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Inferring protein functions from structures is a challenging task, as a large
number of orphan protein structures from structural genomics project are
now solved without their biochemical functions characterized. For proteins
binding to similar substrates or ligands and carrying out similar functions,
their binding surfaces are under similar physicochemical constraints, and
hence the sets of allowed and forbidden residue substitutions are similar.
However, it is difficult to isolate such selection pressure due to protein
function from selection pressure due to protein folding, and evolutionary
relationship reflected by global sequence and structure similarities between
proteins is often unreliable for inferring protein function. We have
developed a method, called pevoSOAR (pocket-based evolutionary search
of amino acid residues), for predicting protein functions by solving the
problem of uncovering amino acids residue substitution pattern due to
protein function and separating it from amino acids substitution pattern
due to protein folding. We incorporate evolutionary information specific to
an individual binding region and match local surfaces on a large scale with
millions of precomputed protein surfaces to identify those with similar
functions. Our pevoSOAR method also generates a probablistic model
called the computed binding a profile that characterizes protein-binding
activities that may involve multiple substrates or ligands. We show that our
method can be used to predict enzyme functions with accuracy. Our
method can also assess enzyme binding specificity and promiscuity. In an
objective large-scale test of 100 enzyme families with thousands of
structures, our predictions are found to be sensitive and specific: At the
stringent specificity level of 99.98%, we can correctly predict enzyme
functions for 80.55% of the proteins. The overall area under the receiver
operating characteristic curve measuring the performance of our prediction
is 0.955, close to the perfect value of 1.00. The best Matthews coefficient is
86.6%. Our method also works well in predicting the biochemical functions
of orphan proteins from structural genomics projects.
© 2009 Elsevier Ltd. All rights reserved.
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Introduction

Predicting the molecular functions of a protein
and fully characterizing its biochemical roles is an
important task. An effective and widely used
computational method is to identify evolutionary
relationships between a protein of known function
and the protein in question through sequence
alignment. However, the reliability of this approach
deteriorates rapidly when the level of sequence
identity between the two proteins becomes lower
d.
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Fig. 1. Pockets and voids in proteins. There are three
types of concave regions on protein surfaces: fully
enclosed voids with no outlet, pockets accessible from the
outside but with constriction at mouths, and shallow
depressions. We use the general term surface pockets to
include both pockets and voids.
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than 60–70%.1,2 In addition, this method cannot
provide location information on where functionally
important regions and what the key residues are.
More sophisticated sequence-based methods
employ position-specific scoring matrices, hidden
Markov models, and subfamily-specific scoring
methods for function predictions.3-5

It is well known that very remote evolutionary
relationships can be recognized through analysis
of protein fold structures.6-9 However, knowledge
of the three-dimensional (3D) fold structure does
not necessarily translate into knowledge of protein
functions. It is also well known that proteins of
the same fold can have different biochemical
functions, and proteins of different fold can have
similar functions.10-14 Further challenges come
from structural genomics projects,15 where many
proteins have their structures solved first without
the knowledge of their biochemical functions. To
derive functional information from protein struc-
tures, a recent study showed that by integrating
information of fold, sequence, motif, and func-
tional linkages, protein functions can be accurately
inferred.16 Success in inferring functions of diffi-
cult proteins has also been achieved from analyz-
ing the distance relationship in the protein
structure space map.17

Because protein carries out its biological roles by
interacting with other molecules, binding surfaces
on protein structures play important roles in
determining protein functions. As functional anno-
tation cannot be transferred reliably based on global
sequence or structure similarity,1,18,19 a promising
approach is to examine local spatial regions where
binding occurs and to identify similar local spatial
patterns on other proteins whose functions are
known.10,20-31 This approach allows the detection
of remote functional relationships for proteins in
which the global similarity has evolved beyond
recognition.
An example of this approach is the pvSOAR

method of comparing local surfaces31 computed
using geometric algorithm.28,32,33 It is based on the
analysis of unfilled empty spaces in proteins. There
are three types of empty spaces in proteins where
binding interactions may occur (see Fig. 1). Voids
are unfilled spaces inside the protein that are fully
enclosed. Pockets on protein surfaces are caverns
that open to the outside of the protein through
mouths that are small relative to cavern dimensions
but big enough that a solvent ball has access to the
outside of the molecule. The mouth of a pocket is
narrower than at least one cross section of the
interior of the pocket. Depressions are concave
regions on protein surfaces that have no constric-
tion at the mouth.34 Pockets and voids can be
computed from protein structures with the alpha
shape method, with residues forming the wall
delineated and volume size measured.28,33,35-37 In
the pvSOAR method, wall residues of a pocket or a
void are concatenated regardless of the separation
between residues in the primary sequence into a
sequence fragment. The similarity between two
surface pockets or voids is first evaluated by
assessing the sequence similarity between the two
sequence fragments of these surface pockets, then
by further assessing spatial and orientational
similarity. A number of novel functional relation-
ships between proteins of different families and
folds were uncovered by this method.31

To scale up this method and to search rapidly
through a database of a large number of protein
surface pockets, success hinges upon the use of a
scoring matrix for assessing similarity between
matched local pocket sequence fragments. However,
existing scoring matrices such as BLOSUM, PAM,
and JTT38 are not effective for this purpose, because
they do not take into account the evolutionary
history of the individual protein of interests. These
canned matrices have implicit parameters whose
values were precomputed, while the information of
the particular protein of interest has limited or no
influence. In addition, the counting methods behind
the derivation of some of these matrices suffer from
underestimation of substitutions in certain branches
of a phylogeny.39 Furthermore, these matrices are
derived based on the assumption that the whole
proteins or domains experience similar selection
pressure and therefore have the same substitution
rates. This is unrealistic, as residues in different
environments may experience different selection
pressures.40 For example, conserved residues on
the binding site are under very different selection
pressure than are conserved residues in the folding
core.41

In this study, we further improve the method of
function prediction by incorporating evolutionary
information specific to an individual binding surface
pocket. By estimating substitution rates of the
residues located on a surface pocket, we derive
customized scoring matrices for assessing surface
similarity for predicting and characterizing complex
biochemical functions. Our approach, called pevo-
SOAR (for pocket-based evolutionary27 search of
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amino acid residues), can effectively separate selec-
tion pressure due to the need of binding and
function from that due to the need of folding and
stability. A novel development of our method is a
probabilistic model called computed binding profile,
which summarizes the results of surface similarity
comparison. This profile can suggest substrates and
help to clarify potentially complex binding activities
of a protein as well as possible cross-reactivities. It
can be used to predict protein functions with
improved sensitivity and specificity.
Our article is organized as follows: Using the

example of acetylcholinesterase, we first illustrate
how our method works. We then discuss the
probabilistic model for constructing the computed
binding profile of a protein. This is followed by a
discussion of a large-scale test of protein function
prediction for 100 protein families. Next, we
describe results of the challenging task of predicting
Fig. 2. Distribution of sequence identity values of bindin
between members of a protein family for 100 protein families
residues on binding surface walls between members of the
sequences with overall backbone identity N90%. Note that t
between pocket fragments is N90%. The median sequence i
Distributions of identities of full sequences between members
of those with overall N90% sequence identity. The median se
binding surfaces are far more conserved than the full sequenc
the functions of orphan protein structures obtained
from structural genomics. We conclude with
remarks on the general applicability of our method.
Results

Function prediction by detection of similar
binding surfaces

For proteins binding similar substrates and cata-
lyzing similar chemical reactions, the surfaces where
such activities occur experience similar physical and
chemical constraints. Often these surfaces have
similar shapes and physicochemical properties. Due
to these constraints, the sets of allowed and forbidden
residue substitutions also share some similarity. Our
assumption is that such similarity can be detected
g surface pockets sequence fragments and full sequences
(2196 structures). Distributions of identities of fragment of
same protein family (a) before and (c) after removal of
here are still many instances where the level of identity
dentity is 60.5% and 55.6% for (a) and (c), respectively.
of the same protein family (b) before and (d) after removal
quence identity is 39.2% and 34.2%, respectively. Overall,
es.



†www.ebi.ac.uk/thornton-srv, for structures of enzymes
contained in the ENZYME data bank.
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with the use of a sensitive computationalmethod.We
first describe how binding pockets are similar to each
other in general. We then discuss how our method
works by assessing similarity, using the example of
acetylcholinesterase and deformylase.

Sequence fragments of binding pocket and
sequence of backbone

It is informative to assess in general the similarity
between two binding pockets of similar function.
We have collected 2196 protein structures belonging
to 100 protein families, each with its own enzyme
classification label42 and Gene Ontology (GO)
descriptive terms.43 Figure 2a shows the distribution
of sequence identity of pairs of sequence fragments
of the residues located on the surfaces of binding
pocket. Here, each pair comes from members of the
same protein family. This distribution is character-
ized by a median of 60.5% for sequence identity. The
overall distribution can be regarded as unimodal.
Figure 2b shows the distribution of the overall
backbone sequence identities of proteins from the
same family for this group of 2196 protein struc-
tures. Its median sequence identity is 39.2%, and the
smallest sequence identity is 16.4%. This distribu-
tion is clearly bimodal. After protein pairs with
N90% full sequence identity are removed from the
data, the distribution of pocket sequence fragments
has a median of 55.6% sequence identity (Fig. 2c),
and the distribution of the full sequences has a
median identity of 34.2% (Fig. 2d). Overall, pocket
sequence fragments have about 20% higher identity
than that of full sequences.
From these two distributions, it is clear that

binding pockets in general have much higher
conservation than that of the full sequence. If we
use the simple approach of transferring functional
annotation between proteins if they share sequence
identity greater than threshold values, and even ifwe
go aggressively beyond the recommended threshold
of 60–70%,1,2 we would have failed at the 50%
threshold to identify the functions of 1394 out of the
2196 proteins, representing a failure rate of 63.4%.
It seems members of the same protein family often

can be clustered into two groups based on backbone
sequence identity. Members of one group are closely
related with each other and have relatively short
evolutionary distance. Members of another group
have diverged further and are more remotely
related. The mixture of these two groups gives rise
to the observed bimodal distribution. However, by
the criterion of similarity among binding surfaces as
measured by the identity of pairs of sequence
fragments, all members of a given enzyme family
appear to follow a unimodal distribution, suggest-
ing their functional roles are closely related.

Illustration: predicting functions of
acetylcholinesterase

We use acetylcholinesterase to illustrate our
method. Acetylcholinesterase [Enzyme Commission
number (EC) 3.1.1.7] is found in the synapse between
nerve cells and muscle cells. It breaks down
acetylcholine molecules into acetic acid and choline
upon stimuli. Using a template structure [Protein
Data Bank (PDB) code 1ea5], we aim to identify other
structures that are acetylcholinesterase with the
same EC number at the level of all four digits and
to locate the surface regions that are involved in
enzyme activities. EC numbers represent a progres-
sively finer classification of an enzyme, with the first
digit describing the basic reaction, and the last digit
often describing the specific functional group that is
cleaved during reaction.
We first exhaustively compute all pockets on the

template structure.28,37 Based on annotation con-
tained in the PDB file, a pocket containing 32
residues (CASTp ID 79, molecular volume of
986.3 Å3)37 is identified as the functional pocket
(Fig. 3a), which contains the Ser and His residues of
the active site triad.
To construct an evolutionary model of this

functional pocket, we have collected a set of 17
sequences homologous to 1ea544 and built a
phylogenetic tree (Fig. 3d).45 The residue substitu-
tion rates on this binding surface are estimated and
scoring matrices for similarity assessment are then
calculated (see Methods and Designs and Ref. 41).
Using the pvSOAR search method with these
scoring matrices to search the CASTp database of
computed surface pockets for all PDB structures
(N30,000, with N2 million surface pockets), and
declaring that two proteins are of the same function
when, in addition, the RMSD value of their binding
pocket residues are at a significant p value of 10−4

(see Methods and Designs), we found 70 PDB
structures to have functional surfaces similar to
that of the query template 1ea5 and hence are
predicted as acetylcholinesterase. Indeed, all of them
have the same EC 3.1.1.7 label as that of 1ea5. The
query protein and an example of matched protein
surface are shown in Fig. 3a and b, respectively.
There are 71 PDB entries with enzyme class label EC
3.1.1.7 in the Enzyme Structures Database†.42 Our
method successfully identified 70 of them.

Illustration: predicting functions of deformylase

Another approach other than using the EC
numbers in describing protein function is to use the
hierarchical terms developed by the GO consortium,
where the biological role of a protein is described in
terms of biochemical functions, cellular components,
and biological processes. Following the same strat-
egy as that of acetylcholinesterase, we use a structure
(PDB 1lm6) of deformylase from Streptococcus
pneumoniae as a template and search for other protein
structures with similar binding surfaces.
We evaluate the results using the three GO terms

associated with the query protein structure. 1lm6



Fig. 3. Function prediction and the computed binding profile of acetylcholinesterase. (a) The functional pocket (CASTp
ID 79) on a structure of acetylcholinesterase (1ea5, EC 3.1.1.7). It contains 32 residues and has a molecular volume of
986.3 Å3. Two residues from the catalytic triad are shown: Ser200 (red) and His440 (blue). (b) A matched binding surface
on a human protein structure (2clj, CASTp ID 96), with 34 residues and a molecular volume of 981 Å3. (c) The multiple
alignment of several orthologous sequence fragments of residues located in the binding pockets. The two triad residues
Ser200 and His440 are conserved. (d) The phylogenetic tree consisting of 17 sequences of acetylcholinesterase is used for
estimating substitution rates of residues at the binding pocket. (e) The structure 1ea5 is predicted to be an
acetylcholinesterase, as indicated by the computed binding profile (GOa EC 3.1.1.7, π1≈0.99).
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has two GO terms for biochemical functions
(0042586, iron binding; 0005506, peptide deforma-
lase activity) and one GO term for biological process
(0006412, translation). With scoring matrices
derived from the substitution rates of residues
located on the binding pocket and a significance p-
value threshold of RMSD values at 10−4, a total of 94
protein chains are found to have functional surfaces
similar to that of 1lm6. Among these, 50 chains
(53%) share all three GO terms as that of 1lm6, and
40 (43%) have no GO annotations. The remaining 4
(4%) are found to have GO terms different from that
of 1lm6, and therefore can be considered as incorrect
predictions (false positive). Overall, the prediction
accuracy among proteins with known GO annota-
tion is 93%. If we make the speculative but reason-
ably simple assumption that the rest of the 40 chains
with unknown GO descriptive terms are sampled
from the same distribution as that of the 54 chains
with known GO terms, it is expected that the
functions of 38 or so will be predicted correctly,
and only 3 would be false positives.
Some of the predictions would have eluded

sequence alignment methods. Among the 50 chains
correctly predicted to have functions similar to that
of 1lm6, 12 chains from 10 PDB structures have
sequence identities N60% with the query protein,
and these would have been predicted by a sequence
alignment method following the recommendation
from Refs. 1 and 2. However, the remaining 38
chains have sequence identities b60% (24 of which
are b50%), and their functions would be difficult to
predict by using the sequence alignment method.
Overall, among the 94 chains where predictions are
made, 32 have sequence identities N60% with the
query protein, and 62 have sequence identities b60%
(30 of which are b50%).

Large-scale enzyme function prediction

To assess the overall applicability of our method,
we have carried out a large-scale study of protein
function prediction using enzymes. Enzymes are
among the best-characterized proteins in the PDB,
and are an important class of proteins. Among
N30,000 PDB structures (version 2006/12), there are
13,877 protein structures that are annotated as
enzymes and have EC labels. In many cases, there
is no information about where the active region is
located on the structure and what the important
residues are.
We obtain a database of computed protein

surfaces on all PDB structures by selecting from
the CASTp database only surface pockets that
contain eight or more residues.37 A total of 770,466
local surface pockets are collected from 1260 enzyme
families. We then randomly select 100 enzyme
families, each represented by a different EC label,
with the criterion that there are ≥10 structures in
each enzyme family. Altogether there are 2196
structures in these 100 protein families. For each
protein family, we take the structure with the best
resolution and R-factor and define the surface
pocket containing key residues as annotated either
in the PDB records or in the feature tables of
SwissProt as the query template of the functional
surfaces of this enzyme family. Using the Bayesian
Monte Carlo estimator, we then derive a substitu-
tion rate matrix for this canonical template surface.41

Using customized similarity matrices derived
from the estimated rate matrix, we then take each
of the 100 template surfaces in turn and query
exhaustively against all 770,466 surfaces in the
database. For each matched surface from the
770,466 surfaces, if its coordinate root mean square
distance (cRMSD) to the query canonical template
surface is smaller than the threshold at the sig-
nificance level of a cutoff p value, we declare a hit is
found. This threshold is obtained as in Ref. 31. We
then repeat this process for all 100 surface templates
of the protein families. After collecting the list of hits
for each of the 100 protein families, we identify the
correctly predicted protein structure by comparing
the EC labels of the hit structure and the template
structure. The prediction is correct if all four digits of
the two EC labels are identical. The results are
summarized in the receiver operating characteristic
(ROC) curve shown in Fig. 4. This is obtained by
calculating the overall sensitivity and specificity of
predictions of all 100 protein families at different
significance p values by cRMSD. That is, they are
calculated based on the number of true positives and
false negatives (for sensitivity) and the number of
true negatives and false positives (for specificity)
found from searches for each template of the 100
protein families against the whole set of 770,466
local surfaces from 1260 enzyme families. Here an
exact match of all four digits of the EC numbers is
required for true positives. At the significance level
of p=10−3, the specificity of predictions of the
functions of all 2196 structures from the 100 protein
family is 99.98% at all four digits of the EC labels,
and the sensitivity is 80.55%. The Mathews coeffi-
cient, another measure evaluating classification
quality,46 is 82.09% at this p value. The best Mathews
coefficient is 86.6% at the p value of 10−1. The overall
area under the ROC curve is 0.955, close to the
perfect value of 1.0.
Similar towhatwe find from the set of 2196 protein

structures, there are 1394 instances of proteins with
overall backbone sequence identity less than 50%. As
noted here, the sequence identity is measured
between a query protein and its hit, 1058 and 608
ofwhich have sequence identity below 40%and 30%,
respectively. This indicates that the task of accurately
predicting the functions of these 100 protein families
is challenging, as 63.4% of them have below 50%
sequence identity.

Predicting binding activities and profiling
protein functions

The computed binding profile is a probabilistic model
that can be used to identify substrates and to predict
enzyme specificity. It is derived from querying
results of searching a template surface against a



Fig. 4. Results of a large-scale test of protein function
prediction for 100 protein families. For a declared hit of
matched surface, if it comes from a protein structure with
the same EC number (up to the fourth digit) as that of the
query protein, the prediction is regarded as correct.
Results are summarized in the ROC curve, where the x-
axis represents the false-positive rate at different statistical
significance p value of cRMSD measurement. Here the
false-positive rate is 1−specificity, namely, 1−TN/(TN+
FP), where TN is the number of true negatives and FP is
the number of false positives. The y-axis represents the
true positive rate or sensitivity, defined as TP/(TP+FN),
where FN is the number of false negatives. An overall
performance measure is the area under the ROC curve,
which is 95.5%. At the confidence level of cRMSD p=10−3,
the average specificity of predictions of the functions of
all 2196 proteins in these 100 protein families is 99.98%,
and the average sensitivity is 80.55%. The Matthews
coefficient46 is plotted in the inset.
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large library of protein surfaces. When EC numbers
are used, the binding profile contains a varying
number of EC labels, each with an associated
activity of cyclodextrin glycosyltransferase (ECa=2.4.1.19) at
alpha-amylase (ECb=3.2.1.1) at πb≈0.22. The computed bin
biochemical activities (EC 3.2.1.135, 3.2.1.133, and 3.2.1.98).
probability πi value for the ith label. This is
interpreted as the likelihood of binding the same
substrate as enzymes of that EC label. We can infer
that the biochemical functions of certain enzymes are
likely to be highly specific, namely, they act on most
likely only one type of substrates and therefore may
have very specific biochemical reactions. The com-
puted binding profile of such enzymes contains only
one EC label with a high probability πi value.
As an example, flavoenzyme (structure 1trb) from

Escherichia coli belongs to a subclass of oxidoreduc-
tase. The computed binding profile of flavoenzyme
indicates that this protein is a thioredoxin disulfide
reductase (EC 1.8.1.9) at a high specificity, with a π1
value of ≈1.00 (Fig. 5a).
Our method can also identify enzymes that

catalyze multiple substrates and hence can predict
possible cross-reactivities. Cyclodextrin glycosyl-
transferase degrades starch to cyclodextrins [circular
(1,4)-linked glucoses] through cyclization of 1,4-
alpha-D-glucan.47 This enzyme is also closely related
to alpha-amylases and can act on glycogen, related
polysaccharides, and oligosaccharides. The pre-
dicted binding profile suggests that the functional
surface on the structure of 1d3c (CASTp id 78) from
Bacillus circulans acts like a cyclodextrin glycosyl-
transferase (EC 2.4.1.19, the correct label) with
probability π1≈0.77 (Fig. 5a). It also correctly
indicates that this enzyme may bind and, hence,
catalyze like an alpha-amylase to a lesser extent (EC
3.2.1.1, with a probability π2≈0.22).

Predicting the biochemical function of orphan
protein structures: challenging examples from struc-
tural genomics

Orphan protein structures obtained from struc-
tural genomics have unknown biochemical func-
tions. It is challenging to predict their functions.
Several recent studies addressed this issue and
reported success in the computational prediction of
functions of orphan proteins.24,25
Fig. 5. Assessing enzyme specifi-
city and promiscuity from computed
binding profiles. (a) Flavoenzyme
(1trb) from E. coli and its computed
binding profile. This protein
belongs to a subclass of oxidoreduc-
tases and possesses the activity of
thioredoxin disulfide reductase. The
computed binding profile gives the
correct EC label (EC 1.8.1.9). It also
suggests that this enzyme is highly
specific (π1≈1.00). (b) The com-
puted binding profile of cyclodex-
trin glycosyltransferase using the
template 1d3c. It indicates that this
enzyme is promiscuous and has
cross-reactivities. It has the enzyme

πa≈0.77, and may also bind and hence catalyze like an
ding profile also suggests trace amounts of other related



458 Predicting Protein Function by Matching Local Surfaces
BioH. The conformation of the BioH protein from
E. coli has unknown biological functions, but is
conjectured to be involved in biotin biosynthesis.48 It
is a challenging task to infer the functional roles of
BioH, because all structural homologs have ≤20%
sequence identity, and some sequence homologs
with between 30% and 90% sequence identity are
hypothetical proteins. Using a phylogenetic tree of 28
related sequences (Fig. 6), we estimated the substitu-
tion rates of residues on the predicted binding pocket
(the union of pockets with CASTp ID 28, 35, and 40
containing 35 residues and a molecular volume of
500.2 Å3), which contains the suspected triad
residues (Fig. 6). Since orphan protein structures
such as BioH have no related known structures, we
use the orientational root mean square distance
(oRMSD) measure developed in Ref. 31 instead of
the cRMSD measure for shape similarity.
The computed binding profile suggests that BioH

is most likely related to a carboxylic ester hydrolase
(EC 3.1.1.–), and more specifically, it may react as an
acetylcholinesterase (EC 3.1.1.7, PDB 1w76, π1≈1.0).
BioH was tested independently for 12 different
enzyme activities with EC numbers different from
our predictions, but the highest activity was found
to be that of an carboxylic esterase (EC 3.1.1.1),
which has the same first three digits as our
prediction (EC 3.1.1.–).48 Work by Sanishvili et al.
also reported prediction results of the functional
roles of BioH, where BioH was predicted to possess
lipase, protease, or esterase activities, with addi-
tional structural features suggesting possible roles
as acyltransferases and thioesterases.48
An orphan protein from V. cholerae. The structure

of a hypothetical protein (Fig. 7a) fromVibrio cholerae
(PDB ID 1u9d) is solved by Binkowski et al. (unpub-
lished results) at the Midwest Center of Structural
Genomics of Argonne National Laboratory. None of
the sequence-basedmethods (e.g., BLASTandPfam),
structural alignment methods (e.g., CE, DALI, and
3DPSSM), structural classification systems (e.g.,
SCOP and CATH), and the GO database provide
any information about the functional roles of this
protein. All of the significant hits obtained by these
comparison methods are hypothetical proteins with
unknown biological functions. It is very challenging
to predict the functions of this protein.
Using a method based on properties of shape and

chemical texture of protein surfaces, we first
identified the putative functional pocket, which is
located in the homodimer interface.49 This pocket is
used as a template to search for similar surfaces in
the database. Our results (Fig. 7c) show that 1u9d is
likely to be related to phosphotransferase (with the
EC label starting with 2.7.), at a probability of
π1≈0.95. Because the oRMSD measure is less
specific than the cRMSD measure, we conserva-
tively estimate that 1u9d has a similar function up to
two EC digits as that of the hit protein. The other hit
of 1u9d is a choline kinase (π2=0.02), which is also a
member of the phosophotranferases. In addition,
1u9d may also have trace of activities as carbon–
carbon lyases (EC 4.1.–.–). In summary, our com-
puted binding profile suggests a limited number of
biochemical assays, which can be carried out to
further determine the functional profile of 1u9d.
Discussion

In this study, we have significantly improved the
pvSOARmethod for predicting protein functions by
incorporating evolutionary information specific to
individual binding surfaces. This can be illustrated
by the example of alpha-amylase from Bacillus
subtilis (1bag, CASTp ID 60). Using an updated
database, we correctly identified 131 structures as
alpha amylase with our current method, pevoSOAR,
while the original pvSOAR method correctly pre-
dicted 116 structures. The additional 15 structures
predicted by pevoSOAR are more challenging. They
are more distantly related to the query protein, as
their pairwise backbone sequence identities with
1bag are all less than 25%, with only one exception at
27%. In addition, our method can predict the profile
of protein-binding activities, which may involve
multiple substrates or ligands. Our method can be
used to predict protein functions, to identify poten-
tial substrates, and to assess binding specificity.

Comparison with other methods

Although sequence-based methods such as PSI-
BLASTwill often findmany proteins homologous to a
query protein, they require significant overall
sequence identity (N60–70%) for confident prediction
of protein functions,1,2 without the benefit of identify-
ing the regions or residues that are functionally
important. Our approach takes advantage of struc-
tural information and can directly identify function-
ally important local surface regions and can
confidently predict functions of proteins with low
levels of sequence identity. For example, several struc-
tures that we found using the acetylcholinesterase
template 1ea5 have low levels of sequence identity
with the query template but high levels of local surface
sequence identity (e.g., 1qo9, 38% full-length and
60% functional surface identities with 1ea5 in Fig. 3).
Our pevoSOAR method shares some similarities

to several recent works. The method of Ref. 24 is
most similar to ours in that it uses manually
constructed as well as automatically generated
local 3D templates to assess the similarity in local
structure for inferring protein functions). Although
an exact direct comparison is difficult, as the
underlying data set and the methodology are
different, these two studies each involve about 100
different protein families. There are important
differences in the criteria of prediction evaluation.
In our study, the assignment of enzyme functions
needs to be identical at all four digit levels of the EC
labels, whereas the study of Ref. 24 is about
prediction of the correct CATH domain labels.
Although not perfect, EC numbers are directly
related to biochemical reactions, whereas the same
classification label of CATH domain does not



Fig. 6. Predicting functions of protein BioH obtained from structural genomics. (a) The structure of BioH (1m33) with
the putative binding pocket shown. The catalytic residues (Ser82, Asp207, and His235) are located in the candidate
binding pocket. (b) A similar functional surface detected from carboxylic ester hydrolases (1w76, CASTp ID 128, EC
3.1.1.7), with full sequence identify of only ≤20%. (c) The phylogenetic tree of 28 sequences related to BioH. Some are
hypothetical proteins. (d) The computed binding profile of BioH.
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Fig. 7. Predicted functions of an orphan protein from V. cholerae, whose structure (PDB 1u9d) was obtained from
structural genomics project. (a) The candidate binding pocket on 1u9d (CASTp ID 25) is located on the interface of the
homodimer. (b) 1u9d is predicted to have a functional surface acting like a phosphotransferase (EC 2.7.–.–, π1≈0.95). (c)
The functional surface on the query structure 1u9d. (d) A similar functional surface pocket (containing 62 residues with a
molecular volume of 2252.63 Å3) is found on human protein tyrosine kinase (2hck, CASTp ID 132, with an EC label of
2.7.1.112). The identity of residues on the functional pockets between these proteins is ≈48%, which is much higher than
that of the full backbone sequences (≤15%).
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necessarily guarantee the same protein function.50

For example, aldehyde reductase (1ads, EC 1.1.1.21,
CATH fold 3.20.20.100) has very similar fold
structure with phosphotriesterase (1dpm, EC
3.1.8.1, CATH fold 3.20.20.140), yet their functions
are quite different. On the other hand, aspartate
aminotransferase (1yaa, EC 2.6.1.1) has similar
function with D-amino acid aminotransferase
(3daa, EC 2.6.1.21), but they belong to different
folds (CATH 3.90.1150.10 and 3.40.640.10; CATH
3.30.470.10 and 3.20.10.10, respectively). It is well
known that proteins of the same SCOP fold and
CATH domain may have acquired different func-
tions during evolution.51-54

With this difference in evaluation criteria, our
result compares favorably with that of Ref. 24, as the
measure of area under the ROC curve in Fig. 4 is
95.5%, compared to 82% in Fig. 4 of Ref. 24. We
therefore conclude that our method can provide
accurate information about enzymatic functions
with high accuracy.

Challenges in assessing local similarity

Although the idea of inferring protein functions
by assessing similarity of local spatial patterns is
appealing,55 there are significant challenges. First, it
is difficult to identify the relevant small number of
residues that are most informative of the function of
a protein. Second, because the number of selected
residues is small, it is difficult to extract evolutionary
information, as the pattern of conservation is more
difficult to detect from a smaller amount of data.
The Catalytic Site Atlas project provides a solution

to the problem of identifying key residues by
painstakingly constructing a library of 3D templates
of key residues important for enzyme functions.
These residues are selected manually from the
literature and structural analysis.56 It provides an
important resource for studying enzyme function.
A difference between our method and those based

on manually constructed 3D functional templates is
that our method is fully automated. Because surface
pockets are computed automatically, there is no
need to manually construct 3D templates. The only
requirement for our method is the knowledge that a
specific computed surface pocket contains function-
ally important residues. The identification of such
pockets can be obtained from information in
annotation or can be the outcome of a functional
site prediction method.49

Our method also differs from several other
methods based on automatically generated 3D
templates. The size of the surfaces in our method
can be small or large, depending on the geometry of
the binding pocket, whereas methods based on 3D
template often are limited with the number of
residues that can be included (e.g., a few residues).24

For uncovering the evolutionary pattern from a
relatively small number of residues, we have shown
that the Bayesian Monte Carlo method we devel-
oped works well. By explicitly constructing a phylo-
genetic tree, by using a continuous-time Markov
process to describe the evolutionary process, and by
using a Bayesian framework and a Markov chain
Monte Carlo estimator,41 we showed that evolu-
tionary information specifically relevant to binding
surface residues and unaltered by other constraints
such as folding stability can be obtained. We believe
this approach is generally applicable for problems of
assessing evolutionary patterns of small regions. It
also allows estimation of selection pressure due to
protein function that is unaltered by selection
pressure due to protein folding.

The role of hypothetical protein sequences

A limitation of our method is that we require
knowledge of the structure of a protein whose
function is to be predicted. However, once the
structure of one protein is known, sequences with
unknown structures and unknown functions (e.g.,
hypothetical proteins obtained from genome
sequencing projects) that can be aligned to the
sequence of the known structure become an
important source of information about the evolu-
tion of protein functional surface. After the surface
sequence fragment of binding site residues is
extracted from geometric computation, our method
does not require the availability of any other
protein structures. Sequences that are used to
construct the substitution rate matrix can be all of
unknown structures, or unknown functions. As an
example, several sequences contained in the phy-
logenetic tree in Fig. 6 are hypothetical proteins
with unknown structures and unknown functions
(e.g., NP_871588), but they provide critical evolu-
tionary information for predicting protein function
(Fig. 6).

Characterizing complex protein functions

In the large-scale study, we used the EC label of
the highest probability as the predicted enzyme
function. Although enzymes often are characterized
well by the EC labels, there are several reasons why
additional characterizations are important. First,
protein structures may have mislabeled EC num-
bers, e.g., a domain is assigned the EC number of a
different domain simply because they belong to the
same peptide chain. Second, for many proteins, EC
labels do not provide accurate information on the
biochemical reactions: an enzyme may be able to
react with multiple substrates. Such complex activ-
ities cannot be easily characterized. Third, knowl-
edge of the EC label per se does not imply knowledge
of the location of the active site or binding surface,
nor the identities of the key residues. The computed
binding profile generated by our method provides a
more realistic picture of protein activities than just a
single label of functions, as shown in the examples of
phosphoglycerate mutase, which is very specific,
and the example of cyclodextrin glycosyltransferase,
which has broader cross-reactivities. The matched
surface helps to locate residues important for
binding and for function.
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General applicability for enzyme
characterization

Here we estimate the number of enzyme proteins
in the PDB in which our method can provide useful
functional information. Among ca 30,000 structures
in the PDB (version 2006/12), we found that there
are 13,877 protein structures annotated as enzymes
with EC numbers assigned. We then select surface
pockets on the enzymes in the CASTp database that
contain residues annotated as functionally impor-
tant either in a PDB record or in the feature table of
SwissProt. Altogether we found 3275 enzyme
structures whose surface pockets contain annotated
functional residues.
For estimation, we use BLOSUM50 as a crude

scoringmatrix that does not reflect accurately the bias
of residue composition in functional surfaces. This
canned matrix does not account for specific evolu-
tionary history of individual protein, or individual
local surface. After clustering the 3275 enzyme
structures in the PDB by EC labels, we obtain 343
clusters. We then selected the representative structure
in each cluster by the criteria of best resolution and R-
factor. Using the surface-matching method but with
the canned matrix to query each of the 343 represen-
tative proteins against the surfaces contained in the
CASTp databasewith N30,000 proteins, we are able to
identify a total number of ≈11,000 protein structures
as hits, namely, proteins satisfying the stringent
confidence criterion of p value b0.001 for coordinate
RMSD for aligned surfaces. The study with 100
protein families reported above shows that matched
enzyme surfaces at this p-value threshold gives few
false-positive predictions.
Based on preliminary studies of alpha amylase and

other enzymes reported in Ref. 41, the number of
proteins with related functions that can be estab-
lished with confidence will be increased conserva-
tively by a factor of about 3.0–3.4 when the
evolutionary history of the functional surface is
analyzed and the binding-surface-specific ratematrix
is used. A rough estimation is that our method will
characterize the functional surfaces of about 9800–
11,000 structures among the 13,877 known enzyme
structures, i.e., for over 70–80% of the PDB structures
known to be enzymes. After removing mislabeled,
incorrectly assigned, and low-quality enzyme struc-
tures, it is likely the percentage of enzyme structures
whose functions ourmethodwill help to characterize
will further increase. The binding surfaces of these
proteins will also be identified. This represents a
significant portion of all known enzyme structures.
Our pevoSOAR method is based on comparing

the similarity of protein surfaces. It builds upon
three techniques: First, we use geometric algorithms
to quantify accurately protein local surfaces;28,57

second, we use a Bayesian Monte Carlo estimator to
characterize the evolutionary history specifically for
a local surface;41 third, we compare surfaces by
assessing evolutionary similarity of residues on local
surfaces,41 in shape, and in orientation.31 In princi-
ple, our method of function characterization by
matching protein surfaces is general and can be
applied to protein functions other than enzyme
activities such as protein–protein interactions. In this
case, a prerequisite is the ability to generate a library
of surface patches that represent the interfaces of
protein–protein interaction accurately.

Methods and Designs

Estimating substitution rates

The success in rapid detection of functionally related
protein surfaces through the alignment of sequence
fragment of binding surface residues58 depends on the
use of a scoring matrix that determines the similarity
between residues. The instantaneous rate matrices of
amino acid residue substitution is the basis for developing
such scoring matrices. We use a reversible continuous-
time Markov process as our evolutionary model.39,59-61

Details of Bayesian estimator based on the technique of
Markov chain Monte Carlo, including the construction of
the phylogenetic tree, are described in Ref. 41.

Scoring matrices of similarity for surfaces at different
evolutionary time intervals

To derive the scoring matrix for assessing functional
similarity between two surfaces and for database search,
we calculate the residue similarity scores bij(t) between
residues i and j at evolutionary time t.62 From the rate
matrix, we use the Altschul model to calculate similarity
score bij(t):

62

bij tð Þ = 1
k
log

pij tð Þ
pj

=
1
k
log

mij tð Þ
pipj

;

where mij(t) is the joint probability of observing both
residue types i and j at the two sequences separated by
time t, and λ is a scalar. Here, pij(t) can be computed from
the instantaneous rate matrix.41

Matching local surfaces

Because a priori we do not know how far a particular
candidate protein is separated in evolutionary time from the
query template protein, we calculate a series of 300 scoring
matrices, each characterizing the residue substitution
pattern at a different time separation, ranging from 1 to
300 time units.Here, 1 timeunit represents the time required
for 1 substitution per 100 residues.63 We use the Smith–
Waterman algorithm as implemented in the Ssearch
program using each of the 300 scoring matrices to align
sequence fragments of candidate binding surfaces against
the database of sequence fragments of protein surface
pockets derived from the CASTp database.37
In addition, surfaces matched by sequence fragment

similarity are subject to further shape analysis. We
compare surfaces by either the coordinate RMSD values
or the orientational oRMSD value we developed in Ref. 31
when specified. Those that can be superimposed to the
residues of the query surface at a statistically significant
level (e.g., p value b0.001 by coordinate RMSD measure)
are declared as hits.31,41 The p value for cRMSD and
oRMSD is estimated through extensive randomization
simulations as described in Ref. 31.
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Probabilistic model for profiling
protein-binding activities

We introduce a probabilistic model, the computed
binding profile, for characterizing specific binding activ-
ities and for inferring protein functions. We use each of
the 300 scoring matrices representing time intervals from
1 unit to 300 units to search the surface database in turn.
Assuming each time interval is equally likely, the
probability of a query protein belonging to the ith EC
label is calculated as:

pi =
P

t ECi tð ÞP
t N tð Þ ; ð1Þ

where ECi(t) is the number of PDB hits belonging to the
ith EC label using matrix of time distance t and N(t) is the
total number of PDB hits with a known EC number using
matrix of time distance t. When a protein has a number
of different hits with different EC labels with associated
probability values, this set of EC labels and the
corresponding πi values provide a computed binding
profile that help to characterize the potentially complex
binding activities of a protein.
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