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Abstract— Proteins contain thousands or more atoms and
have complex shapes. We discuss here the computation of
protein packing defects, in the form of voids and pockets,
from experimentally resolved protein structures, and the nature
of their distribution and scaling behavior, as well as their
origin. We further discuss how evolutionary selection pressure
due to biological function unaltered by selection pressure
due to constraints from folding and stability can be isolated
and estimated, and how such information can be used to
predict protein function and characterize binding propert ies
of enzymes.

Typical proteins contain thousands or more atoms and
have complex shapes. Understanding how they pack is an
important question, as it helps us to gain insight on important
biological questions such as how proteins function. Packing
defects in the form of voids and pockets in experimentally
resolved protein structure can be computationally identified
and measured. We discuss the overall distributions of voids
and pockets in proteins, as well as the scaling properties
of packing related measures with protein size, and findings
on the origin of packing defects and the role played by
evolution. Finally, we describe how protein binding activities
and biological functions can be predicted for the important
class of enzyme proteins based on geometric computation
and evolutionary analysis of voids and pockets.

Geometric models.We use Voronoi diagram, Delaunay
triangulation , and alpha shape to characterize protein struc-
tures. The Voronoi region of an atom ball is the set of points
closest to this ball by the power distance definition [1–4]. The
power distance, denoted asπx(y), of a pointy∈ R

3 from an
atom ballb(x, r) centered atx∈ R

3 with radiusr is defined
as πx(y) = ‖y−x‖2− r2. The collection of Voronoi regions
and their boundaries form theweighted Voronoi diagram,
or the power diagram of the molecule. For a set of ballsB,
the boundaries of their Voronoi regions decompose the space
and the union of balls

⋃
B into convex cellsVB. The well-

studied weighted Delaunay triangulation is the dual structure
of the Voronoi diagram. It is formed by a set of vertices
representing atom centers, a set of edges connecting pairs
of atoms whose Voronoi cells intersect, a set of triangles
spanning three atoms whose bodies have a 3-overlap, and a
set of tetrahedron whose vertices are centers of four atoms
with common intersection. These vertices, edges, triangles,
and tetrahedra are called simplices and they form a simplicial
complex [1].
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Fig. 1. Geometry of a simplified molecule in two-dimensional
space for illustration. (a) The molecule formed by the union
of atom disks. Voronoi diagram is in dashed lines. (b) The
shape enclosed by the boundary polygon is tessellated by
the Delaunay triangulation. (c) The alpha shape of the molecule
is formed by removing those Delaunay edges and triangles
whose corresponding Voronoi edges and Voronoi vertices do
not intersect with the body of the molecule. A molecular void
can be seen, and is represented in the alpha shape by two
empty triangles (Adapted from [5]).

The alpha shape of a molecule is formed by a subset of
the simplices in the weighted Delaunay triangulation [2].
It captures the connectivity of the convex Voronoi regions
in the form of a dual complex, denoted asK0: K0 =
{σ = convxB |

⋂
VB ∩

⋂
B 6= /0}, where the intersection of

the Voronoi cells of a set of balls (
⋂

VB) overlap with the
intersection of the balls themselves (

⋂
B). Here convxB is

the same as the simplex formed by the convex hull of the
atom centers, denoted asxB. Details of the geometric model
for protein structure can be found in [1, 2, 4, 5].

Distribution of voids and pockets. Protein cores are
often considered to be solid-like [6], as proteins have high
packing densities [7] and low compressibilities. Analysis
of Voronoi diagrams of protein structures showed that the
average packing density in a protein is as high as that inside
crystalline solids [8, 9]. Sometimes protein is compared to
an assemble jigsaw puzzle [10].

However, there exists unfilled spaces inside proteins, in the
form of voids, pockets, and depressions.Voids are unfilled
spaces inside the protein that are fully enclosed by atoms.
Pocketsare caverns that open to the outside of the protein
throughmouthsthat are small relative to cavern dimensions
but big enough that the probe ball has access to the outside
of the molecule [11–14].

The prevalence of voids and pockets in proteins can be
assessed using the pocket algorithm described in [16]. For a
set of proteins representative of all known protein structures
based on thePDBSELECT database of proteins of different
fold, it was found that the numbers of pockets and voids
are approximately linearly correlated with the number of
residues in each protein, namely, the size of the protein
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Fig. 2. The scaling behavior of geometric properties of pro-
teins. (a) Voids and pockets for a set of 636 proteins repre-
senting most of the known protein folds. The number of voids
and pockets is linearly correlated with the number of residues
in a protein. Solid triangles and empty circles represent the
pockets and the voids, respectively. (b) The van der Waals
(vdw) volume and van der Waals area of proteins scale linearly
with each other. Here the van der Waals volume is the volume
of the union of overlapping atom balls adopting van der Waals
radii. (Adpated from [15])

(Fig 2a) [15]. Roughly speaking, for every additional 100
residues, a protein has about an additional 7–8 voids and 7–
8 pockets. These spaces are found by a 1.4Å probe, so they
are large enough to contain at least one water molecule. This
finding suggest that voids and pockets are quite common in
protein structures.

Scaling behavior.For a perfectly solid three-dimensional
sphere of radiusr, the relationship between volumeV =
4πr3/3 and surface areaA = 4πr2 is: V ∝ A3/2. In contrast,
the volume of proteins scales linearly with the surface areas
of proteins (Fig 2b). This linear relationship is also what is
observed in models for disordered materials [17, 18].

For randomly packed spheres, when the packing density
pd is greater than a threshold densitypc, clusters become
connected to each other, and the size of the largest cluster
approaches the size of the whole system [17, 19]. At this
percolation thresholdpc, the volumeV of a cluster of random
spheres scale with the lengthR of the cluster asV ∝ RD,
with a characteristic exponentD = 2.5 in three-dimensional
space [17, 18]. In proteins, it was found that lnV ∝ D lnR,
with a fractal dimensionD = 2.47±0.04 (Figure??) [15].
This suggests that packing in proteins behaves like random
spheres near their percolation threshold.

Origin of voids and pockets in protein structure. Using
geometric algorithms, packing densitypd can be readily
computed [4, 13], and the scaling relationship ofpd and
protein chain lengthN is shown in Fig 3a [15]. To answer the
question that whether the scaling behavior ofpd with chain
length is unique to proteins, we can study voids and packing
in generic model chain polymers that are not proteins [20].
For this purpose, one needs to generate self-avoiding walks
(SAW) of chain polymers.

One technical challenge is that it is very difficult to
generate long chain SAWs. This can be overcome by us-
ing the chain-growth based sequential Monte Carlo method
[21], which keeps proper weights for samples generated by
growth. extensive well-designed resampling. Thousands of
SAWs in three dimensional space at any specified intervals of
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Fig. 3. Comparison of scaling behavior of packing density and
coordination number of proteins and compact chain polymers.
(a) Packing density pd of proteins of different lengths; (b)
Scaling behavior of coordination number Zα calculated based
on alpha contact and protein chain length. (c) Packing density
pd and (d) coordination number of randomly generated ho-
mopolymer of different lengths. Different curves reflect models
generated using different parameters (T,C) that adjust the im-
portance of compactness, number of neighbors, and distance
to neighbor (Adapted from [20]).

compactness can be successfully generated [20]. The scaling
behavior ofpd and chain length for these randomly generated
SAWs is very similar to that observed in protein (Fig 3).
These suggest that protein retain the same packing property
of generic compact chain polymers, and they are unlikely to
be optimized by evolution to eliminate voids [20].

Voids and pockets important for protein functions and
their evolution. The abundance of random voids and pockets
poses a significant challenge, namely, how can we distinguish
those pockets and voids that are important for biological
functions [14, 22] from those formed by random chance?

One approach is to decide if a void or a pocket on a
protein structure is strongly similar to a void or a pocket
on another protein structure, and the biological roles of
the latter are known. If so, we can infer that the protein
with the void or pocket under investigation is likely to have
similar biological functions as the second protein. Because
key residues important for protein function are often sparsely
located in diverse regions of the primary sequence of a
protein, methods based on sequence similarity do not work
well. Voids and pockets performing similar functions but on
different structures have strong resemblance. Fig 4 provides
an illustration.

This approach was implemented in a software called
PVSOAR for detecting related binding pockets for protein
function inference [24, 25]. A library of concatenated se-
quence fragments (> 2 million) of residues located on the
wall of a void or pocket is constructed. The sequence
fragment of the pocket on the query protein is then used
to search for similar pocket sequence fragment through a
standard dynamic programming algorithm. Further details
such as the statistical model for assessing significance of
detected similarity and the alternative measure of oRMSD
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Fig. 4. Functional surfaces on the catalytic domains of cAMP-
dependent protein kinase (1cdk) and tyrosine protein kinase
(2src) are very similar. (a) In both cases, the active sites
are computed as surface pockets. (b) Residues defining the
pockets are well dispersed throughout the primary sequences
(full sequence identity = 16%). It would be difficult to detect that
these two proteins have similar function by examining only the
global sequences of these two proteins. (c) The identity of their
surface sequence patterns is much higher (51%) (Adpated
from [23]).

for assessing shape similarity can be found in reference
[24]. With this approach, numerous previously unrecognized
protein binding surfaces are found to be related [24].

Evolutionary pattern of binding surface of voids and
pockets. Success in detecting similarity between sequence
fragments of binding surface residues depends on the use of
a scoring matrix, which is used to quantify the similarity of
two sequence fragments. However, the widely used matrices
(such as the PAM matrix and the BLOSUM matrix) have
implicit parameters whose values were determined from
precomputed analysis of large quantities of sequences, while
the information of the protein of interest has limited or
no influence. A more effective approach is to employ an
explicit model for residue substitution based on a contin-
uous time Markov process and a phylogenetic tree of this
specific protein [26–28]. By focusing on residues located
in binding surface, the selection pressure due to biological
function can be clearly separated from the selection pressure
on residues in other locations due to structural or folding
requirement. It is also easy to incorporate phylogenetic
information in this model, which is important when sample
sequences are unbalanced,i.e., sequences from branches of
the phylogenetic trees that have not diverged far will not
skew the estimation. A Bayesian Monte Carlo method has
been developed that can estimate accurately the substitution
rates of amino acid residues located in a specific binding
pocket, using a phylogenetic tree, a set of multiple-aligned
sequences, and computed pocket/void as input data [28].

The pattern of residue substitutions on protein functional
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Fig. 5. Patterns of substitution rates of residues in the func-
tional binding surface and the remaining surface of alpha-
amylase (pdb 1bag) are very different. (a) Substitution rates
of the functional binding surface. (b) substitution rates of
the remaining surface on 1bag. It is clear that the selection
pressures for residues located in the functional site and for
residues on the rest of the protein surface are very different
(Adapted from [28]).

surfaces is often different from that of the remaining part of
the surface. As an example, the substitution rates for residues
on the functional surface of alpha amylase (pdb1bag) are
shown in Figure 5, along with that of the remaining surface
residues of the protein.

Function prediction by detecting similar binding sur-
faces. The estimated substitution rates can be converted
into scoring matrices for assessing similarity of residuesin
binding pockets [29]. The utility of these scoring matrices
can be tested by examining if one can discover functionally
related proteins, namely, whether one can identify protein
structures that have similar binding surfaces and carry out
similar biological functions. This can be demonstrated by
the example of acetylcholinesterase [23] (Fig. 6).

Bsed on estimated residue substitution rates on the surface
of the binding pocket, scoring matrices for assessment of
similarity to this binding surface can be calculated [28].
Using these scoring matrices, a total of 70 protein structures
are found to have similar functional surfaces as that of the
query template1ea5, and hence are predicted as acetyl-
cholinesterase. Indeed, all of them have the sameE.C.3.1.1.7
label as that of1ea5. The query protein and an example
of matched protein surface is shown in Fig. 6a and 6b,
respectively. There are 71 PDB entries with enzyme class
label E.C.3.1.1.7 in the Enzyme Structures Database (ESD,
Version Oct. 2005,www.ebi.ac.uk/thornton-srv).
This approach successfully identified 70 of them. In a
large scale test of 100 enzyme families with thousands of
structures, at the specificity level of 99.98% (namely, few
mistakes are made among predictions), enzyme functions
can be correctly predicted for 80.55% of the proteins. This
approach can also be applied to the challenging problems
of inferring functions of orphan protein structure, whose
biochemical roles are uncharacterized. More details can be
found in [23, 30].

Summary. The atomic structures of protein molecules
provide a wealth of information for understanding the bi-
ological roles of proteins. With geometric characterization,
we can gain important insight on the structural basis of
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Fig. 6. Predicting biochemical functions of acetyl-
cholinesterase (E.C. 3.1.1.7) by comparison of binding
pockets. (a) The functional pocket (CASTP id = 79) on a
structure of acetylcholinesterase (1ea5 ) was identified. It
includes two residues from the catalytic triad: Ser200 (red)
and His440 (blue). (b) A matched binding surface on a human
protein structure (2clj, CASTP id = 96), with 34 residues
and a molecular volume of 981Å

3
. (c) The multiple sequence

alignment of several orthologous sequence fragments of
residues located in the binding pockets. The two triad residues
Ser200 and His440 are conserved. (d) The phylogenetic
tree consisting of 17 sequences of acetylcholinesterase
is used for estimating substitution rates of residues at the
binding pocket. (e) The structure 1ea5 is predicted to be an
acetylcholinesterase (E.C. 3.1.1.7, with a probability π1 ≈ 0.99)
(Adpated from [23]).

proteins. By directly estimate the evolutionary pattern of
residue substitituon for voids or pockets, we can separate
selection pressure due to biological role from that due to the
need to maintain protein structure and folding stability. The
evolutionary pattern can be used to predict and characterize
protein functions. It is likely that continued geometric and
topological studies of protein structures and their interplay
will generate new knowledge and lead to important innova-
tion in computational tools for furthering our understanding
of biology.
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