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Abstract

Large macromolecular assemblies are often important for biological processes in cells. Allosteric communications between
different parts of these molecular machines play critical roles in cellular signaling. Although studies of the topology and
fluctuation dynamics of coarse-grained residue networks can yield important insights, they do not provide characterization
of the time-dependent dynamic behavior of these macromolecular assemblies. Here we develop a novel approach called
Perturbation-based Markovian Transmission (PMT) model to study globally the dynamic responses of the macromolecular
assemblies. By monitoring simultaneous responses of all residues (.8,000) across many (.6) decades of time spanning from
the initial perturbation until reaching equilibrium using a Krylov subspace projection method, we show that this approach
can yield rich information. With criteria based on quantitative measurements of relaxation half-time, flow amplitude change,
and oscillation dynamics, this approach can identify pivot residues that are important for macromolecular movement,
messenger residues that are key to signal mediating, and anchor residues important for binding interactions. Based on a
detailed analysis of the GroEL-GroES chaperone system, we found that our predictions have an accuracy of 71–84% judged
by independent experimental studies reported in the literature. This approach is general and can be applied to other large
macromolecular machineries such as the virus capsid and ribosomal complex.
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Introduction

In the cellular environment, biological processes often involve

large assemblies of macromolecules, such as ribosome complex in

protein synthesis, assembly of virus capsid, and chaperone systems

assisting protein folding. Understanding how signaling communi-

cations are transmitted and the dynamics of such allosteric

communications in these biological nanomachines at multiple time

scale is an important problem.

To explore the roles of large-scale dynamics fluctuations of

proteins, coarse grained models such as Gaussian network models

(GNM) and elastic network models (ENM) have been developed

and are now widely used [1–13]. These models are based on a

simplified representation of protein structures. The eigen modes of

these models are then used to explore the fluctuation dynamics of

proteins around their native conformations. Chennubhotla and

Bahar have further extended the network model by introducing a

Markovian process to describe how signal propagates in proteins

[8]. In another study, by clustering residues into groups based on

simplifications of the Markovian transition matrix, models of

allosteric communication paths can be constructed [8]. By

examining pair correlation between residues at slow eigen modes,

clusters of coupled residues in potassium channel that are important

for inter-subunit cooperativity are identified [14]. Recent work

based on topological analysis of shortest paths of network models

showed that residues mediating signaling in proteins and modules of

protein architecture can be identified [15,16].

A drawback of current coarse grain network model based studies is

that they do not characterize the time-dependent behavior of dynamic

changes in protein assemblies. Furthermore, they often require

additional mode analysis to assess the relevance of fluctuations

associated with individual eigen mode [8]. Although the dominant

modes most important for biological functions are often understood to

be the slow modes [7,8], their precise identification often cannot be

determined a priori and requires significant amount of analysis with

additional experimental information [10]. Frequently, the most

important mode is different for different proteins. A recent study by

Zheng, Brooks, and Thirumalai showed that by locating robustly

conserved residues, evolutionary analysis of proteins through multiple

sequence alignment can be helpful in identifying important dynamic

modes [10].

In this study, we postulate that rich information about allosteric

dynamics relevant for biological function can be directly obtained from

native structures without any mode analysis or multiple sequence

alignment. Our approach builds upon the Markovian stochastic model

introduced by Chennubhotla and Bahar [8], and our earlier

preliminary work [17]. Chennubhotla and Bahar have firmly

established the connection between the Markovian transmission model

and the physical elastic network model through the mapping between

Markovian hitting time and the equilibrium fluctuation dynamics of
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residues [18]. Our aim here is different, and it is to study how different

parts of a macromolecular machinery respond to signal perturbation.

Here the perturbation is given as the initial condition, and our

conjecture is that the dynamic response of residues can reveal

biologically important information. Our approach is termed as the

Perturbation-based Markovian Transmission (PMT) model.

The main task of our study is to characterize the temporal

dynamic response to signal perturbation across all residues in a

large macromolecular assembly at all time scales, i.e., from the

beginning perturbation until the equilibrium state is reached. This

is a challenging task, as it is difficult to follow the precise time

trajectories of several thousand or more residues simultaneously

over 6{8 or more decades of time span. For this purpose, we

show that using a matrix subspace projection method, the

underlying large scale master equation governing the dynamics

of Markovian signal propagation can be solved accurately. We also

show that simple perturbation can reveal intrinsic dynamic

properties of proteins. In addition, we present new results on the

characterization of functionally important residues and the

mechanism of signal transduction in the large macromolecular

assembly of the GroEL-GroES system, which has been studied

previously using Gaussian network model [8] and Brownian

dynamics simulations [10].

Results/Discussion

Network model for perturbation-based Markovian

time-dependent transmission. In our Perturbation-based

Markovian Transmission (PMT) model, the dynamic behavior of

a large macromolecular complex is probed by applying a

perturbation as initial condition, which can be applied to a

specific local region of the protein, a subset of surface residues, or

all residues in the protein. This perturbation can be regarded as a

signal responding to ligand binding or protein-protein interactions.

This signal will be transmitted from the location of perturbation to

the rest of the macromolecule. Our goal is to study the dynamic

process for the time-dependent diffusion of the perturbation signal.

We follow previous studies to model a large macromolecular

complex as a network of nodes connected by edges whose

architecture solely depends on its three-dimensional structure. In

our model, we consider atomic details of contacts between

different residues. Details can be found in the Materials and
Methods section.

Markovian model for signal transmission. We use the

Markovian transition model [8] to study how a given perturbation is

transmitted at different time steps. In each time step of the

Markovian process, the perturbation is transmitted from a residue j
to a neighboring residue i with a probability flow mij . The collection

of mij forms the Markovian transition matrix M~fmijg. Intuitively,

a signal initially placed at residue j in our model will be completely

transmitted to its contacting neighbors within one time step.

We apply a perturbation as an initial signal to probe the

behavior of the dynamic response of the macromolecular

assembly. Denote the probability of initiating a Markovian process

at an individual node i at time t~0 as pi(0). We define the

perturbation as the set of probabilities fpi(0)g. Collectively, we use

a vector to denote the distribution of the signal at time t as

p(t)~(p1(t), � � � ,pN (t))T for a system with N residues, where T

denotes vector transpose. For convenience, we normalize pi(0) so

the probability flow sums up to 1:
XN

i~1
pi(0)~1.

Time-dependent transmission of perturbation and

master equation. The dynamic response of the

macromolecular complex in our model is fully determined by

the contacts and how signal transmits between contacting nodes.

In a Markovian model, the distribution of signal p(tzDt) at time

tzDt is obtained from the distribution p(t) at the previous time

step t by applying the Markovian matrix M : p(tzDt)~Mp(t).
Here Dt represents the time unit. Repeating this procedure

recursively, we have the signal at k time steps away from t~0 as:

p(kDt)~Mkp(0):

Mathematically, this discrete Markovian process is equivalent to a

continuous time process when Dt is infinitesimally small, where the

change in probability flow at residue i is determined by the

amount of the flow entering and leaving residue i:

dpi(t)

dt
~

XN

i=j,j~1

½mjipj{mijpi�, ð1Þ

In matrix form, we have the following master equation:

dp(t)

dt
~Rp(t), ð2Þ

where the rate matrix R~M{I , and I is the identity matrix. The

analytical solution of the master equation is

p(t)~eR(t{t0)p(0), ð3Þ

For a given Markovian matrix M , the master equation has an exact

solution, which provides an accurate picture of the relaxation

process of the initial perturbation in the complex macromolecular

system. The final distribution of the PMT depends only on the

Author Summary

Biological processes in a cell often require complex
molecular machineries with large macromolecular assem-
blies as components. An example is the chaperone system
in the bacterium E. coli, which helps proteins to fold
correctly. In these macromolecular machineries, signals are
transmitted dynamically in order for biological functions to
be carried out. Studying the dynamic process of signal
transmission helps us to identify key elements of the
macromolecular assemblies that are pivots for dynamic
motions, communicators for interfacing with other mole-
cules, and anchors that are key for signal transmission. In
this study, we describe a novel computational method that
can globally survey the dynamic responses of the
macromolecular machinery to perturbation over the full
time course by monitoring simultaneously all the elements
at the amino acid residue level and at multiple time spans,
from the initial perturbation until the system reaches
equilibrium. We show that the key residues predicted by
our computational method in the chaperone system of E.
coli to a large extent are correct, as they often coincide
with the ones identified by experimental studies. We also
show that this computational method can make novel
predictions about the importance of additional amino acid
residues previously uncharacterized, which can be further
tested in experimental studies. This approach can be
applied to study other large macromolecular assemblies
such as the virus capsid and ribosomal complex.

PMT Model for Probing Dynamics of Allostericity
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network structure and can be written in closed-form (see Materials
and Methods).

Dynamic time-dependent evolution of probability flow in

Perturbation-based Markovian Transmission (PMT)

model. Although the final stationary state depends only on

the connectivity of the network and is the same for any arbitrary

perturbation, we are interested in the details of the time-dependent

dynamic response of the system in response to a specific initial

perturbation.

Simultaneously monitoring the exact time evolution of proba-

bility flow for all individual residues from the first perturbation

until stationary state is a challenging task. Although the probability

flow vector of residues at the kth time step can be calculated using

straightforward matrix multiplication, this would require

O( log kN3) steps of calculation [19], and becomes infeasible for

a large system with multiple modes of diverse relaxation times.

The analytical solution of the continuous-time version of the

model p(t)~
X

i
Cinie

{li t through diagonalization is also

impractical, as it is typically only possible to calculate a few

eigenvectors and eigenvalues for a very large matrix [19–21]. In

this study, we use the Krylov subspace method for fast and

accurate computation of the time evolution of probability flow

[22].

Chaperone GroEL-GroES Complex
As an example, we use the PMT model to study the dynamic

response of the chaperone complex in Escherichia coli. The function

of this ATP regulated chaperone complex is to assist the folding of

unfolded and misfolded substrate proteins while changing

conformations among the T, R, and R0 states (pdb 1oel, 2c7e
and 1aon, respectively [23–25]). The structures of the GroEL-

GroES chaperone are shown in Fig 1.

We briefly review our current understanding of the allosteric

communications and functional activity of the GroEL-GroES

chaperone complex in E. coli. The cycle of conformational change

starts from the T state, which contains neither the ADP nor the

ATP molecules. In addition, the GroES subunit is not yet bound to

the GroEL subunit (Fig 2). In step 1 during the transition from the

T state to the R state, one of the trans-rings takes seven ATP

molecules and interact with the unfolded or misfolded protein

substrate. This is followed by conformational changes of the trans-

ring to become a cis-ring, which is observed in the R state

structure. The ATP molecules in the R state are then hydrolyzed

to become ADP molecules. This hydrolysis triggers further

conformational change, and the complex transits from the R state

to the R0 state in step 2. In the meantime, the GroES subunit

binds to the top two helices (H and I) of the cis-ring chains of the

GroEL subunit in the R0 state, and the protein substrate is released

into the central cavity of the chaperone complex. The last step of

the process occurs after a new unfolded protein ligand bind to the

original trans-ring chains of the GroEL subunit in the R0 state

[26]. The effect is that the cis-ring in the R0 state transits and take

the conformation of the trans-ring in the T state, releasing the the

GroES subunit, the protein substrate, and the seven ADP

molecules during the process. Now the complex goes back to step

1 and ready for another cycle [26,27].

Analysis of Dynamic Responses
To understand the dynamic response of the chaperone GroEL-

GroES complex, we analyze details of the time trajectories of the

residues upon perturbation.

Simultaneous time trajectories of perturbation

signal. We apply an initial perturbation of uniform strength to

all residues in the macromolecular assembly of chaperone complex

and observe the time response of each residues, starting from the

initial perturbation until the equilibrium state. An illustration of

the time trajectories of response of residues in the N-terminus of I

domain, helices H and I in the A domain, and the C-terminus of

the I domain of GroEL subunit are displayed in Fig 3 for the T, R,

and R0 states.

Initially, all residues start with the same amount of perturbation

(colored in green). Overall, residues respond differently to the

same uniform perturbation. As time proceeds, some residues

experience increase in probability flow, with their trajectories

Figure 1. The structure of GroEL-GroES chaperone complex. Side view for the R0 state (left), top view (upper right) and side view (lower right)
for the T, R and R0 state (pdb ids 1oel, 2c7e and 1aon, respectively). The GroEL-GroES chaperone complex is large, consisting of 8,015 residues in the
resolved structure, with 14 and 7 chains in the homo-oligemeric GroEL and GroES subunits, respectively. Each chain in the GroEL structure contains
three domains: the E (equatorial) domain, the I (intermediate) domain, and the A (apical) domain, reflecting their respective spatial positions in the
GroEL-GroES chaperone complex.
doi:10.1371/journal.pcbi.1000526.g001

PMT Model for Probing Dynamics of Allostericity
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changing color from green to red in Fig 3. Other residues

experience overall decline in the perturbation flow, with their

color changing from green to blue. There are also residues which

experience significant fluctuations in perturbation flow. Finally,

there are a substantial number of residues that do not experience

much changes in probability flow, with their trajectories staying

green throughout the time course. The same residue may respond

differently in different state of the protein, as can be seen from the

different patterns of helices H and I in the three different states of

T, R, and R0 (Fig 3).

Relaxation half-time t1=2. To characterize the overall

dynamic response of residues, we define the time it takes for the

perturbation signal to reach 50% of the difference between the

initial and the stationary probability value for the first time as the

relaxation half-time t1=2 (Fig 4A). It is a simple parameter describing

how fast the time dependent response of a particular residue is to

the initial perturbation.

Overall, the distribution of the t1=2 values for different residues

span 4–5 orders of magnitude, even though they may all be from

the same domain. We find that residues in the E domain have

largest overall t1=2 values, with its median values between

1:0|10{1 and 1:0 among the T, R, and R0 states, indicating

that the E domain has overall the slowest responses to initial

perturbation. This is consistent with the fact that the E-domain is

Figure 2. Key conformational states of T, R, and R0 in the
simplified allosteric signaling cycle. Each of the 14 identical GroEL
chains contains the E domain (equatorial domain, shown in green), I
domain (intermediate, blue), and A domain (apical, purple). In step 1 of
this illustration of simplified cycle, the A domains in the T state
conformation of the GroEL subunits bind a misfolded or unfolded
substrate protein. After step 1, GroEL reaches the R state conformation
upon binding of 7 ATP molecules on the E domains. In step 2, the A-
domain of the ATP-bound form of GroEL binds to GroES, and the
substrate protein falls into the central cavity of the chaperone complex.
At the same time, ATPs are hydrolyzed to ADP molecules, and the
conformation of GroEL-GroES changes to the R0 state. In step 3, a new
unfolded protein ligand binds to the other symmetrically related ring of
GroEL. Once bound, the GroES, and the now re-folded substrate
protein, and 7 ADP molecules are released. The conformation of the
GroEL switches back to the T state.
doi:10.1371/journal.pcbi.1000526.g002

Figure 3. The trajectories of time dependent dynamic respons-
es of residues in the chaperone complex. Responses are calculated
using (A) the T state conformation (pdb 1oel), (B) the R state
conformation (2c7e), and (C) the R0 state conformation (1aon) of the
chaperon complex structures. For clarity, only time trajectories for the
N-terminus of the I domain, the helices H and I in the A domain, and the
C-terminus of the I domain are plotted. The x-axis represents the
numbering of residues in sequence, and the y axis indicates the time
scale. The value of the probability flow is color coded at different log10

scale. The color coding scheme (shown in the side bar) is derived from a
linear transformation of the probability flow: The initial probability
value is set at 0, and either the maximum or the minimum among all
residues at all time scale, whichever has the largest absolute value, is
scaled accordingly to z1 or {1.
doi:10.1371/journal.pcbi.1000526.g003

PMT Model for Probing Dynamics of Allostericity
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the largest domain and its overall relaxation process is slower.

Residues in the relatively small I domain have the fastest

responses, as the median values of t1=2 for conformations in the

T, R, and R0 states are all in the order of 1:0|10{2. For both E

and I domains, the relaxation time of residues does not change

significantly among all three states. In contrast, residues in the A

domain have overall fast responses in T and R0 states (10{2), but

have overall slower response in the R state (10{1) (Fig 4C). This is

consistent with the fact the A domain experiences dramatic

conformational change between the T and R0 state.

Oscillation measured by number of extrema. In addition

to the overall patterns of increase or decline in the probability flow,

some residues experience significant fluctuation or oscillation in

probability flow. We can measure this oscillation with a simple

parameter nx, which records the number of extrema points

(minimum and maxima) (Fig 4B).

The oscillation number nx ranges between 0 and 6. Overall, the

expected value of nx is between 2 and 3, depending on the

conformational state (Fig 4D). The distribution of nx values for all

residues in the T, R, and R0 state in the allosteric signaling cycle

have overall very similar shape: The histograms shown in the last

row of Fig 4D are rather similar among the different conforma-

tional states.

However, the domain specific distribution of nx shows different

patterns depending on the conformational state (Fig 4D, rows 1–

3). This domain-specific distribution changes at different stages of

the allosteric signaling cycle (T, R, and R0 states). Residues in the

E domain on average experiences least fluctuation in probability

flow, and this domain has the smallest median value of nx among

all domains (between 1 and 2, depending on the conformational

state, Fig 4D, the 2nd row). In contrast, residues in the I domain

(Fig 4D, the 3rd row) on average experiences most fluctuation,

with the largest median value of nx between 4 (R0 state) and 2 (R

state). The largest mean nx of 4 in the R0 state is related to the

significant conformational change the I domain experiences

during the allosteric signaling cycle.

In addition, residues of the chaperone complex in the R0

conformation exhibit the largest diversity in fluctuation patterns.

In this state, residues in the E domain has a small value of median

nx of 1 (Fig 4D, the 2nd row and the first column), whereas

residues in the I domain (Fig 4D, the 3rd row and the first column)

has a large median value of nx of 4. This is consistent with the fact

that the I domain transmits and passes signal between the E and A

domain, to which it is connected (Fig 4D).

Overall, there is little correlation between the relaxation time

and the number of maxima. The correlation coefficients between

t1=2 and nx are {0:14 and {0:11, for the T and R

conformations, respectively. This correlation reaches {0:24 for

the R0 state, but is still modest. The general lack of correlation

indicates that t1=2 and nx reflect different aspects of the dynamic

responses of the protein assembly.

Characteristic Dynamic Responses of Functionally
Important Residues upon Perturbation

We are interested in the response dynamics of residues in the

chaperone complex. We describe a few examples of residues

experimentally known to be functionally important.

Pivot residues. During conformational transitions, domains

in the chaperone complex experience large movements, which

pivot on several key residues [25]. These pivot residues maintain

their spatial positions, while their neighbors experience large

spatial displacement. We examine the dynamic response of two

known pivot residues, P137 and G192 [25].

Figure 4. Characterizing the dynamic responses of residues in
the GroEL-GroES system. (A) The calculation of the relaxation time
t1=2 . t1=2 is the time at which the probability flow upon perturbation
first reaches 50% of the difference between the initial and the final
stationary probability values; (B) The calculation of the number of
extrema nx. nx measures the degree of fluctuation in probability flow by
counting the total number of local maxima and local minima in the time
course of the probability flow; (C) The distributions of the relaxation
time t1=2 for all residues in the A, E, and I domains of the T, R, and R0
state are shown. Overall, the E domain has the longest/slowest
relaxation time, and I domain has the fastest responses; (D) The
distributions of the number of extrema nx for all residues in the A, E,
and I domains of the T, R, and R0 state are shown. Overall, the E domain
has the least fluctuations, and the I domain has the greatest amount of
fluctuations.
doi:10.1371/journal.pcbi.1000526.g004

PMT Model for Probing Dynamics of Allostericity
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P137 is part of the slender link connecting the I-domain and the

E-domain. It serves as a pivot for the I-domain, which swings

down towards the E-domain and the central channel by ca. 25

degrees [25]. When its immediate neighbor C138 with small side

chain is replaced by a W residue, which has a bulky side chain, the

mutant C138W lost its chaperone function [28]. Pivot residue

G192 is located in the slender link between the A- and the I-

domains. It is a pivot for a different rearrangement, in which the

A-domain swings away from the I-domain by ca. 60 degrees, with

rotation around its main axis by about 90 degrees [25].

The dynamic responses of these two pivot residues reveal a

common pattern. Their probability flows experience smooth

changes and eventually reach very low values in their final

stationary state, without any intermediate stage of oscillation

(Fig 5A). We generalize this observation, and call all residues

exhibiting the same behavior in dynamic response to the initial

perturbation as ‘‘pivot residues’’. That is, these residues lose

probability flow monotonically with time, until the stationary state

of low probability flow is reached. These residues are unlikely to

move around during the relaxation process.

Note that residues G375 and G410 reported as pivots in ref [25]

do not have the same dynamic responses as that of the pivot

residues P137 and G192 (see Supporting Information Text S1 for

their characteristic dynamic responses and their functional roles).

Messenger residues. The mutations of I150E, S151V, and

A152E are known to lead to loss of ATPase activity and loss of

GroES binding ability for GroEL [29]. Structurally, S151 forms a

hydrogen bond with D87, which interacts Mg2+ ion in the ADP

binding pocket that coordinates the hydrolysis of ATP to ADP in

the R0 state [25]. The mutations of residues near S151 are likely to

perturb the R87-Mg2+ interactions, resulting in the observed loss

of ATPase activity. Without the conversion of ATP to ADP,

GroEL cannot change conformations from the R to R0 state,

resulting in an arrested allosteric signal transmission.

The temporal dynamic responses of residues I150 and A152

show characteristic patterns of significant periodic fluctuations

(Fig 5B and 5C). That is, the probability flows of these residues rise

and decline periodically for a few cycles, reaching local maximum

and local minimum during the process. This oscillating pattern is

different from that of the pivot residues, in which the probability

flows decline monotonically (Fig 5A). This oscillating pattern is

indicative of their roles in the transmission of signals between

different parts of the chaperone. Note that in Fig 5B the response

contains both a fast fluctuating high frequency component, and a

slow rising low frequency component. The amount of the

oscillation can be measured quantitatively using the total number

of extrema nx in the time trajectories. nx for I150 and A152 are 6

and 5 in the T and R0 state and are among the few residues

experience the larger amount of oscillations. We generalize this

observation, and call residues exhibiting significant oscillation in

temporal response of probability flow to initial perturbation

‘‘messenger residues’’. The rationale is that these residues pass

along signal in probability flow of high frequency to their

neighbors, but are affected little themselves by these fast

fluctuations.

Anchor residues. In the R0 state, residues T91 and D495 are

located on the surface of the nucleotide binding pocket in each

chain of GroEL, and play important roles in ADP binding by

forming hydrogen bonds with ADP [25]. T91 is a hydrogen bond

donor, and D495 is a hydrogen bond acceptor in the R0 state [25].

These functionally important residues also exhibit characteristic

patterns in their dynamic response to the uniform perturbation:

Both experience minimal changes in the probability flow upon

perturbation throughout the whole time course (Fig 5A). We

generalize this observation, and call residues exhibiting minimal

changes in probability flow in temporal response to initial

perturbation ‘‘anchor residues’’. The rationale is that these

residues behave like anchors and always maintain the same level

of probability flow. They are minimally affected by signals from

their neighbors.

Predicting Pivot, Messenger, and Anchor Residues
Pivot, messenger, and anchor residues have distinct patterns in

dynamic responses to perturbation. These patterns are different

and are mutually exclusive. A residue can be either a pivot, a

messenger, or an anchor residue in a specific conformational state,

but the same residue cannot have two or more different patterns of

dynamic responses simultaneously in the same state.

We postulate that additional functionally important residues can

be identified through analysis of their dynamic responses upon

perturbation. Below we describe the prediction criteria and

additional residues predicted to play functionally important roles.

In the majority of the cases, our predictions are supported by

experimental studies. A complete list of identified pivot, messen-

ger, and anchor residues can be found in Table 1, Table 2, and

Table 3, respectively, along with corresponding experimental

 

 

 

Figure 5. Characteristics of time-dependent dynamic responses of probability flow. Examples of different dynamic responses upon
uniform perturbation for residues that have been experimentally determined to be important. (A) Patterns of time-dependent dynamic responses of
pivot residues and anchor residues. Responses of the two pivot residues G192 (dark green) and P137 (green) in the T state are smooth and reach low
values in the final stationary state. Responses of the two anchor residues T91 (red) and D495 (magenta) in the R0 state have minimal responses to the
initial perturbation; (B and C) The dynamic responses of messenger residues I150 (B, cyan) in the T state and A152 (C, blue) in the R0 state. These
residues transmit perturbation signals, and experience significant amount of oscillations in the PMT model.
doi:10.1371/journal.pcbi.1000526.g005

PMT Model for Probing Dynamics of Allostericity
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evidence supporting their roles in the function of GroEL-GroES.

Details can be found in Supporting Information (Text S1).

Predicted pivot residues. We identify pivot residues by the

criteria that they experience large declines in the probability flow

between the initial state and the final stationary state, without

transient increase along the full time course. We select the top 5%

out of 524 residues that follow these patterns in the chaperone

structure of different states. All together, we have identified

twenty-four residues as pivot residues. All of them are found to be

located at helical turns. These residues likely serve as hinge

residues during conformational changes. For many of them (about

71%), there are experimental evidence and computational studies

indicating their important structural or functional roles, such as

involvement in salt-bridge interaction, inter-subunit hydrogen

Table 1. The list of predicted pivot residues, along with the domains, conformational states, and supporting experimental
evidence.

Residue Domain State Possible structural and functional roles

G110 E T, R, R0 inter-ring contact [25,30], movement upon ATP hydrolysis [30]

G415 E T, R, R0 helical turn [25], H-bond with ATP [25]

G431 E T, R, R0 inter-ring contact [30]

G137 I T, R, R0 inter-domain pivot residue [25]

G459 E R0 folding and release of substrate protein [29], inter-ring interaction [30,33]

G32 E R helical turn, H-bond with ADP [25]

S139 I R folding of substrate protein [28]

T181, G182 I R helical turn, inter-domain contacts [10,29]

A384 I R salt bridge [11,36], ATPase activity, GroES binding [29]

A243, G244 A R salt-bridge [11], binding substrate protein [43]

G306 A R salt-bridge [11], inter-subunit interaction [10]

S43, F44 E T inter-subunit hydrogen bond [23,32,37]

G86 E T ATP hydrolysis [25]

G269 A T substrate protein binding [43]

doi:10.1371/journal.pcbi.1000526.t001

Table 2. The list of predicted messenger residues, along with the domains, conformational states, and supporting experimental
evidence.

Residue Domain State Possible structural and functional roles

K245 A R0 salt-bridge [11], binding of substrate protein [43]

V273 A R0 binding of substrate protein [43]

G148, A152–S154 I R0,T ATPase activity [25,29], GroES binding ability [29]

D155–T157 I R0,T GroEL inter-subunits interactions [38,39]

V396, L400 I R0 ATPase activity [25]

A406–E408 I R0 ATPase activity [29], salt-bridge between inter-subunits [35]

T149–S151 I T ATPase activity [25,29], GroES binding ability [29]

K380, T385 A T ATPase activity [29], GroES binding ability [29], folding of substrate protein [29], salt-bridge
in T and R state [11,36], GroEL inter-subunits contacts [32]

A399 A T ATP hydrolysis [25]

V411 E R GroEL inter-subunits interactions [35]

E460 E R folding and releasing of substrate protein [29], GroEL subunits inter-ring contacts [32]

R197 A R GroEL inter-subunits contacts [32]

N206 A R GroES binding ability [29]

N265, T266 A R GroES binding ability [29], folding of substrate protein [29]

I270 A R binding of substrate protein [43]

V276 A R ATPase activity [29]

F281 A R ATPase activity [29], folding of substrate protein [29]

I353 A R inter-subunit interaction [10]

S358 A R salt-bridge [11], GroEL inter-subunits contacts [32]

doi:10.1371/journal.pcbi.1000526.t002
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bonding, inter-ring contact, ATP hydrolysis, substrate-protein

binding, folding, and release (Table 1 and Supporting Information

Text S1).

Predicted messenger residues. To identify messenger

residues that may facilitate communications between different

parts of the protein, we select the top residues with the largest

number of extrema (no less than that of the residue at 95 percentile

in the combined number of minima and maxima) in their time

trajectories of probability flow. All together, we have predicted 62

messenger residues in the cis-ring chains of GroEL from

conformations in the T, R, and R0 states. Some of the residues

are adjacent to each other and are predicted as clusters of

messenger residues. These clusters of messengers occur in T and

R0 states, indicating the important roles they play in allosteric

communication of signal propagation. Overall, 50% among those

predicted messenger residues have clear supporting evidence from

either biochemical experimental studies or structural data. For

example, many residues are known to be involved in salt-bridge,

ATPase activity, GroES binding ability, substrate protein binding,

or in assisting substrate protein folding, and inter-subunit

interaction (Table 2 and Supporting Information Text S1).

Predicted anchor residues. These residues respond little to

the initial perturbation throughout the time course. They

experience minimal changes in the time-dependent probability

flow. Sorting residues by the difference of the maximum and the

minimum of the probability flow in ascending order, we select the

top 5% of residues in the cis-ring chains of GroEL in the T, R, and

R0 state with the smallest difference. Among the 68 predicted

anchor residues, 54% of them have clear supporting evidence from

either biochemical experimental studies or structural information

(Table 3 and Supporting Information Text S1).

Success rate in identifying functionally important

residues. Based on comparison with known experimental and

structural data, we calculate the success rate of our predictions. If a

predicted residues is within e residues apart in the primary

sequence from a key functional residue reported in the literature,

where e is the sequence distance threshold, we consider it a

success. We used sensitivity, specificity, and accuracy to measure

the success rate (see Materials and Methods). Since there is a

large body of experimental studies on GroEL subunits and less on

GroES subunits, we assess our predictions using GroEL. At the

threshold of e~2, the sensitivity, specificity and accuracy of our

Table 3. The list of predicted anchor residues, along with the domains, conformational states, and supporting experimental
evidence.

Residue Domain State Possible structural and functional roles

V27 E T assisting substrate protein folding [29]

T30 E T ATP binding [25]

A57 E T, R, R0 allosteric communication [37]

T90, T91 E T H-bond to ADP [25]

P462, V464 E T, R folding and releasing of substrate protein [29], inter-ring contact [30,33]

T482 E T, R ATP binding pocket [25]

P496 E T ATP binding pocket [25]

T517 E T inter-subunit contact [30,34]

A152, V381 I T ATPase activity [29], GroES binding ability [29], folding of substrate protein [29]

L400 I T ATP hydrolysis [25]

V407 I T ATPase activity [29], GroES binding ability [29], folding and binding of substrate protein [29]

E232 A T ATPase activity [29], GroES binding ability [29], folding and binding of substrate protein [43]

A258 A T ATPase activity [36], H-bond to substrate protein [43], GroES binding ability [29,43], folding and
binding of substrate protein [29,43]

L262, V263 A T binding of substrate protein [29], hydrophobic interaction to substrate protein [43]

T89 E R H-bond to ADP in R0 state [25], ATPase activity [29], GroES binding ability [29], folding of
substrate protein [29]

A405 E R, R0 ATPase activity [29], folding and releasing of substrate protein [29]

A466 E R inter-ring contact [33]

V499, V510, A511 E R salt-bridge [35], inter-subunits interaction [35]

I150 I R ATPase activity [29], GroES binding ability [29], folding and releasing of substrate protein [29]

L200 A R GroES binding ability [29], binding and folding of substrate protein [29,43]

I230 A R interaction of substrate protein [43]

V273 A R binding of substrate protein [43]

S79, A81 E R0 salt-bridge [24]

I493–D495 E R0 ATP binding pocket [25], H-bond to ADP [25]

C519 E R0 inter-subunit contact [30], releasing of the substrate protein [34]

I205, N206 A R0 GroES binding ability [29], binding of substrate protein [29]

D328 A R0 GroEL inter-subunit interaction [37]

doi:10.1371/journal.pcbi.1000526.t003
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predictions on GroEL subunits are 93.9%, 83.4% and 84.4%,

respectively. Tables 1, 2, and 3 contains a complete list of the

successfully identified residues, and Table 4 contains the list of

miss-classified residues at different thresholds. The complete

prediction and justification are listed in Table 1,2 and 3 and in

Supporting Information Text S1.

Although about 1/5 of residues are identified as functionally

important, we conjecture that the most critical regions of the

proteins have residues predicted to be pivot, messenger, or anchors

in multiple conformations. For example, the important interaction

between the two GroEL rings are carried out through the

movement of helix D (residues 89–109) on the E domain and the

inter-ring contacts (A109:A109, E434:E434, G461:R452,

S463:S463, and V464:V464). Our predictions identified a set of

critically important residues from a local region based on

perturbation studies of multiple conformations. It includes residues

T89-T91, G110, G431, G459, E460, P462, V464, and A466. All

of them come from the contact interface between the two GroES

rings, and the helix D whose movement is critical for inter-ring

communications [25,30].

To sum up, our results show that many of our predictions of

pivot, messenger, and anchor residues are consistent with

experimental conclusion that they are functionally important. In

addition, our predictions are often in agreement with results from

other computational studies based on different methodologies

[8,10,11]. For example, residues found computationally in

previous studies to be involved in multiple salt-bridge switches

[11], residues participating in inter-subunit communication [8],

and residues forming contact essential for state transition [10] are

also predicted in this study to be important in this study.

Functional roles of predicted residues. In order to

investigate the specific roles of the residues predicted to be

pivots, messengers, and anchors, we broadly classify the

experimental data on functions of these residues into three

categories: (1) GroEL inter-subunits interactions. These include

inter-chain and inter-ring communication, as well as salt-bridge

switches that form and break between subunits during the cycles of

the T, R, and R0 states; (2) ATPase activities. These include ATP

hydrolysis, H-bonding with ATP/ADP, or location on the ATP

binding pocket; (3) Interactions with GroES and the substrate

protein. These include binding, release of GroES and the substrate

protein, and facilitation of the folding of the substrate protein.

With these criteria, there is a clear pattern in which pivot

residues dominate in inter-subunit interactions, suggesting that

they play important roles in assisting inter-subunit movement. We

find that for 12 (71%) out of the 17 predicted pivot residues, there

are experimental evidence supporting their roles in GroEL inter-

subunit interactions (category 1). As a residue may play multiple

roles, some of these residues also participate in ATPase activities,

or interact with GroES and substrate protein. However, there are

overall only 5 (29%) and 6 (35%) out of the 17 pivot residues

involved in ATPase (category 2) and GroES/substrate protein

interactions (category 3), respectively.

In contrast to pivot residues, the messenger and anchor residues

do not show strong preference to any specific functional role. Out

of the 31 predicted messenger residues, 16 (52%), 17 (55%), and

17 (55%) are involved in inter-subunit interactions (category 1),

ATPase (category 2), and GroES/substrate protein interactions

(category 3). Out of the 37 predicted anchor residues, these

numbers are 17 (46%), 12 (32%), and 17 (46%), respectively. That

is, both messenger and anchor residues may play multiple

functional roles in the GroEL-GroES system. We find that there

are 17 (55%) and 11 (30%) predicted messenger and anchor

residues, respectively, with more than one functional roles

reported in the literature.

When compare predictions based on structures of GroEL/

GroES in different states, we find that the same residues are

usually predicted as pivots in all three states. However, messenger

residues and anchor residues are usually state specific. This

suggests that the roles pivot residues play in enabling domain

movement is universal at all stages of the GroEL/GroES allosteric

signaling cycle, whereas messengers and anchors only play

important dynamic roles at specific stages of the cycle.

For example, in the R0 state, the predicted messenger residues

V396 and L400 in the I domain are spatially close to residue

D398, which interacts with a Mg2+ ion in the ADP binding pocket

in this state [25]. V396 and L400 are only predicted to be

messengers in the R0 state. This is consistent with the fact that

ATP hydrolysis, as well as the involvement of their neighbor D398

in ADP binding occur in this state.

Residue S358 is predicted to be a messenger, but only in the R

state. Residues S79 and A81 are predicted as anchors in the R0

state only. These residues are all immediate neighbors to a salt

bridge formed during the R to R0 transition between residues

D359 and K80. It is likely that S358, S79, and A81 may play roles

in assisting the formation of the salt bridge. S358, S79, and A81

are not predicted to be functionally important residues in the T

state. This is consistent with the fact that this salt bridge is absent

during the T to R transition [11].

Chennubhotla and Bahar studied the GroEL-GroES system

using a model of Markovian propagation. In this study, a

hierarchy of coarse-grained models are constructed to partition

the structure into soft local regions. Results are inferred based on

this grouping of local cluster of residues. Although these two

approaches are different, they generate results that agree in many

instances. For example, residues P33, T90, E461, and R197 are

found in [8] to have high potential to transmit allosteric signals,

whereas our predictions include pivot residue G32, messenger

residue E460 and R197, and anchor residues T90 and P462, all

are from the same local region as those predicted in [8].

Table 4. Evaluation of predictions supported by experimental data at different threshold e level.

Threshold level e Sensitivity (%) Specificity (%) Accuracy (%) Number of missed residues (missed residues index)

0 42.9 73.7 70.8 28 (R58, K80, D87, A109, C138, Y199, Y203, F204, L234, L237,
E238, A241, E257, L259, A260, T261, V264, R268, V271, D383,
K386, D398, E409, E461, S463, N479, A480, R501)

1 81.6 79.2 79.4 9 (Y203, L234, L237, E238, A241, A260, N479, A480, R501)

2 93.9 83.4 84.4 3 (L237, E238, N479)

The threshold e represents the allowed separation distance in number of residues along the primary sequence between predicted and reported residues. The predicted
residues are for all three states and include pivot, messenger, and anchor residues.
doi:10.1371/journal.pcbi.1000526.t004
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Evolution conservation of identified residues. From the

evolutionary analysis of Brocchieri and Karlin [31], we found that

a total of 65 predicted residues are strongly conserved (with

Conservation Index §0:7 as defined in [31]). Among these, 10

residues (pivot residues G32, G86, G415, and G459, messenger

residue G159, and anchor residues T30, V38, T89, D495, and

V499) are perfectly conserved (with CI~1:0). Among our

predictions, the fraction of residues with functional roles

supported by experimental evidence that are strongly conserved

is 41%, 39%, and 41% for pivot, messenger and anchor residues,

respectively. Overall, 65 out of the 183 residues we have identified

are strongly conserved, representing a fraction of 36%. This does

not deviate significantly from random expectation, as there are

183 residues out of a total of 524 residues (35%) in a chain that are

found to be strongly conserved in this study [31]. That is, these

functional residues are not significantly more conserved than

expectation. More detailed evolutionary studies may be necessary

to further clarify this issue.

Interdependency and Cooperativity
Interdependency of the two GroEL rings. The interactions

of the two GroEL rings depend on between-ring communications,

via both direct contacts [30,32,33] and through the movement of

helix D [25]. A number of residues (T89-T91, G110, G431, G459,

E460, P462, V464, and A466) known to be important for cross-

ring communications are predicted as pivot, messenger, or anchor

residues. These predictions corroborate well with experimental

results reported in the literature.

It has been reported that upon ATP binding in the cis-ring, the

relay helix D on both cis- and trans-rings move towards the

interface between the rings [25]. In addition, helix D in the cis-ring

moves towards the inter-ring interface and away from the ATP

binding site [30]. Residue G110, located at one end of helix D

(residues 89–109), is predicted as a pivot residue in all of the three

conformational states of T, R, and R0. This prediction suggests

that G110 serves as a hinge that facilitates the physical movement

of helix D in all three states. Furthermore, residue A109 in helix D,

an immediate neighbor of G110, forms direct inter-ring contact

with another A109 located in the other GroEL ring [30]. A109

experiences a large movement (3.8 Å) during cross-ring commu-

nication [25]. This movement is pivoted around the predicted

pivot residue G110. The functional roles of G110 in facilitating

interaction between the cis-ring and trans-ring of GroEL has also

been reported in another computational study [10].

Similarly, residue G431 is predicted as a pivot residue in all

three states. It is a neighbor of residue E434, which forms inter-

ring interaction with another E434 on the other GroEL ring [30],

after a large scale structural rearrangement, in which residue E434

experiences one of the largest shift (4.9 Å) [25]. Our results suggest

that residue G431, which is predicted as a pivot residue, serves as a

hinge to facilitate this large rearrangement. Residues T89-T91,

located at the other end of helix D, are predicted to be anchor

residues in the T and/or R states (see Table 3 for details). Their

roles in cross-ring communications are associated with the large

movement of helix D.

Pivot residue G459, messenger residue E460, and anchor

residues P462, V464 and A466, are the remaining residues

predicted to be involved in ring-communications. They are all

located in the neighborhood of several inter-ring contacts

(E461:R452, S463:S463, and V464:V464) between residues in

the E-domains of different GroEL rings [32]. Mutant E461K no

longer forms an inter-ring contact between E461 and R452.

Instead, it makes contact with residue E434. This mutant loses the

abilities in aiding protein folding and in releasing the substrate

protein [29], and has defective activity in vitro [30]. In the same

neighborhood of the predicted residues, the quadruple mutation

R452E/E461A/S463A/V464A is reported to result in the

dissociation of the two rings in GroEL [33]. Furthermore, a

previous computational study has also suggested that mutations on

E461-V464 will hinder signal transmission between rings and

destroy the stability of GroEL complex [8].

Cooperativity between GroEL subunits. In order to study

the cooperativity between different GroEL chains, additional

computations based on the structure with all inter-chain contacts

removed are performed. Compared to previous results when all

contacts are intact, there are six residues (messenger residues R197,

I353, S358, T385, and E408, and anchor residues C519) that

disappear from the new set of predicted pivot, messenger, and

anchor residues. These residues are known to play important roles

in the inter-chain allosteric communications [8,10,11,30,32,34–36].

Similarly, computation based on the modified structure of

GroEL with intra chain contacts between different domains

further removed are performed to study the cooperativity between

intra-chain interactions. We find that additionally the anchor

residue D328 disappears from the set of predicted residues. This

finding corroborates the fact that residue D328 is known to be

involved in one of the important intra-subunit interactions [37].

Our results suggest that the cooperativities of both intra- and inter-

chain interactions in GroEL are important for allosteric

communications.

The documented roles of these seven residues in transmitting

allosteric signals are summarize as below. In the T state

conformation, the predicted messenger residue R197 on the A-

domain forms a salt-bridge with residue E386 on the I-domain of

another chain [32,36]. This residue likely plays an important role

in passing signals between chains [8]. As GroEL proceeds along

the allosteric cycle and changes conformation from the T state to

the R state, the salt bridge between E386 and R197 breaks up, and

residue E386 subsequently forms a new salt-bridge with a different

residue K80 on another chain [36]. The formation and breaking-

up of the salt bridges provide an important switching mechanism

for the allosteric structural changes of GroEL [11].

The predicted messenger residue I353 is a neighbor of residue

Q351, which is important for the inter-subunits interactions in the

A-domains of cis-ring in GroEL [10]. The predicted messenger

S358 is an immediate neighbor of residues D359 and Y360. Y360

and A384 form an inter-subunit contact between the I-domain

and the A-domain in the T state [32]. D359 forms a salt bridge

with K80 during the R to R0 transition [11]. In addition, the

predicted messenger residue E408 is an immediate neighbor of

E409. The latter forms a salt-bridge with R501, which is important

for inter-subunits interactions [35]. Mutation of E409A results in a

stabilized T state relative to the R0 state leads to a less effective

allosteric communication in the GroEL complex [35]. C519 is a

predicted anchor residue. The mutant C519S destroys the inter-

chain contact between the subunits in GroEL, resulting in partial

dissociation of the GroEL subunits [30,34]. The predicted anchor

residue D328 is known to be one of the network residues involved

in the inter-subunit interaction of GroEL with R58 and A81 [37].

Additional evidence for the positive cooperativity among the

seven subunits within each ring has been reported in the literature

[38,39]. It was shown that the single mutation of D155A breaks

the interaction between D155 and R395, which in turn destroys

the intra-ring symmetry, as less cooperative intermediates are

generated that only switches conformations of a subset of the

GroEL subunits upon the ATP bindings [38]. Together with the

study of unbiased molecular dynamic simulation by Sliozberg and

Abrams [39], these studies show that the break of the salt bridge

PMT Model for Probing Dynamics of Allostericity
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between D155 and R395 from the T state to the R state plays

critical role in the positive cooperativity of the concerted allosteric

transition. We have correctly predicted messenger residue D155

directly involved in the D155-R395 salt bridge, as well as residues

A394 and V396, which are immediate neighbors of residue R395.

New Predictions of Residues, Pathways, and Testable
Hypotheses

New predictions and experimentally testable

hypotheses. Our study also makes a few new predictions

which can be verified by experimental mutation studies and other

biochemical studies.

Among the six predicted common pivot residues (G45, G110,

P137, G415, G431, and G471) for the T, R, and R0 states in the

GroEL subunits, two of them (G45 and G471) have not been

experimentally verified as functionally or structurally important.

These residues are all located in the E-domain of GroEL. Their

functional roles can be further verified by assessing how mutation

of these residues may impact the activities of the GroEL-GroES

complex. Among the predicted messenger residues, A145, V177,

and A402 are found in both T and R0 states. These residues are all

on the I-domain of the GroEL subunits, and may play important

roles in assisting the allosteric signal passing between the E- and A-

domain of GroEL subunits. Further mutational studies of these

residues may help to clarify their potential roles on the integrity

and activity of the GroEL-GroES system. The discovery of L62,

L104, and M491 on the E-domain as potential anchor residues in

at least two states may also be considered for further experimental

studies.

Allosteric signaling transmission pathway. To study the

allosteric signaling transmission pathway of the GroEL-GroES

complex, we apply a different initial uniform perturbation that is

restricted to a set of residues located in the nucleotide binding

pocket, and observe the time-dependent dynamic responses of all

residues in the chaperone complex. These residues are N479,

A480, G415, D495, G32, T91, D398, D87, S151, L31, I454, I150,

I493, P33, and A481, which are reported to either form H-bond or

to have van der Waals interaction with the ADP molecules [25].

Since there are multiple symmetry related identical chains, we take

the average values of the time-dependent probability flow for

residues in multiple chains from the same ring.

At each time step, we record the top 3% (16 residues) with the

largest probability flow among the total 524 residues in each

symmetry related chain in the cis-ring. Accumulatively, there are

28 residues which are observed to have the maximal probability

flow one time or another, and they constitute the major

components of the time-dependent transmission pathway. These

28 residues are: T30, N68, K75, K80, D83, G86, T90, D115,

R118, K132, T149, I270, V276, P279, D291, K327, E354, E397,

H401, R404, G414, Q453, Y478, T482, E483, I489, G492, and

L494. A movie depicting the process of signal transmission along

the pathway is provided in Supporting Information (Video S1).

Overall, the perturbation signal at the nucleotide binding site is

transmitted from the binding pockets in the E-domains of the

GroEL cis-ring towards the GroES chanperonin through the I

domains, then the A domains. Among the 28 residues, T149, I270,

and V276 are also predicted as messenger residues when a

uniform perturbation is applied to all residues in the GroEL-

GroES system. These residues are likely to play important roles in

general allosteric communication, and specifically in responses to

the perturbation signal originating from the nucleotide binding

pockets.

We note that these residues do not form a temporally connected

pathway, because of the technical criterion of selecting only

residues with the maximal probability flow at a time. Frequently,

the perturbation signal is transmitted along multiple pathways in a

local region of the structure, and the probability flow at these

instances is distributed among several residues. As a result, none of

these residues will have the maximal flow, and hence are not

selected. Overall, the selected 28 residues are representatives of the

critical points along the pathway that have the greatest probability

flow at a particular instance. Additional residues also contribute to

the transmission of the probability flow, but to a lesser extent

individually. With the probability flow quantified for each residue

at each instance, additional criteria may need to be developed to

illustrate other aspects of the allosteric pathways of dynamic

responses.

Although the process of the initiation of mechanical conforma-

tional changes upon allosteric signaling is not described for

explicitly in our model, we do find in some cases that residues

transducing allosteric signal are related to pivot residues serving as

mechanical hinges during conformational changes. For example,

residue G110, located at one end of helix D (residues 89–109), is

predicted as a pivot residue in all three states of T, R, and R0. It is

a hinge residue that facilitates the physical movement of helix D.

Several residues (T30, Q453, K75, K80, D83, G86, T90, D115,

and R118) in or near helix D are identified to be on the allosteric

signalling pathway, which are spatially close to the pivot residue.

Remark. Our approach is based on the Markovian

propagation model first developed in reference [8], with some

differences in specific definitions of contacts as described in

Materials and Methods. However, our method is

fundamentally different. Perhaps the most significant difference

is that our method explicitly computes the dynamic time-

dependent responses of residues to an initial perturbation, while

the method described in [8] generates information on fluctuation

of the stationary state.

In addition, the study of GroEL/GroES system in [8] is based

on a hierarchy of simplifications of the contacting nodes and

contacting interactions. Coarser grained nodes are used to

represent participation of residues to different clusters in the local

regions probabilistically. These coarse grained models are derived

based on the objective function of minimizing the difference in the

stationary distributions between the full residue model and the

simplified model. In contrast, no such simplifications are made in

our method.

Although it is possible to obtain good agreement in the stationary

distribution between the simplified model and the full residue

model, these models may still have different dynamic responses, as

none of the modes higher than the stationary mode are included in

the objective function to be minimized [8]. The Expectation

Maximization (EM) algorithm described in [8] will find locally

optimal solution to approximate the stationary distribution, but

such solution depends on the initial starting point, may not be

unique, and may have very different higher-order dynamics.

Conclusion
In this study, we have developed a new approach, called the

Perturbation-based Markovian Transmission (PMT) model, to

study the dynamic properties of large macromolecular assemblies.

In this model, we probe the macromolecular assembly with an

initial perturbation, and assume perturbations are transmitted by a

Markovian processes through the connected network defined by

the contacts between atoms and residues. This method enables us

to monitor the time-dependent responses of all residues simulta-

neously from the moment of perturbation until all residues reach

the equilibrium state. Our method can also be modified to study

signal transmission pathways by applying initial perturbation to

PMT Model for Probing Dynamics of Allostericity
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restricted local region such as binding surfaces. It is effective for

very large macromolecular assemblies, requiring relatively small

amount of computational time. For example, the computation of

probability flows for all 8,000 residues in the GroEL-GroES

system takes about 5 minutes on a machine with 2 dual core AMD

Opteron processor (1.8 GHz) and 4G memory.

We have applied the PMT model to study the GroEL-GroES

protein chaperone system. With an initial in silico uniform

perturbation to all residues in the T, R, and R0 conformational

states, we follow the time-dependent response of 8,000 residues

simultaneous until the stationary state is reached after 5 decades in

time. Our analysis of the responses of experimentally identified

residues known to be functionally important show characteristic

patterns. We have further characterized and categorized specific

patterns for pivot residues, messenger residues, and anchor residues

important for signal propagation in the GroEL-GroES system. Based

on these patterns, we have further predicted additional residues that

are likely to play important functional roles. Our predictions are

largely consistent with experimental results on their roles during the

allosteric conformational changes between states. In addition, we

have also made a number of novel predictions of functionally

important residues, which can be verified by experimental tests. A

model of signal transmission pathway has also been developed by

applying the intial perturbation to residues in local binding surface.

The successful application of the PMT model to the GroEL-GroES

chaperone system for studying its dynamic properties shows that this

technique works well. It can be applied to other large macromolecular

machineries for detailed computational studies. We envision that the

PMT method can be applied to virus capsid, ribosomal complex, and

other large allosteric multi-protein assemblies.

Materials and Methods

Structural Data of the GroEL-GroES System
The structure of the GroEL-GroES chaperone complex in the

T, R, and R0 states are obtained from the Protein Data Bank

(www:rcsb:org). The pdb IDs are 1oel, 2c7e and 1aon,

respectively [23–25]). The GroEL-GroES complex of the R0 state

consists of 14 chains for the homo-oligemeric GroEL subunits, and

7 chains for the GroES subunits, with a total of 21 chains and

8,015 residues. The GroEL subunit structure contains 7 of the 14

chains (3,829 residues) in the T state, and 14 chains (7,658

residues) in the R state (Fig 1).

Since there are multiple symmetrically related identical chains

in each ring, we take the average values of the time-dependent

probability flow of equivalent residues from different chains

located in the same ring.

Network Model and Signal Transmission
We obtain the contact network of a protein molecule by identify

contacts between different residues. Two atoms from different

residues are regarded to be in contact if the Euclidean distance

between them is ƒ4:5 Å. A residue is represented as a node, and

an edge between residues exists if they have atomic contacts. The

perturbations are signals and can be transmitted from a residue to

its neighboring residues in contact with a probability flow

following a Markovian processes.

When the perturbation is transmitted from residue j to a

neighboring residue i, the probability flow mij in our PMT model

is defined as: mij~0 if there is no atom-atom contacts between

residue i and j, and mij~
nijP
i nij

if there is at least one atom-atom

contacts between residue i and j. Here nij is the number of atom-

atom contacts between residue i and j. If i~j, we set nij equal to

the number of atoms without contact with any atoms from other

residues. The Markovian transition matrix M ~fmijg is a

stochastic matrix because each column sums up to 1:
X

i
mij~1.

In our Markovian model, all of the atom-atom contacts of

residue j with other residue(s) will transmit the same amount of

probability flow. This is different from the model used in reference

[8], where the probability flow is not equally distributed among

different atom-atom contacts, as the probability flow in that model

is weighted by both the size nj of the source residue j and the size

ni of the target residue i: mij!nij

� ffiffiffiffiffiffiffiffi
ninj
p

, where ni is the number

of atoms in residue i.

Stationary Distribution of Probability
For a Markovian process, the final stationary state distribution

p(?)~(p1, � � � ,pN )T of the signal is independent of the initial

perturbation, and has the property: Mp~p. This unique stationary

distribution can be written out in closed-form [40]. For our network

model, we have: p(?)~(p1, � � � ,pN )T , where pk~

PN
i~1nikPN

i,k~1nik

.

The probability at the stationary state for residue i is the same as the

fraction that the number of atomic contacts i makes with other

residues, plus the number of its non-interacting atoms, with the sum

of all atomic contacts plus all non-interacting lone atoms in the

whole structure (Supporting Information Text S1).

Krylov Subspace Method
To analytically obtain the full dynamics response of residues in

the PMT model, we discuss the Krylov subspace matrix reduction

method for solving the master equation.

Noting the sparsity of the Markovian matrix M, we follow the

approach of Sidje [22]. Based on the analytical solution of matrix

exponential shown in Eq. (3), one can expand eRtp0 in the Krylov

subspace Km, which is defined as:

Km(Rt,p0):spanfp0,(Rt)p0,(Rt)2p0, � � � ,(Rt)m{1p0g: ð4Þ

Denoting :k k2 as the 2-norm of a vector or matrix, our

approximation then becomes p(t)& p0k k2Vmz1etHmz1 e1, where e1

is the first unit basis vector, Vmz1 is a (mz1)|(mz1) matrix

formed by the orthonormal basis of the Krylov subspace, and

Hmz1 the upper Heisenberg matrix, both computed from

an Arnoldi algorithm [41,42]. The error can be bounded by

O em{t Rk k2 t Rk k2

�
m

� �m� �
. We now only need to compute explicitly

the matrix exponential eHmz1t. Because m is much smaller than the

total number of states, this is a simpler problem. A special form of

the Padé rational of polynomials instead of Taylor expansion is used

[22]: etHmz1&Npp(tHmz1)=Npp({tHmz1), where Npp(tHmz1)~
Pp

k~0 ck(tHmz1)k and ck~ck{1
: pz1{k

(2pz1{k)k
. All these calcula-

tions are done using Sidje’s expokit software package [22]. We select

m~60 [22].

Prediction Performance Assessment
We use sensitivity, specificity, and accuracy to assess the

performance of our predictions in identifying functionally

important residues. Sensitivity is defined as
TP

TPzFN
, specificity

as
TN

TNzFP
, and accuracy as

TPzTN

N
, where TP, FP, TN ,

FN, and N are the numbers of true positive, false positive, true

negative, false negative, and total number of residues, respectively.
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Supporting Information

Video S1 Animation of Signal Transmission along Allosteric

Pathway

Found at: doi:10.1371/journal.pcbi.1000526.s001 (2.51 MB GIF)

Text S1 Biochemical and Structural Evidence of Predicted Key

Residues, Stationary Distribution of the Perturbation-based

Markovian Transmission Model, and Animation of Signal

Transmission along Allosteric Pathway

Found at: doi:10.1371/journal.pcbi.1000526.s002 (0.06 MB PDF)
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