here, we
define a pocket negative image as a set of circumscribed spheres
derived from the discrete set of Delaunay tetrahedra and
triangles for a pocket.42 The generation of those circumscribed
spheres proceeds by first calculating the orthogonal center for
each alpha tetrahedron, using the following linear equations:

C)V0 +A-1B

A)Vi -V0

B) 1
2(|Vi -V0|

2 + ri
2 - r0

2)

where C is orthogonal center, V0 and Vi are tetrahedron
vertices, and r0 and ri are radii of four vertices. Circumscribed
spheres are then generated from the orthogonal center, by
initially reducing the orthogonal sphere to a small inner
sphere and followed by an approximation process. The center
tangent spheres are used as circumscribed spheres for pocket
triangles. Overlap checking is performed to prevent circum-
scribed spheres from overlapping with other pocket atoms.
We also set a threshold to remove tiny spheres. The
remaining circumscribed spheres thus make up the negative
image of the ligand pocket. Although step 1.2 and 1.3 are
both computationally automated, the refinement of the final
set of spheres representing the negative image of the binding
site often needs human intervention. Further development
to automate these two steps is needed in our future studies.

Methods for extracting binding site negative image have
been developed and used in various docking programs. For
example, DOCK16 uses a process that places spheres into
the binding site randomly followed by clustering analysis to
identify the best set of spheres to represent the shape of the
binding site. Surflex24 uses a different approach to generate
so-called “prototype molecules” to represent the binding site
shape and other information. Our approach is unique in that
it uses R-shape to deterministically detect the binding site
atoms, followed by a geometric casting algorithm to generate
the negative image as a collection of spheres.

1.4. Implementation of ShapeOnly and Combo Scoring
Options in Shape4. Two different scoring options are im-
plemented in Shape4 based on the functions in the com-
mercial OE SHAPE toolkit. The first scoring option is by
Shape overlay only, and the second scoring option uses a
combined score calculated from the shape overlay score and
the chemical matching (or color) score. This step is com-
pletely automated as the commercial software ROCS.

In the Shape4:ShapeOnly method, the negative image,
derived from the R-shape and nCast programs, is stored in
the PDB file format, in which the spheres are stored as
dummy atoms with their coordinates placed on the XYZ
coordinate fields of the PDB file, and the sphere radii are

Figure 1. Overall flow diagram for the virtual screening process
with Shape4.

Figure 2. Flowchart for the Shape4 program.
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placed in the occupancy field. This format could easily be
recognized by functions in the OE CHEM toolkit, and the
shape of the negative image is internally represented as a
smooth grid-based function with a grid spacing of 0.5 Å.
This grid-based shape representation can be visualized as
shown in Figure 3 for the PDE4B binding site with its
inhibitor rolapram present. This negative image representa-
tion is then used as the query by the Shape4 program to
score the 3D shape overlap between the query and the ligands
in a 3D molecular database. We found that the Fit Tversky
score is preferred to the Tanimoto similarity score because
it measures the subshape matching between the fit molecule
and the query (which is the binding site image).

In the Shape4:Combo method, the shape overlay between
the binding site image and a database molecule is augmented
with the matching of detailed pharmacophoric data. We use
LigandScout to derive the pharmacophore elements from a
target and then add this information to the binding site
negative image. Thus, a pseudo molecule is created in which
the “atoms” are the dummy atoms representing the shape of
the negative image and pharmacophoric atoms are considered
according to their respective atom types. This representation
is used by the Shape4 program to overlay the negative image
and a potential ligand by optimizing both the shape overlay
and the chemistry matching. To ensure the computational
efficiency of this procedure, the negative image data gener-
ated by nCast is further approximated by an even spaced
grid, of which each grid point is considered as a dummy
atom. The overall score of a particular overlay between the
negative image and a database molecule is the weighted sum
of the shape Tversky score and the scaled chemical (or color)
score.

There are technical differences in the way how shape and
pharmacophore matching is done in Shape4 and ROCS. In
shape4, the grid representation of the binding site negative
image and the pharmcophore constraints are used simulta-
neously to find the best overlay between the database
molecule and the shape pharmacophore query in terms of
their shape and color matching. In addition, the radii
information for the different spheres making up the negative
image is accounted for in the grid approximation. The default
approach in ROCS, however, is to assign all the heavy atoms
in the reference molecule a single radii value (that for carbon
atom). In practice, this approach is good only for organic
molecules, but not good for negative image representation
of a protein binding site, where the sizes of the spheres vary
widely. Thus, it is difficult if not impossible to use the
available ROCS version to perform the virtual screening
using a combination of active site negative image and
externally derived pharmacophores. We note that our Shape4

implementation is greatly facilitated by the functions pro-
vided in the Open Eye SHAPE Toolkit.32

2. Ligand-based Shape Overlay Program (ROCS). The
program ROCS (rapid overlay of chemical structures, OE
Scientific) was designed to perform shape-based overlays of
conformers of a database molecule to a query molecule in
one or more conformations. The overlays can be performed
very quickly based on the description of molecules as atom-
centered Gaussian functions.43–45 ROCS maximizes the rigid
body overlap of the molecular Gaussian functions and
therefore the shared volume between a query molecule and
a conformation of a database molecule. Two methods of
scoring were employed for this work: they were ROCS:
ShapeOnly and ROCS:Combo scoring. The former method
scores a database molecule based on the Shape Tanimoto
similarity between the query and the database molecule, and
the latter calculates a combined score based on Shape
Tanimoto similarity and the chemical matching score, where
the default chemical force field was employed.

3. Structure-based Molecular Docking Program
(FRED). FRED (fast rigid exhaustive docking, OE Scientific)
is a protein–ligand docking program, which docks and scores
molecules in a multiconformer database against the receptor
structure of a biological target. FRED 2.1.2.46 was used in
this work for docking and scoring molecules in the validation
database to the binding site of each validation target. The
receptor binding site was created from the protein crystal
structure and represented as a box defining the extents of
the active site. The “-addbox” parameter was set to 4
throughout this work, which extends each side of the binding
site box by 4 Angstroms. Even though multiple scoring
options exist in FRED, we chose to use only the ShapeGauss
scoring in this work with the intent to compare the FRED
shape scoring method with what is implemented in the
Shape4 program.

4. Database Preparation for Virtual Screening Experi-
ments. To validate virtual screening methods, we chose to
use the medicinal chemistry database WOMBAT as the
reference,33,47 which contains historic SAR (structure–activity
relationship) data about compounds and their biological
activities against a variety of targets. This version of the
WOMBAT database contains 49 765 unique compounds, in
58 327 chemical entries. These unique molecules were used
to create the multiconformer database for virtual screening.

The conformer database was created using OMEGA 2.1
from the SMILES representation of the WOMBAT database
using a modified form of the high quality setting (HQS)
parameters recommended by Kirchmair.48 This parameter
setting was proved to identify more conformations similar
to the known bioactive conformations. We increased the
maximum number of allowed conformers from the recom-
mended 500 to 2000. Our own studies indicated that
conformer generation with a maximum number of 2000 could
enumerate conformers that were much more similar to the
experimental ligand conformations in crystal structures when
compared to either the default OMEGA setting, or those
recommended by Kirchmair.

5. Validation Data Sets. 5.1. Receptor Structures. In
order to analyze the performance of our structure-based shape
pharmacophore approach (Shape4) in the context of existing
methods, five protein–ligand cocrystal structures were se-
lected for this study (Table I). The structures and their

Figure 3. Comparison of the shapes of a structure-based negative
image (A) and that of an inhibitor of PDE4B (B).
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corresponding PDB codes are phosphodiesterase 4B (PDE4B,
1ro6), HIV-reverse transcriptase (HIV-RT, 2hny), HIV-protease
(1pro), ERR (2ayr), and thymidine kinase (1ki5, 1kim). Crystal
water molecules as well as the ligand molecules were removed
from the structures before use, since the water molecules are
not involved in interesting interactions in these test cases. Metal
ions that are necessary for the protein activity were preserved
before the structures were used in calculations as they also
contribute to the shape of the binding sites.

5.2. Ligands. Five sets of molecules were extracted from
the WOMBAT database and used as the basis to validate
the virtual screening results in this work. These include
inhibitors/ligands for the following targets: PDE4B, estrogen
receptor (ERR), HIV-reverse transcriptase (HIV-RT), HIV-
protease (HIV-PR), and thymidine kinase (TK). Most of the
chemical structures from the WOMBAT database have target
relating keywords in the SD File. These keywords were used
in identifying the ligands/inhibitors for the selected targets.
For instance, molecular entries with the keyword PDE4B
under target.name or target.full.name fields were considered
inhibitors of the target PDE4B. Ligands with activity toward
the other targets considered in this study were selected in a
similar manner. The numbers of ligands found for each target
are as follows: PDE4B (61), HIV-RT (948), HIV-PR (1891),
ERR (64), and thymidine kinase (51) (see Table II).

6. Virtual Screening Experiments. Each of the compu-
tational methods was used to search the multiconformer
WOMBAT database generated using the Omega36 confor-
mational analysis program. For each method, the database
molecules were scored and ranked according to their scores
given by that method. The sorted lists of molecules were
the results of virtual screening experiments and were further
analyzed to obtain the enrichment data as described below.

6.1. Virtual Screening with FRED:ShapeGauss Scoring.
For each validation target, FRED was used to search the
multiconformer WOMBAT database. We chose to do the vir-
tual screening experiments with FRED in order to compare
the effectiveness of FRED:ShapeGauss option and the shape
method implemented in the Shape4 program. In each case,
virtual screening with FRED generates a list of molecules
that are sorted according to their ShapeGauss scores against
the target structure. This sorted list is then used to calculate
the enrichment curve for FRED.

6.2. Virtual Screening with Ligand-Based Shape Similar-
ity Method. One of the goals of this work was to test if the
structure-based shape method implemented in Shape4 could
capture more information than the ligand-based shape
similarity methods. Thus, for each of the five validation cases,
we performed virtual screening experiments using the ligand
structures extracted from the X-ray structures of the targets
as the queries for ROCS database search. Database com-
pounds were then ranked by their shape similarity scores
generated by ROCS:ShapeOnly method. The sorted list of
compounds is analyzed to generate the enrichment curve for
each target.

6.3. Virtual Screening with Ligand-Based ROCS:Combo
Scoring. To compare the efficiency of virtual screening using
the ligand-based ROCS method and the structure-based
pharmacophore method Shape4, we conducted virtual screen-
ing experiments using ROCS with its combo scoring option.
For each of the five validation cases, database compounds
were scored and sorted according to the ROCS:Combo scores
(which is a weighted sum of both the shape Tanimoto
similarity and the scaled chemical matching scores). Enrich-
ment curve is then calculated for each target.

6.4. Virtual Screening with Shape4 Methods. This was the
development focus of this work. To validate these methods
and demonstrate their efficiency, we conducted virtual
screening experiments using both the Shape4:ShapeOnly and
Shape4:Combo methods. For each of the five targets, the
corresponding negative image derived from each target
structure was used by Shape4 as the query for the virtual
screening experiments. Database compounds are ranked by
either the shape Fit Tversky score alone or the combo score
of Tversky similarity and the chemical (color) score. For
the Combo score, the pharmacophore elements are derived
by the LigandScout program and incorporated into Shape4.

7. Calculation of Enrichment Curves. The virtual screen-
ing results obtained as described above are analyzed in terms
of the percentage of the WOMBAT database virtually
screened versus the percentage of known active compounds
retrieved by a method. In the calculation, all known ligands/
inhibitors for a particular target are considered as hits for
that target if they appear at a said percentage of the database
screened. Other compounds that are not labeled as ligands
for that target are considered “decoys”, i.e. they are
considered to be inactive against that target under study. A
typical enrichment curve has its X-axis representing the
percentage of database molecule screened and the Y-axis the
percentage of known active compounds recovered by a
method. In theory, a random screening would give average
hit rates along the diagonal of the enrichment plot.

8. Calculation of the Chemical Diversity Plots. To show
the diversity of a set of molecules, we calculate the pairwise
Tanimoto similarity values among the set of molecules, using
the MOE (molecular operating environment) software with

Table I. Selected Biological Targets for Method Validation

target PDB code family super family

HIV-1 protease 1PRO retroviral protease acid proteases
phosphodiesterase 4B 1RO6 PDEase HD-domain/PDEase-like
estrogen receptor alpha 3ERT nuclear receptor–ligand-binding domain nuclear receptor–ligand-binding domain
HIV-1 reverse transcriptase 2HNY reverse transcriptase DNA/RNA polymerases
thymidine kinase 1KIM, 1KI5 nucleotide and nucleoside kinases P-loop containing nucleoside triphosphate hydrolases

Table II. Profile of Selected Active Compounds from WOMBAT

targets
total number

of ligands
molecular

weight range IC50

HIV-1 protease 1891 159–1311 3.14–10.09
phosphodiesterase 4B 61 261–454 5.77–9.00
estrogen receptor alpha 64 272–523 4.72–9.69
HIV-1 reverse transcriptase 948 226–1297 3.22–9.22
thymidine kinase 51 227–411 3.31–6.82
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MACCS key fingerprint as the descriptors.31 Then the
histogram, showing the frequency distribution of various bins
of similarity values, is generated by counting and then
normalizing the number of occurrences in each similarity
bin. This calculation is used to characterize the diversity of
any given set of molecules. A distribution shifted toward
the left (smaller similarity) is more diverse than a one shifted
toward the right (bigger similarity).

9. Calculation and Presentation of the Trellis Plot. In
order to summarize the performance of multiple computa-
tional methods across multiple test cases, and across different
relevant screening percentages, a Trellis plot is generated.
This plot contains a matrix of small bar graphs, where each
row corresponds to a certain screening percentage (0.1%,
0.3%, 1.0%, 3.0%, and 10.0%) and each column corresponds
to a test case. Within each column, there are multiple bars,
indicating the retrieval rate of known active compounds by
different virtual screening protocols as well as the ideal
retrieval rate. This graph would show at a single glance which
methods worked best on which targets across the practical
screening ranges.

RESULTS

As described in Materials and Methods, we aimed to
demonstrate the effectiveness of our structure-based shape
pharmacophore method (Shape4) in virtual screening experi-
ments in terms of its ability to find known active compounds
from a compound database. Although the ultimate validation
of any computational screening method would come from
experimental testing of the virtual screening hits, we had
adopted a standard computational protocol for validating
new virtual screening methods. In this protocol, we used a
medicinal chemistry database (WOMBAT) with known
biological data to test how well a method can recover the
known active compounds for a given target. Since the
experimental data in the WOMBAT database were NOT used
in building the Shape4 models (note: this is different from
QSAR methods where multiple known active compounds
are used to build the statistical models), these data can be
considered as pseudo experimental testing of the computa-
tional hits. To this end, five validation sets were extracted
from the WOMBAT database. These active molecules were
mixed into the WOMBAT database, and a computational
method was then used to virtually screen the database to
see how well a method recover known active compounds
for a given target. For the five validation cases, five sets of
enrichment curves were obtained and shown in Figures 4-8.
One additional figure (Figure 9) of enrichment curves was
also obtained for one of the targets, where the substrate–pro-
tein structure was used as the starting point as oppose to the
inhibitor-protein structure. The chemical diversity plots (cf.
Materials and Methods 8) of the validation sets of molecules
are shown in Figure 10. For each validation case, five
enrichment curves were calculated that correspond to five
different virtual screening methods used in this work. In
Figures 4-9, the enrichment curves obtained with FRED
are labeled as diamonds; the enrichment curves resulting
from the ROCS:ShapeOnly method are labeled as triangles;
the enrichment curves resulting from the ROCS:combo
method are represented as solid curves. The structures of
the ligands used in each ROCS similarity search are shown
in Figure 11. Finally, the enrichment curves obtained with

the Shape4 method are labeled as asterisks and circles for
the ShapeOnly and Combo scoring options, respectively.

In the following test cases, the crystal structure of each
protein target was used to create the active site description
for the FRED calculations and generate the negative image
for Shape4 calculations. The structure of the bound inhibitor
or substrate for each target was used as the query for ROCS
calculations.

1. Reverse Transcriptase Case Study (Figure 4). The
crystal structure of HIV-RT was used for this experiment.

Figure 4. Enrichment plot for reverse transcriptase virtual screening.

Figure 5. Enrichment plot for HIV protease virtual screening.

Figure 6. Enrichment plot for PDE4B virtual screening.
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The diversity of the HIV-RT validation set is shown in Figure
10a as a histogram of pairwise similarity values calculated
with MOE as MACCS key based Tanimoto similarity (cf.
Materials and Methods 8).31 As indicated by the diversity
plot, this set of molecules is chemically diverse compared
to other sets used in this work. In this case, the FRED:
ShapeGauss method did not perform well as indicated by
the enrichment curve even below random. In fact it is true
that in almost all the cases reported in this work, the FRED:
ShapeGauss method did not perform well compared to other
methods. A possible explanation for this is that the Shape-
Gauss scoring was originally designed as a filter in the FRED
docking process where it provides molecules for further
screening and scoring. The results reported in this paper do
not suggest that FRED as a docking method is not a good
virtual screening tool; rather, it cautions that one needs to
be judicious about the use of FRED:ShapeGauss alone as a
virtual screening tool. In contrast, screening with ROCS:
ShapeOnly performed fairly well. It recovered roughly 20%
of the actives by screening 10% of the database and 80% of
the actives by screening 50% of the database. Virtual
screening with the Shape4:ShapeOnly method obtained
roughly 28% of the actives at 10% of the database, and 80%
of actives by screening 50% of the database. It appeared that
Shape4:ShapeOnly performed better than ROCS:ShapeOnly
up to screening 30% of the database. Both the Shape4:Combo
and ROCS:Combo methods performed much better, recover-

ing over 50% and 40% of the actives, respectively, by screening
only 10% of the database compounds. Both methods recovered
nearly 90% of the actives by screening 50% of the database
compounds. Overall, the Shape4:Combo method performed the
best among all the methods.

2. Protease Case Study (Figure 5). The crystal structure
of HIV-PR (1pro) was used for this experiment. This
validation set has 1891 molecules and its chemical diversity
is shown in Figure 10b as a histogram of pairwise fingerprint
Tanimoto similarity values (cf. Materials and Methods 8).
In this case, all five methods performed similarly well by
screening the first 10% of the database, with all methods
recovering between 40 and 50% of the actives. Shape4:
Combo again performed the best overall among the methods.
The performance of the FRED:ShapeGauss method reached
plateau (about 70% of known actives) after screening
40–50% of the database, while the ROCS:ShapeOnly and
ROCS:Combo methods performed equally well throughout
the virtual screening process. Both the Shape4:ShapeOnly
and Shape4:Combo methods performed well. The reason for
the superior performance of Shape4 in this case was probably
due to the fact that there were more chemically diverse
compounds in this validation set, which can be observed from
the diversity plot (Figure 10b). We also note that the
molecules found by Shape4 methods were more diverse
compared to the query molecule used by ROCS. In addition,
Shape4:Combo performed significantly better than Shape4:
ShapeOnly, indicating that the use of chemical constraints
did further weed out false positives leading to the enrichment
of true actives in the top ranking compounds.

3. PDE4B Case Study (Figure 6). The crystal structure
of PDE4B (1ro6) was used in this experiment. The validation
set has 61 molecules and its chemical diversity is shown in
Figure 10c. Similar trends have been observed for this case
in that Shape4:ShapeOnly performed better than ROCS:
ShapeOnly. By screening 10% of the database, both Shape4:
Combo and ROCS:Combo identified about 95% of the
known actives. Some example structures of the computational
hits obtained by Shape4 and ROCS are shown in Figure 12.

4. Estrogen Receptor Case Study (Figure 7). In the case
of estrogen receptor (ER), the crystal structure of ERR (3ert)
was used as the basis for all experiments. The validation set
has 64 molecules and its diversity plot is shown in Figure
10d. All methods (except FRED:ShapeGauss) performed

Figure 7. Enrichment plot for estrogen receptor (ER) virtual
screening.

Figure 8. Enrichment plot for thymidine kinase (1ki5) virtual
screening.

Figure 9. Enrichment plot for thymidine kinase (1KIM) virtual
screening.
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extremely well reaching above 60–85% of the actives by
screening the first 10% of database compounds, probably
due to the fact that ER binding pocket is fairly hydrophobic
and well-defined, and the shape plays a critical, if not
determinant, role in selecting ER ligands. However, some
intricate details are worth noting. For example, ROCS:
ShapeOnly performed better than Shape4:ShapeOnly in the
first 10% of the database screened, but ROCS seemed to
have reached a plateau after screening 18% of the database.
Meanwhile, Shape4:ShapeOnly continued to pick up ER
ligands and reached 100% recovery of active compounds at
45% of the database screened. This is probably due to the

fact that ROCS is ligand-based method, picking up chemi-
cally similar molecules very quickly but missing out more
chemically diverse molecules. This point can be observed
from the diversity plot for this set of ER ligands, where a
group of molecules seemed to be very similar while others
are quite different in that the histogram almost displays a
bimodel distribution. On the other hand, the structure-based
shape method, Shape4, tends to provide more space in the
binding pocket to capture more chemically diverse classes
of molecules (see also discussions on diversity).

5. Thymidine Kinase Case Study (Figure 8). Crystal
structure 1ki5 was used in this experiment. The validation

Figure 10. Diversity of the ligands in the validation sets.
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Figure 11. Structures of the query molecules used for ROCS-based virtual screening.

Figure 12. Venn diagram of sample actives recovered after screening 20% of the database for PDE4B inhibitors using the ROCS:Combo
and Shape4:Combo methods.
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set has 51 molecules and its diversity plot is shown in Figure
10e. ROCS:ShapeOnly picked up 20% of the actives by
screening only 10% of the database, and nearly 60% of the
actives when 20% of the database was screened. Shape4:
ShapeOnly performed better than corresponding ROCS
method, recovering over 60% of the actives at 10% of the
database screened. Both Shape4:Combo and ROCS:Combo
recovered 100% of the actives by screening less than 10%
of the database. As indicated by the diversity plot, this set
of validation molecules is not very diverse, which may
explain that all methods performed well. Some example
structures of the computational hits obtained by Shape4 and
ROCS are shown in Figure 13, which indicates that more
different structures were found by Shape4 than by ROCS,
even in this chemically similar validation set.

6. Thymidine Kinase Case Study 2 (Figure 9). The last
case shown here covered a scenario where there was no
ligand-protein complex structure and only the substrate–pro-
tein structure was available. In this case, ROCS methods did
not perform well due to the fact that there were no known
inhibitors that were similar to the substrate. However, the
Shape4 methods, which rely only on the binding site image
derived from the protein structure, performed very well. This
further proved the value of developing and applying the

structure-based shape pharmacophore methods as imple-
mented in Shape4 in cases where little is known about the
ligands/inhibitors of a target protein.

DISCUSSION

In all test cases, Shape4:Combo method performed ex-
tremely well in terms of the enrichment of active compounds
in virtual screening experiments. In many cases, it was the
most effective method. We note that it is much more effective
to use the Fit Tversky similarity measure than Tanimoto
similarity measure when comparing the ligand shape to the
shape of the binding site negative image, because the binding
site shape often is bigger than that of a ligand, and that
calculating Tanimoto coefficient would compare the shape
of a ligand and that of the whole binding pocket. Fit Tversky
measure, on the other hand, allows unmatched space in the
binding site shape thus capturing diverse set of molecules
that may bind to the receptor in somewhat different binding
modes.

ROCS:Combo performed significantly better than ROCS:
ShapeOnly method, indicating that chemical constraints did
afford better true positive rate by reducing false positives.
Similarly, Shape4:Combo further enriched the hits compared

Figure 13. Venn diagram of sample actives recovered after screening 5% of the database. for thymidine kinase inhibitors using ROCS:
Combo and Shape4:Combo methods.
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to Shape4:ShapeOnly method. In most cases, Shape4:Combo
performed similarly or better than the ROCS:Combo method,
indicating that the structure-based method did afford the
ability to discover more diverse classes of compounds. Thus,
the fact that the structure-based shape methods performed
almost always better than the corresponding ROCS methods
supports the use of the structure-based pharmacophore
methods in the hope to find novel series of compounds for
a target under study.

It is speculated that the Shape4:Combo method may have
the advantage over the ROCS:Combo method in finding more
diverse set of hits, because Shape4 uses the binding site shape
from the empty binding pocket as the query and Tversky
measure for similarity, whereas ROCS uses the bound ligand
conformation as the query and Tanimoto as similarity
measure. To demonstrate this point, we have calculated the
chemical diversity plots (cf. Materials and Methods 8) for

the top 10% of the hits obtained with Shape4 and ROCS,
respectively (Figure 14). These plots show the histogram
distribution of the pairwise similarity values, where the
similarity values have been averaged over the results obtained
for the five test targets. As can be seen, the diversity obtained
with the Shape4 method is better (though only slightly) than
that obtained with ROCS. This is indeed a potential ad-
vantage afforded by the Shape4 method, which uses the shape
of the empty binding pocket as the virtual screening query.

There has been great interest in understanding the early
enrichment behavior of computational virtual screening
methods. In order to summarize the performance of five
computational methods across five test cases, and across
different relevant screening percentages, we generated a
Trellis plot (Figure 15). This plot contains a matrix of small
bar graphs, where each row corresponds to a certain
screening percentage (0.1%, 0.3%, 1.0%, 3.0%, and up to
10.0%) and each column corresponds to a test case. Within
each column, there are six bars, indicating the retrieval rate
of known active compounds by five virtual screening
protocols as well as the ideal retrieval rate in each case. This
graph clearly demonstrated that both the Shape4:Combo and
ROCS:Combo methods performed equally well in early
enrichment behavior, from 0.1% to 10%. In some cases,
Shape4:Combo performed better, while in other cases ROCS:
Combo performed better. In most cases, Shape4:ShapeOnly
performed better than ROCS:ShapeOnly.

CONCLUSIONS AND FUTURE DEVELOPMENT

We have developed a new method that uses R-shape
analysis to detect the binding site atoms and to construct
the negative image of a target binding site. The so-derived
negative image is then represented as Gaussian functions
using the Shape toolkit (from Open Eye Scientific) and fast
shape overlays between the negative image and database
molecules can be performed. Such an implementation

Figure 14. Distribution of pairwise Tanimoto similarity values for
top 10% of WOMBAT database compounds screened using ROCS
and Shape4. The distribution is the average for the five targets
screened.

Figure 15. Trellis plot illustrating the performance of Shape4, ROCS, and FRED against five targets: estrogen receptor (ER), HIV protease
(HIVP), HIV reverse transcriptase (RT), phosphodiesterase 4B (PDE4), thymidine kinase (TK). PDB codes for the virtual screening targets
are 3ERT (ER), 1PRO (HIVP), 2HNY (RT), and 1KI5 (TK).
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captures the intricate details of a binding site shape, the effect
of which during virtual screening experiments has been
demonstrated by five test cases. Using Shape4, a variant of
ROCS, one can yield comparable enrichments to ROCS on
a real inhibitor at <10% of the database screened. Likewise,
screening 20% of the database, except for HIV protease,
Shape4 worked better than ROCS. For thymidine kinase,
Shape4 worked dramatically better at retrieving known
inhibitors than did ROCS using a bound substrate, rather
than an inhibitor. Including pharmacophoric features (color)
helps the enrichment both for ROCS and Shape4. However,
while the enrichment is not much improved by screening
<10% of the database, the diversity of the computational
hits obtained with Shape4 is better (Figure 14). Together,
the ability to use the Shape4 method without a known
inhibitor, and the additional diversity of the computational
hits, constitute a substantial advantage for drug discovery
programs.

Thus, Shape4 offers a fast, effective and intuitive virtual
screening alternative in cases where the X-ray crystal
structure of the target is known without performing compu-
tationally more expensive docking calculations. Shape4 is
not meant to be a replacement of docking tools; rather, it is
an alternative tool and can be efficient when combined with
experimental screening efforts. Shape4 can also be used in
conjunction with more sophisticated docking tools as their
prescreening filter prior to a more detailed docking calcula-
tion (as is done by Miteva et al.).49 The effectiveness of a
Shape4-Docking combination as a virtual screening tool will
be examined in our future studies.

Since Shape4 can generate reasonable alignments of a set
of molecules from their multiconformer database, one may
use it to create structure-based alignment for 3D-QSAR
analysis of active compounds. Such an analysis could provide
additional insights as to which region of the binding site
shape plays an important role and which pharmacophore
elements help discriminate active compounds against inac-
tive ones. This “learned” pharmacophore knowledge can then
be used by Shape4 as a refined or optimized shape pharma-
cophore query in further virtual screening experiments. Such
an iterative approach may prove effective in lead optimization
stage of a discovery project.

Additional applications of the Shape4 method may be its
use in the assessment of biologically releVant diVersity of
compound collections. Because of the efficiency to compare
small molecule shapes and the binding site shapes, we could
use this method to evaluate the fitness of a collection of
molecules to a reference panel of protein binding site shapes.
For example, we can calculate the scores of compounds in
a collection (e.g., by a chemical vendor) and evaluate the
coverage of biological shapes derived from the whole
genome structures. If a collection of compounds covers more
families of target shapes, we can say that the collection is
likely to be more diverse and biologically more relevant.
We are actively pursuing this aspect of the application and
will report the results elsewhere.
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