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Abstract Modern molecular biology has always been a great source of inspiration for computational science. Half a
century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of
the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire
generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics.
In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume
(i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation
(CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with

the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the
dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm,
this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples
how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved:
multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from
mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the
steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that

the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from
which important biological insight can be gained.

Keywords biochemical networks, cellular signaling, epigenetics, master equation, nonlinear reactions, stochastic modeling

1 Introduction

Cellular biology has two important foundations: ge-
nomics focuses on DNA sequences and their evolu-
tionary dynamics; and biochemistry studies molecular
reaction kinetics that involve both small metabolites
and large macromolecules. Computational science has
been an essential component of genomics. In recent
years, cellular biochemistry is also increasingly relying
on mathematical models for biochemical reaction net-
works. Two approaches have been particularly promi-
nent: the Law of Mass Action for deterministic non-
linear chemical reactions in terms of the concentrations
of chemical species, and the Chemical Master Equation
(CME) for stochastic reactions in terms of the numbers
of reaction species.

The Law of Mass Action and the CME are two parts
of a single mathematical theory of chemical reaction
systems, with the latter being fundamental. When the
number of molecules in a reaction system are large,
stochasticity in the CME disappears and the Law of
Mass Action can be shown, mathematically, to arise as
the limit[1-2].

In this article, we shall introduce the CME approach
to biochemical reaction kinetics. We use simply exam-
ples to illustrate some of the salient features of this
yet to be fully developed theory. We then discuss the
challenges one faces in applying this theory to computa-
tional cellular biology. There have been several recent
texts which cover some of the materials we discuss. See
[2-3].
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2 A System of Nonlinear Reactions

To illustrate the theory of the CME and the Law
of Mass Action, let us first consider a simple system of
nonlinear chemical reactions first proposed by Schlögl[4]

A + 2X
α1�
α2

3X, B + X
β1�
β2

C, (1)

in which species A, B and C are at fixed concentrations
a, b and c, respectively. The traditional, macroscopic
kinetics of the system (1), according to the Law of Mass
Action, is described by a deterministic ordinary differ-
ential equation (ODE)[5]

dx

dt
= −α2x

3 + α1ax2 − β1bx + β2c, (2)

where x represents the concentration of X . It is
straightforward to show that (2) exhibits bistabi-
lity (via the so called pitchfork bifurcation) when
α2β1b/(α1a)2 = 1/3[4-5]: that is, the polynomial on
the right-hand-side switches from having only one pos-
itive root to have three positive roots. The system
also shows another bifurcations when varying another
lumped parameter α2

2β2c/(α1a)3 (this time via the so
called saddle-node bifurcation).

We now turn to the CME approach to this reaction
system (1). If in a small volume such as that of a cell,
the number of X is sufficiently small, its concentration
fluctuations become significant[6]. The dynamics of re-
action (1) then is stochastic, which should be described
in terms of a master equation, also known as a birth-
death process in the theory of Markov processes[7].

The system is represented by a discrete random vari-
able nX(t): the number of X at time t (0 � nX < ∞).
Let P (k, t) = Pr{nX(t) = k}, and we have

dP (k, t)
dt

= vk−1P (k − 1, t) + wkP (k + 1, t)

− (vk + wk−1)P (k, t), (3)

where

vk =
α1ak(k − 1)

V 2
+ β2c,

and

wk =
α2(k + 1)k(k − 1)

V 3
+

β1b(k + 1)
V

.

Here V is the volume of the reaction system. It is
a very important parameter of the model. The basic
rule is still the Law of Mass Action: the rate of one
step reaction B + X

β1−→C, when there are k + 1 num-
ber of X molecules, is β1b(k + 1)/V . This gives the
above last term. Similarly, the rate of one step reac-
tion A + 2X

α1−→ 3X , when there are k number of X
molecules, is α1ak(k − 1)/V 2.

For complex biochemical reactions, master equa-
tion like this in general cannot be solved analytically.
Various algorithms exist for simulating its stochastic
trajectories[8]. For the above specific example, however,
the exact stationary probability distribution to (3), i.e.,
after the system reaches stationarity, can be found as
[9-10]:

P (k) = C0

k−1∏
j=0

vj

wj
, (4)

where C0 is a normalization constant such that∑∞
k=0 P (k) = 1. The number of X molecules still fluc-

tuates in the steady state. We note that for large V ,

ln P (k) =
k−1∑
j=0

ln
vj

wj
+ C1 ≈

k−1∑
j=0

ln
v(k/V )
w(k/V )

+ o
( 1

V

)
+ C1 ≈ V

∫ k/V

0

ln
v(z)
w(z)

dz + C1,

in which

v(z) = z2 + σ, w(z) = z3 + μz,

μ = α2β1b/(α1a)2, σ = α2
2β2c/(α1a)3, and C1 = ln C0.

Therefore in terms of the concentration x = k/V , we
have the probability distribution f(x) = V P (V x):

1
2V

ln f(x) =
1

2V
ln P (V x) + C2

≈ 1
2

∫ x

0

ln
v(z)
w(z)

dz + Ĉ (5)

=
1
2

∫ x

0

ln
z2 + σ

z3 + μz
dz + Ĉ. (6)

Therefore, the stationary probability distribution of
the concentration of X :

f(x) ≈ e−V φ(x), (7)

where

φ(x) = −
∫ x

0

ln
z2 + σ

z3 + μz
dz, (8)

is independent of V . It is easy to verify that φ(x) is
at its extrema exactly when the ODE (2) is at its fixed
points. The function φ(x) can be thought as a “land-
scape” for the nonlinear chemical reaction system.

Closed System, Detailed Balance and Chemical Equi-
librium. A chemical equilibrium is reached in the reac-
tion system (1) when

[X ]3

[A][X ]2
=

α1

α2
,

[C]
[B][X ]

=
β1

β2
. (9)

This leads to the equilibrium condition that( [C]
[A][B]

)eq

=
α1β1

α2β2
. (10)
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In term of the two model parameters μ and σ intro-
duced above, this equilibrium (also called detailed ba-
lance) condition is expressed as

σ

μ
=

α2
2β2c/(α1a)3

α2β1b/(α1a)2
=

α2β2c

α1β1ab
= 1. (11)

This equation has a very strong thermodynamic mean-
ing: the term ln(σ/μ) = ΔG/(kBT ) is the chemical
potential difference between A + B and C. If one con-
siders A + B and C as two nodes in a circuit, then ΔG
is the potential between them. When ΔG �= 0, there
exists a nonequilibrium chemical driving force exerted
on the reaction system.

Mathematically, the ODE (2) can be simplified. Let
u = α2x/(α1a) and τ = (α1a)2t/α2, then (2) becomes

du

dτ
= −u3 + u2 − μu + σ, (12)

in which μ, σ > 0. If σ = μ, the right-hand-side of (12)
becomes −(u2+μ)(u−1). There is only one unique fixed
point, i.e., ueq = 1, the equilibrium point. This result
is general. For equilibrium system, the steady state dis-
tribution obtained from the CME is always uni-modal,
corresponding to the unique fixed point obtained from
the Law of Mass Action ODE[9,11].

Nonequilibrium Steady State, Gaussian Approxima-
tion, and Multiscale Dynamics. When σ �= μ, the che-
mical reaction system is not in detailed balance. In
this case, there is a continuous conversion of chemical
energy to heat, even in the steady state. Therefore,
there is a continuous production of entropy due to the
conversion of more useful chemical energy to less useful
heat. The entropy production rate

epr = kBTJ ln
μ

σ
. (13)

The nonequilibrium steady-state (NESS) has a net flux
in the overall reaction A + B → C:

J = u2 − u3 = μu − σ. (14)

It is easy to show that the epr in (13) is always posi-
tive in the NESS. This result should be compared with
“power = current × voltage” being always positive in
a stationary electrical circuit.

For certain parameter values, say μ = 0.25 and
σ = 0.01, the landscape function φ(x) in (8) has two
minima and one maximum in-between:

−u3+u2−μu+σ ≈ −(u−0.05)(u−0.32)(u−0.63). (15)

It is easy to see that the root of u3 + μu = u2 + σ is

precisely the extrema of φ(x) where

φ′(x) = − ln
x2 + σ

x3 + μx
= 0. (16)

Therefore, the nonlinear chemical reaction system is
bistable. The dynamics of the system exhibits multiple
time scale: the relaxation within each “well” and tran-
sitions between the two wells. The former can be accu-
rately described by a Gaussian (linear) random process.
The latter, as two-state transitions, is on a much longer
time scale.

It can be shown, according to the CME, that for a
closed nonlinear chemical reaction system, its stationa-
ry distribution has a unique peak, the equilibrium[9,11].
Furthermore, the fluctuating dynamics, i.e., the sta-
tionary stochastic process in equilibrium is statistically
time reversible[12]. These theoretical results indicate
that complex behavior such as chemical bistability in-
deed can only occur in a “living system” with dissipa-
tion, i.e., useful chemical energy is converted into heat,
and the process sustains a self-organizing complex dy-
namical system[13-14].

Multiscale Dynamics and the Keizer’s Paradox. Ev-
ery CME model contains the parameter V , the volume
of the reaction system. When the number of molecules,
N , and V → ∞, the mathematical solution to the CME
agrees with that from the Law of Mass Action which de-
scribes concentration x = N/V [1-2]. For most biochem-
ical models, one might also be interested in the station-
ary behavior of the solution to the CME. This repre-
sents all the numbers of molecules in a reaction sys-
tem, which are statistically independent of time, with
stationary number fluctuations due to the biochemical
reactions. One naturally identifies this with the home-
ostasis of a cell. Mathematically, this means one is
interested in the limit of t → ∞. Hänggi et al.[15] and
Baras et al.[16] correctly pointed out, however, there
is a delicate computational issue of V (and N) → ∞
and t → ∞ and changing the order of the limits can
lead to different mathematical predictions. This non-
exchangability between V → ∞ and t → ∞ has been
named Keizer’s paradox. One needs to be extra care-
ful in dealing with the steady state behavior of a CME
model.

This issue has been re-examined recently[11,17] in
more details. It is shown to be intimately related to
the multiple time scales of the bistability. The transi-
tion rates between the two states of a bistable system
are exponentially small with increasing V : ∝ e−αV

where α is a positive constant.
One naturally would like to approximate the CME

in terms of a Fokker-Planck equation (second order
PDE). The Fokker-Planck approximation of the CME
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has been discussed in several treatises (e.g., p. 116 of
[18]). The approach is similar to the diffusion approxi-
mation theory for Boltzmann equation (Subsections 3.2
and 3.3 of [18]). Keizer also discussed multiple steady-
states in biochemical reaction systems. However, the
consequence of the multi-stability with diffusion appro-
ximation has not been fully discussed. van Kampen has
repeatedly emphasized that the Fokker-Planck approxi-
mation can be obtained for master equations only with
small individual jumps. A more sophisticated treat-
ment of the Fokker-Planck approximation for master
equation was given in terms of the Ω-expansion (Ch. 10
of [10]). This theory provides a more satisfying appro-
ximation for the stochastic relaxation in the limit of
large V . However, it does not address how to obtain the
stationary distribution with multistability. Computing
such a stationary distribution is a major challenge.

3 Stochastic Bistability in the CME

In the previous section we stated that for suffi-
ciently large V , the CME gives a stationary probabi-
lity distribution for the numbers of all the dynamical
species, which is in complete agreement with the pre-
diction from the Law of Mass Action. A bistable sys-
tem according to the Law of Mass Action, thus, corre-
sponds to a bimodal distribution in the CME. The con-
verse is not true, however. In recent years, there have
been increasingly more examples showing that non-
linear biochemical reaction systems with macroscopic
unistability can exhibit bistable behavior in a small
volume. These results have important implications to
cellular biochemistry. We shall give one example: the
phosphorylation-dephosphorylation cycle (PdPC) with
autocatalytic kinase[19]:

E+E∗+ATP
k1�

k−1

E∗+E∗+ADP, E∗ k2�
k−2

E+Pi. (17)

If we use x to denote the fraction of the phosphory-
lated E∗, then according to the Law of Mass Action:

dx

dt
= k̃1x(1 − x) − k̃−1x

2 − k2x + k−2(1 − x)

= − (k̃1 + k̃−1)x2 + (k̃1 − k2 − k−2)x + k−2,
(18)

where k̃1 = k1EtcT, k̃−1 = k−1EtcD, Et is the total
concentration of E and E∗, cT and cD are ATP and
ADP concentrations. (18) has two steady states, only
one is positive and chemically meaningful. Hence there
is no bistability in macroscopic size reaction system,
with any parameters.

However, if the exactly same nonlinear PdPC is in
a small reaction volume such as a cell, then according

to the CME, the stationary probability distribution for
the number of E∗ is

pss(n) = C

n−1∏
j=0

(k̂1j + k−2)(Nt − j)
(k̂−1j + k2)(j + 1)

, (19)

where k̂i = k̃i/V , i = ±1. C is a normalization factor.
It is easy to check that the distribution in (19) has

two peaks, one at n∗
1 = 0 and the other at n∗

2:

n∗
2 =

k2 + k−2 + k̂−1 − k̂1Nt+

( (k2 + k−2 + k̂−1 − k̂1Nt)2

−4(k̂−1 + k̂1)(k2 − k−2Nt)

)1
2

2(k̂1 + k̂−1)
. (20)

It is usually not an integer. Hence it exhibits stochastic
bistability in a small volume.

4 Biochemical Bistability in a Cell and
Epigenetic Inheritance with a Distributive
Code

Since the discovery of DNA double helix, it has
been well understood that DNA replication is the mole-
cular basis of biological inheritance. However, in addi-
tion to DNA based inheritance, epigenetic inheritance
has become an increasingly important concept in cell
differentiation, stem cell research, as well as bacte-
rial persistence[20]. Current research has been focusing
on several specific molecular processes as the possible
“code” for epigenetics, e.g., histone acetylation[21] and
DNA methylation[22-23]. One of the key issues is that
the code has to be sufficiently stable. This leads re-
searchers to look for specific covalent modifications of
transcriptional regulation apparatus.

However, specific covalent modifications might not
be necessary in some cases. According to the theory of
the CME, the stability of a state of a biochemical re-
action system, i.e., the peak in the stationary distribu-
tion, is due to the biochemical reaction network[24]. In
other words, the epigenetic code could be distributive,
namely, properties such as state stabilities are the out-
come of the collective behavior of many components of a
biochemical network[23]. Therefore, detailed molecular
mechanism(s) aside, the nonlinear biochemical reaction
network(s) as the foundation of cellular epigenetics has
to be valid.

Ptashne has recently re-emphasized the importance
of heritability in the term of “epigenetics”[25]. We shall
point out that the states of bi- or multistable nonlinear
biochemical reaction systems, as defined above, natu-
rally give rise to heritability. It is important to recall
that the function φ(x) above is independent of V , and
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the variable x is the concentration. Hence, assuming
there is no specific mechanism of regulating the pro-
duction of molecule X , if the system’s volume is in-
creased, the concentration x will go down. However,
the nonlinear dynamic nature of the network automa-
tically regulates the system and the steady state con-
centration of X is regained. Thus, as long as the vo-
lume of the system is slowly increasing in the synthesis
phase of the cell cycle, the concentrations of all the key
biochemical species (i.e., transcriptional regulators) are
always maintained at its steady state value. Only when
the volume change occurs in short time period and the
amount of change is sufficiently large, there would be a
chance that the system “jumps” into another basin of
attraction (Fig.1). If the basins of attraction of states
are broad, then a daughter cell will still be in the same
state as the parent cell without the need for any addi-
tional signal and regulation.

Fig.1. Schematics showing how two biochemical states of a non-

linear biochemical reaction system can be inheritable if the vol-

ume of the reaction system is increased, and then divided into

two. Note that the abscissa is concentration, not number of

molecules. In the figure, an increase in volume with a factor

of 2, corresponding to a decrease of concentration to one half,

will still maintain the system in its original attractors. Division

does not change the concentration.

5 Computational Challenges from the
Chemical Master Equation

In the theory of the CME, the dynamics of a bio-
chemical reaction system, in a small volume, is repre-
sented by a multi-dimensional, integer-valued stochas-
tic jump process in Z

n. The process is a discrete-
state, continuous-time Markov process. As any Markov
process, it can be mathematically characterized ei-
ther in terms of its ensemble of stochastic trajectories,
or by its probability distribution as function of time.
These correspond to the stochastic differential equa-
tion and the Fokker-Planck equation representations
of a Brownian dynamics. The CME is the differential
equation for the probability distribution; the stochas-
tic trajectory is defined by the well-known Gillespie

algorithm. In analyzing a CME model, these two ap-
proach complement to each other.

One type of chemical reaction systems, the single
molecules or uni-molecular reaction system, has been
extensively studied in the past. It is important to
note that such systems are linear chemical reaction sys-
tems. Since all the molecules in uni-molecular reaction
systems are statistically independent, it can be repre-
sented by either the particle-state-tracking (PST) algo-
rithm or particle-number-tracking (PNT) algorithm[26].
The simulation can also be carried out approximately,
but satisfactorily, by a continuous model of Langevin
dynamics[27]. There is no multistability in such sys-
tems; nor complex dynamics.

The difference between PST and PNT is as follows:
one either considers the discrete states of the particles
in the simulation, or considers the number of particles
in a particular state. These two approaches correspond
precisely to the Lagrangian and Euler descriptions of
fluid particles — in terms of trajectories of particles
and in terms of the density[28]. In the current re-
search on stochastic simulation of biochemical reaction
systems, these correspond to the StochSim/MCell[29]

and the StochKit, respectively. The Langevin approx-
imated algorithm is closely related to the linear noise
approximation (LNA)[30]. The LNA can be only valid
within each “peak” region, i.e., a basin of attraction, of
the CME. For nonlinear reaction systems with multi-
stability, the Keizer’s paradox can occur which invali-
dates the Langevin approximation for the longer time
scale dynamics.

On more general terms, there are many reasons to
seek accurate solution to the CME directly, although
much has been learned about the overall probabilis-
tic landscape of many biochemical networks through
stochastic simulations (Gillespie, StochSim/MCell, and
StochKit) and approximated continuous models based
on stochastic differential equations. First, details of the
topological features and their quantification such as the
existence and location of basins of attraction, craters,
peaks, and saddle points of various dimensions, their
widths, breadth, and depths on the probabilistic land-
scape, as well as their possible biological implications
such as the inheritable epigenetic state arising from the
properties of the network are largely unexplored. This
is true even for simple reaction systems such as the
2-dimensional Schnakenberg model[31], which is only
slightly more complex than the 1-dimensional Schlögl
model discussed above, as there are no general exact
probabilistic solutions available yet. Second, accurate
solution to the CME problems can facilitate develop-
ment of approximation methods that are capable of
solving large-size problems. There is a large body of
studies on theoretical approaches approximating the
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CME through the Fokker-Planck, and equivalently
Langevin, equations. For effective design of these mod-
els and efficient computations of accurate solutions to
large biochemical systems, it is essential to have some
a priori knowledge of the ground truth. Third, per-
haps most importantly, an accurate solution to the
CME of simpler model systems can reveal important
insights into basic principles on how biological net-
works function and how they respond to various envi-
ronmental perturbations. A shining example of study-
ing complex systems using manageably simple mod-
els is the study of protein folding. Models such as
two- and three-dimensional lattice self-avoiding walks
with only hydrophobic and polar (HP) interactions
allow complete enumeration of all feasible conforma-
tions and calculation of exact thermodynamic param-
eters for molecules with short chain lengths. They
have played important roles in elucidating the princi-
ples of protein folding[32], including collapse and fold-
ing transitions[33-40], influence of packing on secondary
structure and void formation[41-44], the evolution of
protein function[45-46], nascent chain folding[47], and the
effects of chirality and side chains[44].

6 State Space of the Chemical Master
Equation and Exact Calculation of Steady
State Probability Landscape

The state space of the CME is that of M -dimensional
vectors with non-negative integers, which represents the
copy numbers of molecular species in a network; M is
the number of dynamic species. These states are micro-
scopic in nature, as they provide a detailed, chemical
amount of each and every molecular species. An impor-
tant advantage of treating these microscopic states of
copy numbers explicitly is that both linear and nonlin-
ear reactions (such as synthesis, degradation, bimole-
cular association, and polymerization) can be modeled
as Markovian transitions between two microstates, one
reaction at a time. Here the transition rates between
states are determined by the intrinsic propensities of
the reaction, and the copy numbers of molecules in-
volved.

For any biochemical systems beyond the simplest toy
problems, a challenging issue in obtaining an accurate
solution to the CME is the characterization of the state
space. That is, what are all the possible combinations
of concentrations (or copy numbers) of the molecular
species for a given set of reactions represented by a
network? An accurate description of the state space
is a prerequisite for computationally obtaining solu-
tions to the CME. In principle, the size of the state
space grows exponentially with the number of molec-
ular species and the copy numbers of molecules in the

system. For example, if there are 16 molecular species
in a network, and there are only a total of 33 copies of
molecules in the whole system, one can estimate some-
what naively the upper bound of the state space as
(33 + 1)16 = 3.19 × 1024. Note the +1 counts the zero
copy as a state. This is an astronomic number that is
well beyond what can be computed with current and
for-seeable future computing technology.

Below we discuss the enumeration of the state space
of CME and exam how to obtain exact steady state so-
lutions to the CME for biochemical systems with small
and moderate sizes.

Optimal Enumeration of State Space. Although in
principle the size of the state space grows exponen-
tially with the number of molecular species and the
copy numbers of molecules in the system, all is not
lost. There are two important observations about gene-
ral biochemical networks. First, the Markovian transi-
tion matrix is very sparse. For any given microstate,
the number of reactions that could occur in a short
time interval is small, which could be bounded by the
total number of possible reactions in a biochemical net-
work. Second, as an open system, molecules are synthe-
sized and degraded constantly. However, the number of
molecules that can be synthesized is never infinite, as
synthesis is constrained by the time and resources re-
quired. With these two considerations, an algorithm to
enumerate the state space of CME has recently been
developed[48]. The algorithm is optimal in memory re-
quirement, as it allows the enumeration of all states
that can be reached from a given initial state, without
including any irrelevant states. In addition, all possible
transitions are recorded, and no infeasible transitions
are attempted. The resulting transition matrix based
on the enumerated state space is compact without re-
dundant information, and is minimal in size. In addi-
tion, its computational time is also optimal[48].

Exact Calculation of Probability Distribution of the
Steady State. Once the states reachable from a given
initial state are enumerated, the rates of chemical re-
actions connecting two of these states can be com-
puted. For example, we can study a simplified model of
protein-DNA interaction. For the process of two pro-
tein monomer (ProteinA) dimerize and bind to a seg-
ment of DNA (GeneB), we can use the simplified model
below. If we denote the rate of the reaction that brings
the before-state i to the after-state j as aj,i, we have
for the third order reaction:

2 × ProteinA + GeneB b−→BoundGeneB ,

with the following reaction rate coefficient aj,i:
aj,i = b · ngB, i · npA, i · (npA, i − 1)/2,

where b is the intrinsic reaction rate which contains
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hidden systems volume V , npA, i is the copy number
of protein A in state i, and ngB, i is the copy num-
ber of unbound gene B. Here the combination num-
ber of the protein for this second order reaction is(
npA, i

2

)
= npA, i · (npA, i−1)/2. Note that in addition to

the volume V , there is a factor of 2 difference between
the intrinsic reaction rate here and the macroscopic rate
constant discussed in Section 2.

Once the full reaction rate matrix A = {aj,i} ∈
R

n×n is filled with computed rates, the chemical master
equation can be written in a matrix-vector form as:

Ṗ (t) = AP (t). (21)

Here the matrix A represents the infinitesimal gene-
rator of a continuous time Markov process. The dia-
gonal elements aii is set as: aii = −∑

i�=j aj,i, and all
off-diagonal elements are nonnegative. The analytical
solution at time t to (21) can be written as a matrix
exponential:

P (t) = exp(At)P (0). (22)

The matrix eAt is the Markovian state transition pro-
bability matrix with time duration t. We can also ob-
tain its discrete equivalent M as[40]:

M = I + A · Δt, (23)

where I is the identity matrix, Δt is a small time inter-
val during which one reaction occurs. When the system
has reached the steady state, the probability landscape
over the enumerated states P can be computed by solv-
ing the equation:

P = MP .

Here P can be obtained with an iterative solver such
as that based on the successive over-relaxation (SOR)
technique[49]. Alternatively, since P for the steady
state corresponds to the eigenvector of M with eigen-
value 1.0, one can obtain P by using eigenvector
method such as the Arnoldi method[50], as done in [48].

By examining computationally the stochastic be-
havior of genetic circuits for wild type and mutant
networks, and by studying the probabilities of rare
events, one can gain further understanding of the re-
gulation mechanism of genetic circuits, its system sta-
bility against perturbation (such as fluctuations in nu-
tritional conditions), and its robustness against genetic
mutations (such as those due to DNA damage)[51].

7 Two Examples of Stochastic Biochemical
Systems and Their CMEs

In this section we give two examples on how exact
stationary probability landscapes of a biochemical net-
work can be computed from its CME. The CME, of

course, gives more than just a stationary distribution,
but solving the steady state is almost obligatory in any
analysis of mathematical models.

Toggle Switch. In Section 3, we already discussed
how bistability arises from stochasticity. Another ex-
ample is the well studied genetic toggle-switch system.
This is a small network consisting of two genes, A and
B, each inhibits the other (Fig.2). It was the first syn-
thetic network constructed in a wet lab from two re-
pressible promoters arranged in a mutually inhibitory
network in Escherichia coli by Gardner et al.[52]. It is
flippable between two stable states by chemical or ther-
mal induction and exhibits an ideal switching thresh-
old. This toggle switch forms a synthetic cellular mem-
ory unit[52]. Although this is the simplest network
with bistability that can already be identified from
ODE models based on the Law of Mass Action, impor-
tant questions such as switching probability between
the “on” and “off” states requires a treatment of the
stochasticity. Although there have been great recent
progresses in deriving analytical solutions[53-56], they
are applicable under special conditions, such as fast
transition between the on- and off-states, or overall

Fig.2. Model of a toggle switch. (a) The network model and the

reaction rates. Single copies of gene A and gene B encode protein

products. Two protein monomers can repress the transcription

of the other gene. The synthesis of protein product of gene A and

gene B depends on the bound or unbound state of the gene. (b)

The chemical reactions of the 8 stochastic processes involved in

the toggle-switch system. The reaction rates include s for protein

synthesis, d for protein degradation, b for protein-gene binding,

and u for protein-gene unbinding (adapted from [48]).
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small noise associated with high concentrations. With
the algorithm for state enumeration, the steady state
landscape probability of the toggle-switch can be solved
exactly for models with arbitrary parameter specifica-
tions.

Epigenetic Switch in Phage Lambda. Exact solution
of the CME can also be obtained for larger systems in
which biological phenomenon are modeled more realis-
tically. An example is the epigenetic switch of phage
lambda. Phage lambda is a virus that infects E. coli
bacteria. It is the system in which gene regulation
was first studied. Upon infection, phage lambda can
choose two different life styles. In the lysogenic path-
way, the DNA of phage lambda becomes integrated
into the chromosome of the host, and can replicate
for many generations along with the host. Upon ad-
verse environmental perturbations such as UV irradia-
tion, phage lambda switches from the lysogenic path-
way to the lytic pathway, in which it uses the protein
synthesis machinery of the host, and replicate to 100s
of copies, which leads to the burst of the host cell. The
lytic pathway offers critical evolutionary advantage for

phage lambda to survive, as it allows phage to escape
from hopelessly distressed E. coli host cells. In phage
lambda, a gene regulatory circuit controls the switching
between the maintenance of the lysogenic state and the
induction of the lytic state. The CME model analysis
clearly demonstrates the idea of a distributive epige-
netic code. As a paradigm for understanding cell de-
velopment, phage lambda has been extensively studied,
with the molecular components and reaction rates well
characterized (see the seminal book by Ptashne[57]).
The key components of the switch of the genetic cir-
cuits and their wirings can be summarized in Fig.3.
There are three operators (OR1, OR2, and OR3) and
two promoters (Pr and Prm). These are used to control
the transcription of CI and Cro proteins, which dimer-
ize and bind to the operator sites with different affinity
and inhibit the expression of each other[57].

The importance of stochasticity in the genetic cir-
cuit of lambda phage is well recognized, and its effects
have been studied using stochastic simulations[58] and
stochastic differential equations[24,59]. The steady state
probability landscape of the CME model based on the

Fig.3. Phage λ switching network. Reactions including binding and unbinding, synthesis and degradation, dimerization are labeled as

arrows, along with the corresponding kinetic constants (adapted from [51]).

Fig.4. Lysogenic and lytic states and CI synthesis rate. (a) Lysogenic state, Ks CI=0.045/s. (b) The switching state, Ks CI=0.0245/s.

(c) Lytic state, Ks CI=0.0077/s. X and Y axes are copy numbers of CI and Cro dimers; and Z axis is the marginal probability (adapted

from [51]).
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network depicted in Fig.3 can be solved directly[51].
Fig.4 shows the probability landscape under several
physiological conditions when the system is in the lyso-
genic state, in transitory switching state, and in lytic
state[51]. Fig.5 shows the phase diagram of concentra-
tions of CI and Cro at different CI synthesis rate.

Fig.5. Relative CI and Cro dimer levels for wild type and mu-

tant lambda phage. The lysogenic state has high CI (solid line)

concentration, and the lytic state has high Cro (dashed line) con-

centration. Wild type lambda phage has a well-behaving switch,

while mutants are all leaky (adapted from [51]).

By examining computationally the stochastic beha-
vior of genetic circuits for wild type and mutant net-
work, and by studying the probabilities of rare events,
one can gain further understanding of the regula-
tion mechanism of genetic circuits, its system stabil-
ity against perturbation (such as fluctuations in nutri-
tional conditions), and its robustness against genetic
mutations (such as those due to DNA damage)[51].

8 Methods for State Space Simplification

For large systems in which enumeration is no longer
feasible, one approach for numerical computation is to
reduce the large number of microstates to a smaller fi-
nite number[60].

Finite State Projection. Munsky and Khammash
made two key observations about projecting the high
dimensional state space to a lower dimensional finite
space by including only a subset of the original states.
Denote two sets of indice of the states being chosen
as J1 and J2, and assume J1 ⊆ J2. The reduced rate

matrix obtained by selecting states in J1 and J2 are
AJ1 and AJ2 , respectively. The first observation is:

(eAJ2 )J1 � eAJ1 � 0. (24)

This relation implies that by increasing the size of the
selected subset of states, the approximation improves
monotonically. Second, if one obtains a reduced state
space by selecting states contained in the index set J
and if 1T etAJ PJ (0) � 1 − ε for ε > 0 and t � 0, then:

etAJ P J(0) � P J (t) � etAJ P J (0) + εI. (25)

That is, starting with the initial probability of the re-
duced vector P J(0), compute the probability vector in
the reduced space etAJ P J (0) at time t using the re-
duced rate matrix AJ . If the inner-product of this
vector for time t with 1 is no less than 1 − ε, then
the error of this vector with the projected true vector
P J(t) from the true probability P (t) is no more than
εI. This inequality guarantees that the approximation
obtained with reduced state space will never exceed the
actual solution, and its error is bounded by ε[60].

These key observations led to the Finite State
Project Algorithm, which iteratively adds new states
to an initial reduced state space, until the approxima-
tion error is within a prescribed bound[60]. Munsky and
Khammash further extended the original Finite State
Projection method[61], and recommends running a few
steps of stochastic simulation to obtain the initial prob-
ability vector P (0) that is non-sparse. However, there
are no generally applicable strategies as to what states
to add to a finite projection to most efficiently improve
the approximation accuracy.

Krylov Subspace Method. The analytical solution to
the CME can be expressed in the form of a matrix ex-
ponential P (t) = eAtP (0). As discussed before, the
rate matrix A has a very large dimension but is sparse.
An alternative approach to reduced the state space is
to convert the problem of exponentiating a large sparse
matrix to that of exponentiating a small dense matrix
in the Krylov subspace Km

[62]:

Km(At, P (0)) ≡ Span{P (0), · · · , (At)m−1P (0)}.
(26)

The idea is that the Krylov subspace used is of a very
small dimension of m = 30−60. Denoting ||·||2 as the 2-
norm of a vector or matrix, the approximation then be-
comes P (t) ≈ ||P (0)||2V m+1 exp(tHm+1)e1, where e1

is the first unit basis vector, V m+1 is a (m+1)×(m+1)
matrix formed by the orthonormal basis of the Krylov
subspace, and Hm+1 the upper Hessenberg matrix,
both computed from an Arnoldi algorithm[63]. The
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error can be bounded by

O(em−t||A||2(t||A||2/m)m).

One only needs to compute explicitly exp(Hm+1t).
This is a simpler problem as m is much smaller. A
special form of the well-known Padé rational of polyno-
mials instead of Taylor expansion is used[64-65]:

etHm+1 ≈ Npp(tHm+1)/Npp(−tHm+1),

where Npp(tHm+1) =
∑p

k=0 ck(tHm+1)k and ck =
ck−1 · p+1−k

(2p+1−k)k . The Expokit software by Sidje pro-
vides an excellent implementation of this method[65].
This approach has been shown to be very effective in
studying large dynamic system (n = 8.0× 105) such as
protein folding[40] and signaling transmission in macro-
molecular assembly of GroEL-GroES[66].

The Krylov subspace method concurrently evaluate
the matrix exponential. The overall scheme can be ex-
pressed as follows:

P (t) ≈ exp(τKAK) . . . exp(τ0A0)P (0),

t =
K∑

k=0

τk, (27)

in which the evaluation is from right to left. Here {τi}
are size of time steps, and K is the total number of time
steps[62].

MacNamara et al. further extends the Krylov sub-
space method by splitting the rate matrix A. Based on
the reachability criteria, one can divide the states into
the “fast partition” and the “slow partition”[67]. Here
the condition is that two states belong to the same sub-
set of the fast partition if and only if one can be reached
from the other via a sequence of finite fast reactions[67].
Correspondingly, the matrix can be splitted into two:

A = Af + As,

where Af corresponds to the fast CME, and As corre-
sponds to the slow CME, and one has:

Ṗ f (t) = AfP f (t)

and
Ṗ s(t) = AsP s(t).

With this deliberate separation, both Af and As

maintain the important property of being infinitesi-
mal generators of continuous time Markov processes by
themselves[67]. With more elaborated splitting scheme
for aggregation of Markov processes, the Krylov sub-
space projection method have been shown to be com-
putationally very efficient[62].

Approximation by Continuous Stochastic Differen-
tial Equation. An effective approach to study bioche-
mical networks whose chemical master equations can-
not be solved directly is to approximate them with
stochastic differential equations. One widely used ap-
proach is that of the Fokker-Planck-Langevin model[10].
The Langevin equation for concentration flux consists
of a drift term and a diffusion term. The drift term
models the macroscopic deterministic component of the
system. It reflects the time-dependent evolution of the
mean concentrations of the molecular species. The dif-
fusion term models the intrinsic stochasticity of the sys-
tem. The basic form of a Langevin, stochastic differen-
tial equation is:

dX

dt
= μ(X) + σ(X)N

(
0,

1
dt

)
. (28)

Here X is the vector of concentrations of molecular
species in the reaction system, μ(X) the drift term, and
the second term is the diffusion term. Here N (0, 1/dt)
is a vector of one-dimensional Gaussians, with zero
mean and 1/dt variance. The coefficient σ(X) controls
the amplitude of the Gaussian noise. It can be either
a function of X or a constant. The key issue in deve-
loping Langevin models for biochemical networks is to
determine μ(X) and σ(X). When σ(X) is a vector of
constants, one adjusts its values so the variance of the
Gaussian noise produce the correct fluctuations in the
system[10].

One of the most important issues to keep in mind
when developing Fokker-Planck-Langevin approxima-
tions for a CME is the Keizer’s paradox previously dis-
cussed. For dynamical system with a single, globally
attracting attractor, however, this is not an issue. We
shall use the Schnakenberg model to demonstrate how
well the Langevin approach works. Originally deve-
loped for studying the limit cycle behavior in a sim-
ple chemical reaction system[31,69], the Schnakenberg
model is a simple system with two reacting components
and three reversible reactions:

X
k1�

k−1
A, B

k2�
k−2

Y, 2X + Y
k3�

k−3
3X, (29)

where X and Y are reacting species of the system, and
A and B are external reactants whose concentrations
(or copy numbers) are fixed constants. Each reaction
has a corresponding microscopic reaction rate. The
fixed copy numbers or concentrations of A and B can be
adjusted, which lead to different behavior of the system.
This simple system already produces complex behavior
such as oscillation and has a single stable limit cycle
(see [6, 70] for recent examples).
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Fig.6. Calculated steady state probability distributions over different copy numbers of X and Y and the trajectories of evolving

concentrations of X and Y of the Schnakenberg model. (a) and (b): Trajectories of evolving concentrations of X and Y according to the

deterministic ordinary differential equation (ODE). Here (a) shows the well-known oscillating limit cycle behavior of the Schnakenberg

model, and (b) shows the convergence towards a fixed point. The concentrations of A and B are set at values equivalent to the

copy numbers used in stochastic models. (c) and (d): Reconstructed probability distributions over X and Y obtained from 200 000

simulations of the Langevin equation (LE). (e) and (f): Exact probability distributions over copy numbers X and Y obtained by solving

the chemical master equation (CME). Two sets of copy numbers of (A, B) at (10, 50) and (20, 40) are used for the fixed parameters A

and B (adapted from [68]).

The macroscopic concentration obtained by solv-
ing the corresponding ODE model, the approximated
steady state probability distribution obtained by inte-
grating the Langevin model, and the exact probability
distributions obtained by solving the chemical master
equation[48] are shown in Fig.6. At the parameter va-
lues of A = 10 and B = 50, the well-known oscillating
limit cycle behavior of the Schnakenberg model can be
seen in Fig.6(a). At A = 20 and B = 40, the be-
havior of the system converges towards a fixed point
(Fig.6(b)). The landscapes of the steady state proba-
bility distributions obtained from solving the Langevin
equation (Fig.6(c)) and the chemical master equation
(Fig.6(e)) all show a crater, or a basin surrounded by a
mountainous ridge for the parameter set of A = 10 and
B = 50 (details not shown). This corresponds well with
the limit cycle behavior observed in the ODE model.
At A = 20 and B = 40, the landscapes show a single
peak (Figs. 6(c) and 6(d)), which again corresponds
well with the fixed-point behavior observed in the ODE
model.

As can be seen in Figs. 6, and 7, the model of
Langevin equation approximates well the true proba-
bility landscape of the chemical master equation. This
demonstrates that the diffusion term models the intrin-
sic stochasticity of the Schnakenberg model well.

Alternative models account for the stochasticity
by replacing the diffusion term with a term for the
variance-covariance between pairs of the molecular
reactions[71], or between concentrations of different
molecular species, without the explicit inclusion of a
random process[72]. The magnitude of the covariance
is determined by the Hessian matrix of the second-
order partial derivative of the propensity functions of
the reactions[71-72]. This inclusion of the second mo-
ments to account for the stochasticity is the basis of
the stochastic kinetic model[71] and the mass fluctua-
tion kinetic model (MFK)[72]. These models can model
reactions involving one or two molecules well[71-72].
They are similar in spirit to the Fokker-Planck equation
model of the CME as described in [73] by including a
second moment term for better approximation, but are
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different from that of [73] as they are macroscopic in
nature and do not involve any random processes.

Yet another approach is to directly model explicitly
the stochastic coupling of the macroscopic concentra-
tions of molecular species, in addition to the Gaussian
noise of the original Langevin model[68]. The steady
state probability landscape of the Schnakenberg model
resulting from this approach is shown in Fig.7. Sig-
nificant improvement after incorporating the coupling
term can be seen in Fig.7.

Fig.7. Comparison of errors between different steady state so-

lutions of the Schnakenberg model. (a) Difference between the

probability landscapes of the Langevin equation and that of the

chemical master equation. This represents errors in the Langevin

model. (b) The amount of the errors in (a) that are corrected by

introducing explicitly a coupling term between X and Y (adapted

from [68]).

Remark. The complex nature of the stochastic dy-
namics arising from biochemical networks bears much
resemblance to another complex system, namely, that
of protein folding. Both have very large space of micro-
states, and both can be modeled by transitions between
micro-states using master equations (for master equa-
tion approach in protein folding studies, see [37, 39-40]).
However, these two systems differ in several important
aspects. First, while protein folding can be modeled as
a relaxation process towards the equilibrium state, bio-
chemical networks are intrinsically open, with synthesis

and degradation of molecules an integral part of the sys-
tem, hence there are no equilibrium states. Instead, one
frequently seeks to study the non-equilibrium steady
state. Second, once the energy of a protein conforma-
tion is known, the relative probability of its sequence
adopting this conformation in the equilibrium state can
be calculated from the Boltzmann distribution, without
the need of knowing all other possible conformations
and their associated probabilities. In other words, the
protein folding problem is local in the energy landscape.
In contrast, it is not possible to calculate the relative
probability of a specific microstate of copy numbers a
priori without solving the entire CME, as the proba-
bility distribution of network states do not generally
follow any specific analytical forms (no detailed bal-
ance and the existence of cycle fluxes). Third, tran-
sitions between microstates are clearly defined in bio-
chemical networks by the reactions, whereas transitions
between different protein conformations often techni-
cally depend on specific move sets, which are different in
terms of allowable transitions between states and tran-
sition rates, although all such move-sets are developed
with the goal to mimic physical movement of molecules.

9 Discussions and Outlooks

In this review, we have discussed the significance of
the chemical master equation (CME) as a theoretical
framework for modeling nonlinear, biochemical reaction
networks inside cells, and the possible mechanism of cel-
lular states, or attractors, as the inheritable phenotypes
with a distributive epigenetic code. The validity of such
a grand theory requires close comparisons between the-
oretical predictions with experiments. Solving a given
CME, however, is a computationally challenging task
at the present time. We have outlined several key diffi-
culties, as well as some of the progresses that have been
made so far.

In addition to the subject of studying algorithmic
complexity, complex system, in a broady sense, is a
major scientific problem of computer science and com-
putational science[74]. One needs not to be reminded of
the complex phenomena exhibited in the natural world
of her/his surroundings. How to characterize and quan-
tify such complex behavior is of great interests for un-
derstanding our physical and biological worlds. But
what is complexity and how to define complex beha-
viors? Through studies of the CME, one seems to be
able to gain some deeper understanding of the issues in-
volved through concrete physical and biology examples.
Recently, one of us has suggested that a key to meso-
scopic complexity[75] is in the multi-stability with mul-
tiple time scale dynamics[76]. Nonlinear biochemical re-
action systems in a cell-size volume can be a prototype
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for studying complexity.
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