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Abstract Langevin equation is widely used to study the stochastic effects in molecular networks,
as it often approximates well the underlying chemical master equation. However, frequently it
is not clear when such an approximation is applicable and when it breaks down. Here we study
the simple Schnakenberg model consisting of two molecular species whose concentrations vary
and three reversible reactions. To reduce residual errors from the conventional formulation of the
Langevin equation, we propose to explicitly model the effective coupling between macroscopic
concentrations of different molecular species. Our preliminary results show that this formulation
is effective in correcting residual errors from the original uncoupled Langevin equation and can
approximate the underlying chemical master equation very accurately.
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1 Introduction
Chemical master equation (CME) provides a fundamental theoretical framework for

modeling biochemical reaction systems. However, master equation is difficult to solve
analytically, except in a few simple special cases. Currently, there are two approaches for
obtaining solutions to the master equation. The first is the widely used stochastic simula-
tion algorithm [3]. This is an Monte Carlo sampling method, but has serious limitations.
For example, it is difficult to know a priori whether the amount of sampling is sufficient,
especially when facing the difficult task of estimating small probabilities of biological
events that occur rarely but are critically important. Stochastic simulations can be very
inefficient in capturing these rare events of interests.

The second is to solve the chemical master equation computationally. Methods in
reducing the state space with controlled error bounds have been developed for achieving
this goal [7]. Recently, progress has also been made in the optimal enumeration of the
state space of the underlying Markov process of the CME, and in obtaining the exact
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stationary probability distribution over these states [1]. It was shown that these techniques
can be applied to realistic biological problems, including the well-known system of the
epigenetic switch of phage lambda [2].

However, to go beyond biochemical networks of small or moderate size, whose chem-
ical master equations cannot be solved directly, one needs to approximate the stochastic
biochemical system. One widely used approach is that of the Langevin equation. van
Kampen summarized the “Langevin approach” as one consisting of two terms: The drift
term represent the macroscopic deterministic part of the system, and the diffusion term
represents the intrinsic stochasticity or noise in the system. The basic form of Langevin
equation is:

dX
dt

= µ(X)+σ(X)N (0,
1
dt
). (1)

Here X is the vector of concentrations of molecular species in the reaction system, µ(X)
the deterministic component of the equation, or the drift term. The second term is the
diffusion term. Here N (0,1/dt) is a vector of 1D Gaussians, with zero mean and 1/dt
variance. The coefficient σ2(X) controls the amplitude of the Gaussian noise. It can
be either a function of X or a constant. The key issue in developing Langevin models
for biochemical networks is to determine µ(X) and σ2(X). When σ2(X) is a vector of
constants, one adjusts its values so the variance of the Gaussian noise produce the correct
fluctuations in the system [12].

In this study, we explore a novel approach for developing stochastic models of bio-
chemical networks extending the Langevin formulation. Using the well-studied Schnaken-
berg’s model as the example, we show that by explicitly incorporating the coupling of
macroscopic concentrations of different molecular species, a more accurate model whose
solution approaches the original chemical master equation can be obtained. This paper
is organized as follows: we describe the development of the coupling Langevin equation
in the next section. We then present results of numerical solutions and analysis. This is
followed by discussion and conclusion.

2 Models
Schnakenberg model

The Schnakenberg model was originally developed for studying the limit cycle behav-
ior in a simple chemical reaction system [11]. This system consists of only two reacting
components. However, such a simple system can already produce complex behavior such
as oscillation. There have been many theoretical studies on the Schnakenberg model (see
[10, 9] for recent examples).

The Schnakenberg model used in this study consists of three reversible reactions:

X
k1⇌

k−1
A, B

k2⇌
k−2

Y, 2X +Y
k3⇌

k−3
3X , (2)

where X and Y are reacting species of the system, and A and B are external reactants whose
copy numbers or concentrations are fixed constants. Each reaction has a corresponding
microscopic reaction rate. The fixed copy numbers or concentrations of A and B can be
adjusted, which lead to different behavior of the system.
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Chemical master equation (CME)
The chemical master equation for the Schnakenberg model can be written as:

d p(X ,Y, t)
dt

= k−1Ap(X−1,Y, t)+ k2Bp(X ,Y −1, t)+
k3

V 2 (X−1)(X−2)(Y +1)p(X−1,Y +1, t)

+ k1(X +1)p(X +1,Y, t)+ k−2(Y +1)p(X ,Y +1, t)+
k−3

V 2 (X +1)X(X−1)p(X +1,Y −1)

− (k−1a+ k2b+
k3

V 2 X(X−1)Y + k1X + k−2Y +
k−3

V 2 X(X−1)(X−2))p(X ,Y, t),

(3)

where X , Y , A and B are copy numbers of molecular species X, Y, A and B. p(X ,Y, t) is
the probability that the system has the state of X copies of X and Y copies of Y at time t.
V represents the volume of the system.

Macroscopic deterministic model (ODE)
The macroscopic deterministic model or the ODE model provides the first degree ap-

proximation to the master equation. It does not model the stochasticity in the system as it
contains no noise-related diffusion term. The deterministic equations of the concentration
of X and Y can be written as:

dx
dt

= k−1a− k1x+ k3x2y− k−3x3, and
dy
dt

= k2b− k−2y− k3x2y+ k−3x3, (4)

in which x, y, a and b are concentrations of molecular species X, Y, A and B, respectively.
Concentrations can be calculated from copy numbers of corresponding molecular species
after division by the system volume V .

Coupling Langevin Equation
The drift term. The noise-related diffusion term is added to the deterministic ODE

model to account for the stochasticity in the system. We first derive the differential form
of the mean of X and Y from the chemical master equation. After multiplying both sides
of Eqn. (3) with X and sum over X and Y from 0 to ∞, we combine similar terms, and
re-index the summations. We obtain:

d ∑∞
X=0 ∑∞

Y=0 X p(X ,Y, t)
dt

= k−1A
∞

∑
X=0

∞

∑
Y=0

p(X ,Y, t)− k1

∞

∑
X=0

∞

∑
Y=0

X p(X ,Y, t)

+
k3

V 2

∞

∑
X=0

∞

∑
Y=0

X(X−1)Y p(X ,Y, t)− k−3

V 2

∞

∑
X=0

∞

∑
Y=0

X(X−1)(X−2)p(X ,Y, t).
(5)

That is,

d⟨X⟩
dt

= k−1A− k1⟨X⟩+
k3

V 2 ⟨X(X−1)Y ⟩− k−3

V 2 ⟨X(X−1)(X−2)⟩, (6)

where ⟨⋅ ⋅ ⋅ ⟩ stands for the mean of stochastic variable “⋅ ⋅ ⋅”. Similarly, we have for ⟨Y ⟩:
d⟨Y ⟩

dt
= k2B− k−2⟨Y ⟩−

k3

V 2 ⟨X(X−1)Y ⟩+ k−3

V 2 ⟨X(X−1)(X−2)⟩ (7)

It is easy to see that Eqn (6) and Eqn (7) are equivalent to the macroscopic determin-
istic equations Eqn (4), after both sides are divided by the system volume V and ⟨X⟩ and
⟨Y ⟩ are transformed into concentration (Eqn (8)). We will use these as the drift term of
the Langevin equation:

µx(x,y) = k−1a− k1x+ k3x2y− k−3x3, and µy(x,y) = k2b− k−2y− k3x2y+ k−3x3

(8)
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The diffusion term. As in Eqn 1, we use Gaussian noise to model the diffusion term.
The coefficient of the diffusion term can be derived from the variance of the copy numbers
of X and Y. By the definition of σ2(X) = ⟨X2⟩−⟨X⟩2, we have:

dσ2(X)

dt
=

d⟨X2⟩
dt
−2⟨X⟩d⟨X⟩

dt
. (9)

Here, d⟨X⟩
dt has already been derived (Eqn 6). d⟨X2⟩

dt can be obtained using the same ap-
proach as that of Eqn (6) and Eqn (7). After multiplying both sides of Eqn (3) with X2

and sum over X and Y from 0 to ∞, we combine the terms, and re-index them. We obtain:

d⟨X2⟩
dt

= 2k−1A⟨X⟩+ k−1A−2k1⟨X2⟩+ k1⟨X⟩+
2k3

V 2 ⟨X
2(X−1)Y ⟩

+
k3

V 2 ⟨X(X−1)Y ⟩− 2k−3

V 2 ⟨X
2(X−1)(X−2)⟩+ k−3

V 2 ⟨X(X−1)(X−2)⟩
(10)

Substituting Eqn. (10) and (6) into Eqn. (9), we now have obtained dσ2(X)
dt as:

dσ2
X (X ,Y )

dt
=

d⟨X2⟩
dt
−2⟨X⟩d⟨X⟩

dt
= k−1A+ k1⟨X⟩+

k3

V 2 ⟨X(X−1)Y ⟩+ k−3

V 2 ⟨X(X−1)(X−2)⟩
(11)

In order to convert the copy numbers X and Y into concentrations, Eqn (11) is divided by
V 2. We arrive at the expression for the variance of the concentration of molecular species
X as:

σ2(x) =
dσ2

x (x,y)
dt

=
1
V
(k−1a+ k1x+ k3x2y+ k−3x3) (12)

This is also the variance in Eqn (1). Similarly, we have:

σ2(y) =
1
V
(k2b+ k−2y+ k3x2y+ k−3x3) (13)

We can now obtain the Langevin equation for the Schnakenberg model from its underlying
chemical master equation:

dx
dt

= (k−1a− k1x+ k3x2y− k−3x3)+

√
1
V
(k−1a+ k1x+ k3x2y+ k−3x3)N (0,

1
dt
)

dy
dt

= (k2b− k−2y− k3x2y+ k−3x3)+

√
1
V
(k2b+ k−2y+ k3x2y+ k−3x3)N (0,

1
dt
)

(14)

We call this the uncoupled Langevin equation (ULE).
The coupling terms between molecular species. Although the Langevin equations

obtained thus far can approximate the chemical master equation well, effects of higher
order coupling intrinsic in complex biochemical systems are not accounted for in this
model. For example, the molecular species X and Y in the Schnakenberg model are
strongly coupled, but they are treated as independent random variables in the present
form of the Langevin equation. In order to obtain better approximation to the chemical
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master equation, we now extend the conventional Langevin formulation and add explicitly
a coupling term.

To account for the coupling effect between X and Y , we derive the d⟨XY ⟩
dt term from

the chemical master equation Eqn (3) using similar approach as before:

d⟨XY ⟩
dt

= k−1A⟨Y ⟩+ k2B⟨X⟩− (k1 + k−2)⟨XY ⟩− k3

V 2 ⟨XY (X−1)(X−Y +1)⟩

+
k−3

V 2 ⟨X(X−1)(X−2)(X−Y −1)⟩.
(15)

In the form of concentrations, we have:

dxy
dt

= k−1ay+ k2bx− (k1 + k−2)xy− k3x2y(x− y)+ k−3x3(x− y) (16)

To add this coupling term to the Langevin equation with proper dimension, we decompose
this term by dividing it with y and x, respectively, to obtain 1

y
dxy
dt and 1

x
dxy
dt . These are then

added to Eqn (14) with a scaling coefficient α:

dx
dt

= (k−1a− k1x+ k3x2y− k−3x3)+

√
1
V
(k−1a+ k1x+ k3x2y+ k−3x3)N (0,

1
dt

)+α
dxy
ydt

dy
dt

= (k2b− k−2y− k3x2y+ k−3x3)+

√
1
V
(k2b+ k−2y+ k3x2y+ k−3x3)N (0,

1
dt

)+α
dxy
xdt

(17)

The determination of the scaling coefficient α , analysis of the computed results, and
comparisons to other Langevin equation-based models are discussed below.

3 Numerical Simulations and Analysis
We have computed the exact steady state probability distributions of the system at

different concentrations of X and Y by solving the chemical master equation using the
method described in [1] (Fig 1a and 1b, CME for chemical master equation). The reaction
rates are set at fixed value of k1 = k2 = k3 = k−1 = 1.0 and k−2 = k−3 = 0.01. The system
volume is set to a constant of V = 100. We use two sets of copy numbers of (A,B) of
(10,50) and (20,40) for the fixed parameters A and B in the Schnakenberg model in our
calculations. We have also reconstructed the probability distributions based on 200,000
simulations of the improved coupling Langevin equation (Fig 1c and 1d, CLE for coupling
Langevin Equation), and of the original uncoupled Langevin equation (Fig 1e and 1f, ULE
for uncoupled Langevin Equation). For numerical simulation of the Langevin Equations,
we follow Ito’s formula [8] and use the Eular-Maruyama method [5]. In addition, we
have computed the trajectories of the concentrations of X and Y evolving at different
time according to the deterministic model (Fig 1g and 1h, ODE for Ordinary Differential
Equation). Here the fixed constants a and b are set at values of (0.1,0.5) and (0.2,0.4),
which are equivalent to the values of copy numbers used for the stochastic models.

Comparison of results from models of chemical master equations, Langevin equa-
tion, and ODE models

At the parameter values of A = 10 and B = 50, the well-known oscillating limit cycle
behavior of the Schnakenberg model can be seen in Fig 1g. At A = 20 and B = 40,
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Figure 1: Calculated probability distributions over different copy numbers of X and Y and the
trajectories of evolving concentrations of X and Y . (a) and (b): Exact probability distributions
over copy numbers X and Y obtained by solving the chemical master equation (CME). Two sets
of copy numbers of (A,B) at (10,50) and (20,40) are used for the fixed parameters A and B; (c)
and (d): Reconstructed probability distributions over X and Y obtained from 200,000 simulations
of the coupling Langevin equation (CLE); (e) and (f): Reconstructed probability distributions
over X and Y obtained from 200,000 simulations of the original uncoupled Langevin equation
(ULE); and (g) and (h): Trajectories of evolving concentrations of X and Y according to the
deterministic ordinary differential equation (ODE). Here (g) shows the well-known oscillating
limit cycle behavior of the Schnakenberg model, and (h) shows the convergence towards a
fixed point. The concentrations of A and B are set at values equivalent to the copy numbers
used in stochastic models.

the behavior of the system converges towards a fixed point (Fig 1h). The landscapes of
the steady state probability distributions obtained from solving both the chemical master
equation and the two forms of the Langevin equation all show a crater surrounded by
a mountainous ridge for the parameter set of A = 10 and B = 50 (detailed figures not
shown). This corresponds well with the limit cycle behavior observed in the ODE model.
At A = 20 and B = 40, the landscapes show a single peak, which again corresponds well
with the fixed-point behavior observed in the ODE model.

We find that the model of Langevin equation generally approximates the probability
landscape obtained directly from chemical mater equation well. From the comparisons of
results from 25 different parameter sets (detailed data not shown), we find that overall the
location of the maximum probabilities in copy numbers of X and Y from the Langevin
equation is very close to that obtained from the chemical master equation (Fig 2c, red
circles). This indicates that the noise term derived from the chemical master equation
works very well for the Schnakenberg model.

In contrast, we find the location of the fixed point can deviate significantly from that
of the maximum probability derived from the CME model, especially when the landscape
is relatively flat and the maximum probability is less pronounced (Fig 2c, black squares).

Overall, our results show that the noise term plays essential role in determining the
behavior of the Schnakenberg system, as the distance of maxima between solutions from
the Langevin equation and the chemical master equation is usually less than the distance
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Figure 2: Comparison of errors between different models. (a): Difference in probability land-
scape of the uncoupled Langevin equation (ULE) and that of the chemical master equation
(CME). This represents errors in ULE. (b): The amount of the errors in (a) that are corrected by
the Coupling Langevin Equation (CLE) model. This shows the improvement due to the coupling
term. (c): Distances between the locations of the maxima of the probability distribution land-
scapes obtained from the chemical master equation (CME), the uncoupled Langevin equation
(ULE), and the locations of the fixed points derived from the ODE model. Here the X-axis is the
maximum probability value of the landscape derived from the CME, and Y -axis is the Euclidean
distance between the locations of the maximum points by CME and ULE, and the locations of
the maximum point by CME and the fixed point derived from the ODE model. Here locations
have coordinates in copy numbers of X and Y. Black squares are comparisons between the
CME and the ODE models, and the red circles are comparisons between the CME and the
ULE models. (d): Comparisons of distances from the CME landscape to the landscape from
the Kurtz-Langevin equation (KLE), to the landscape from our uncoupled Langevin equation
(ULE), and to that of the coupling Langevin equation (CLE). Here the distance between CME
and KLE are plotted on the x-axis, and the distances between CME and ULE (red circle) as
well as between CME and CLE (blue triangle) are plotted on the y-axis. The scaling coefficient
for the coupling terms is α = 0.02.

of maxima and fixed point between the solutions from the chemical master equation and
the ODE. In Fig. 2c, most of the red circles are below the black squares.

Effects of the coupling between molecular species
For comparison, we have also performed simulations using a different formulation

of the Langevin equation for the same Schnakenberg model following Kurtz and Gille-
spie [6, 4]. We compare the difference between two landscapes a and b by integrating the
overall differences in probabilities: da,b = [∑(X ,Y )[pa(X ,Y )− pb(X ,Y )]2]1/2. For each of
the 25 parameter sets, we calculate the difference dCME,KLE between the landscapes from
CME and from the Kurtz-Langevin equation formulation, the difference of dCME,ULE
between CME and the uncoupled Langevin equation (ULE), as well as the difference
dCME,CLE between CME and the coupling Langevin equation (CLE). The results are plot-
ted in Fig 2d. Both the uncoupled and coupling Langevin equations we have obtained in
this study have smaller differences from the exact landscape probabilities obtained from
the chemical master equation than the solution obtain from the Kurtz-Langevin equation.
We find that our model following the original uncouple Langevin equation performs as
good as or slightly better than the Kurtz-Langevin model (Fig. 2d, red circle).

However, it is the coupling Langevin equation that performs significantly better than
the Kurtz-Langevin equation as well as the uncoupled Langevin equation, as can be seen
in Fig. 2 a-d, where the errors in ULE and the amount of correction by CLE are shown.
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These results suggest that the introduction of the coupling effects of the macroscopic
concentrations of the molecular species can significantly improve the accuracy of the
stochastic model of biochemical networks.

4 Discussions
In this study, we have developed a novel formulation to account for the stochasticity in

the biochemical networks. We introduce the noise term to the Langevin equation from the
master equation formulation of the Schnakenberg model. An important development is
the additional incorporation of the nonlinear coupling effect between molecular species.
We find with simulations that for the Schnakenberg model, our coupling Langevin equa-
tion model provides the best approximation to the probability landscape of the underlying
chemical master equation. Our approach is general and can be applied to other biochem-
ical networks as well. Our work suggest that the coupling effects are not negligible and
should be accounted for accurately.
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