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Abstract— Proteins contain thousands or more atoms and
have complex shapes. We discuss here the computation of
protein packing defects, in the form of voids and pockets,
from experimentally resolved protein structures, and the rature
of their distribution and scaling behavior, as well as their
origin. We further discuss how evolutionary selection presure
due to biological function unaltered by selection pressure
due to constraints from folding and stability can be isolatel
and estimated, and how such information can be used to
g;eedr;c;tyr?]?steln function and characterize binding properties of atom disks. Voronoi diagram is in dashed lines. (b) The

. ' . . shape enclosed by the boundary polygon is tessellated by

Typical proteins contain thousands or more atoms ande pejaunay triangulatior(c) The alpha shape of the molecule
have complex shapes. Understanding how they pack is @nformed by removing those Delaunay edges and triangles
important question, as it helps us to gain insight on impurta whose corresponding Voronoi edges and Voronoi vertices do
biological questions such as how proteins function. Pagkimnot intersect with the body of the molecule. A molecular void
defects in the form of voids and pockets in experimentallgan be seen, and is represented in the alpha shape by two

. . . ... empty triangles (Adapted from [5]).
resolved protein structure can be computationally idextifi
and measured. We discuss the overall distributions of voids
and pockets in proteins, as well as the scaling properties

of packing related measures with protein size, and flndlng[ﬁe simplices in the weighted Delaunay triangulation [2].

on th? ongn of packing Qefects and Fhe _rol_e playgq bYt captures the connectivity of the convex Voronoi regions
evolution. Finally, we describe how protein binding adtas %: the form of adual complex denoted asg: o —

Fig. 1. Geometry of a simplified molecule in two-dimensional
space for illustration. (a) The molecule formed by the union

The alpha shape of a molecule is formed by a subset of

and biological funcnons can be predicted for _the |mporta_n g — conwg| (Ve N B # 0}, where the intersection of
class of enzyme proteins based on geometric computatign

and evolutionary analysis of voids and pockets.
Geometric models.We use Voronoi diagram, Delaunay
triangulation , and alpha shape to characterize proteircstr
tures. The Voronoi region of an atom ball is the set of point
closest to this ball by the power distance definition [1-4leT
power distance, denoted ag(y), of a pointy € R® from an
atom ballb(x,r) centered ak € R3 with radiusr is defined
as 1x(y) = |ly—x||> —r?. The collection of Voronoi regions
and their boundaries form theveighted Voronoi diagram

e Voronoi cells of a set of ballg\(Vg) overlap with the
intersection of the balls themselve§B). Here conwg is

the same as the simplex formed by the convex hull of the
atom centers, denoted &s. Details of the geometric model
for protein structure can be found in [1, 2, 4, 5].

Distribution of voids and pockets. Protein cores are
often considered to be solid-like [6], as proteins have high
packing densities [7] and low compressibilities. Analysis
of Voronoi diagrams of protein structures showed that the

or the power diagram of the molecule. For a set of bBlls average packing density in a protein is as high as that inside

the boundaries of their Voronoi regions decompose the spaggsat:!;nnfbfsl.'idss;\?\; 9tzigr?§3;nes protein is compared to
and the union of ball$)B into convex cellsvg. The well- 19 P )

studied weighted Delaunay triangulation is the dual stmect ¢ Howfever,dthere elf'Sts unf:jllzd space_sr‘:gfcljde protmpﬁ,e(ljn th
of the Voronoi diagram. It is formed by a set of vertices O OF VOIOS, pockets, and depressiohids are uniille

representing atom centers, a set of edges connecting paﬁ%aces inside the protein that are fully er)closed by atoms.
of atoms whose Voronoi cells intersect, a set of triangle ocketsare caverns that open to the outside of the protein

spanning three atoms whose bodies have a 3-overlap, an :)gghmouthrs]t?ﬁttatrhe smag rek:aﬂvhe to cavern tdIThenSIOPSd
set of tetrahedron whose vertices are centers of four ato '9 enoug at the probe ball has access 1o the outside

with common intersection. These vertices, edges, triangle0 the molecule [11-14].

and tetrahedra are called simplices and they form a sinaplici The preva!ence of voids and _pockets in, prot_eins can be
complex [1]. assessed using the pocket algorithm described in [16]. For a

set of proteins representative of all known protein streesgu
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Fig. 2. The scaling behavior of geometric properties of pro-
teins. (a) Voids and pockets for a set of 636 proteins repre-
senting most of the known protein folds. The number of voids
and pockets is linearly correlated with the number of residues b st ' g0 ] R
in a protein. Solid triangles and empty circles represent the

pockets and the voids, respectively. (b) The van der Waals
(vdw) volume and van der Waals area of proteins scale linearly
with each other. Here the van der Waals volume is the volume
of the union of overlapping atom balls adopting van der Waals
radii. (Adpated from [15])
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Fig. 3. Comparison of scaling behavior of packing density and
coordination number of proteins and compact chain polymers.
(a) Packing density pq of proteins of different lengths; (b)
Scaling behavior of coordination number Z, calculated based
on alpha contact and protein chain length. (c) Packing density
pg and (d) coordination number of randomly generated ho-
mopolymer of different lengths. Different curves reflect models
(Fig 2a) [15]. Roughly speaking, for every additional 100generated using different parameters (T,C) that adjust the im-
residues, a protein has about an additional 7-8 voids and Partance of compactness, number of neighbors, and distance
8 pockets. These spaces are found by aAlptobe, so they t© N€ighbor (Adapted from [20]).

are large enough to contain at least one water molecule. This

finding suggest that voids and pockets are quite common in

protein structures. compactness can be successfully generated [20]. The gcalin
Scaling behavior.For a perfectly solid three-dimensional behavior ofpg and chain length for these randomly generated
sphere of radiug, the relationship between volumé = SAWSs is very similar to that observed in protein (Fig 3).

4rr3/3 and surface areA = 4?2 is: V 0 A%2. In contrast, These suggest that protein retain the same packing property
the volume of proteins scales linearly with the surface sireaf generic compact chain polymers, and they are unlikely to
of proteins (Fig 2b). This linear relationship is also what i be optimized by evolution to eliminate voids [20].
observed in models for disordered materials [17,18]. Voids and pockets important for protein functions and

For randomly packed spheres, when the packing densitigeir evolution. The abundance of random voids and pockets
pq is greater than a threshold density, clusters become poses a significant challenge, namely, how can we distihguis
connected to each other, and the size of the largest clusthpse pockets and voids that are important for biological
approaches the size of the whole system [17,19]. At thiinctions [14, 22] from those formed by random chance?
percolation thresholgc, the volumeV of a cluster of random  One approach is to decide if a void or a pocket on a
spheres scale with the leng® of the cluster a&/ O RP,  protein structure is strongly similar to a void or a pocket
with a characteristic exponet = 2.5 in three-dimensional on another protein structure, and the biological roles of
space [17,18]. In proteins, it was found thavIfl DInR, the latter are known. If so, we can infer that the protein
with a fractal dimensiorD = 2.47+0.04 (Figure??) [15]. with the void or pocket under investigation is likely to have
This suggests that packing in proteins behaves like randosimilar biological functions as the second protein. Beeaus
spheres near their percolation threshold. key residues important for protein function are often selgrs

Origin of voids and pockets in protein structure. Using located in diverse regions of the primary sequence of a
geometric algorithms, packing densifyy can be readily protein, methods based on sequence similarity do not work
computed [4,13], and the scaling relationship @f and well. Voids and pockets performing similar functions but on
protein chain lengtiN is shown in Fig 3a [15]. To answer the different structures have strong resemblance. Fig 4 pewid
guestion that whether the scaling behaviompgfwith chain  an illustration.
length is unique to proteins, we can study voids and packing This approach was implemented in a software called
in generic model chain polymers that are not proteins [20RvSoAR for detecting related binding pockets for protein
For this purpose, one needs to generate self-avoiding walkaction inference [24,25]. A library of concatenated se-
(SAW) of chain polymers. guence fragments>(2 million) of residues located on the

One technical challenge is that it is very difficult towall of a void or pocket is constructed. The sequence
generate long chain SAWs. This can be overcome by ufagment of the pocket on the query protein is then used
ing the chain-growth based sequential Monte Carlo methdd search for similar pocket sequence fragment through a
[21], which keeps proper weights for samples generated tstandard dynamic programming algorithm. Further details
growth. extensive well-designed resampling. Thousands efich as the statistical model for assessing significance of
SAWs in three dimensional space at any specified intervals détected similarity and the alternative measure of oRMSD
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Fig. 4. Functional surfaces on the catalytic domains of cAMP-
dependent protein kinase (1cdk) and tyrosine protein kinase
(2sr c) are very similar. (a) In both cases, the active sites
are computed as surface pockets. (b) Residues defining the
pockets are well dispersed throughout the primary sequences
(full sequence identity = 16%). It would be difficult to detect that
these two proteins have similar function by examining only the
global sequences of these two proteins. (c) The identity of their
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Fig. 5. Patterns of substitution rates of residues in the func-
tional binding surface and the remaining surface of alpha-
amylase (pdb 1bag) are very different. (a) Substitution rates
of the functional binding surface. (b) substitution rates of
the remaining surface on 1lbag. It is clear that the selection
pressures for residues located in the functional site and for
residues on the rest of the protein surface are very different
(Adapted from [28]).

surfaces is often different from that of the remaining pdrt o
the surface. As an example, the substitution rates foruesid
on the functional surface of alpha amylase (ddiag) are
shown in Figure 5, along with that of the remaining surface
residues of the protein.

Function prediction by detecting similar binding sur-

surface sequence patterns is much higher (51%) (Adpated

faces. The estimated substitution rates can be converted
from [23]).

into scoring matrices for assessing similarity of residires
binding pockets [29]. The utility of these scoring matrices
can be tested by examining if one can discover functionally
for assessing shape similarity can be found in referengg|ated proteins, namely, whether one can identify protein
[24]. With this approach, numerous previously unrecogthizestryctures that have similar binding surfaces and carry out
protein binding surfaces are found to be related [24]. similar biological functions. This can be demonstrated by
Evolutionary pattern of binding surface of voids and the example of acetylcholinesterase [23] (Fig. 6).
pockets. Success in detecting similarity between sequence Bsed on estimated residue substitution rates on the surface
fragments of binding surface residues depends on the usedifthe binding pocket, scoring matrices for assessment of
a scoring matrix, which is used to quantify the similarity ofsimilarity to this binding surface can be calculated [28].
two sequence fragments. However, the widely used matriceging these scoring matrices, a total of 70 protein strastur
(such as the /A matrix and the Bosum matrix) have are found to have similar functional surfaces as that of the
implicit parameters whose values were determined fromuery templatelea5, and hence are predicted as acetyl-
precomputed analysis of large quantities of sequencese whiholinesterase. Indeed, all of them have the sErfe3.1.1.7
the information of the protein of interest has limited orlabel as that oflea5. The query protein and an example
no influence. A more effective approach is to employ adf matched protein surface is shown in Fig. 6a and 6b,
explicit model for residue substitution based on a continrespectively. There are 71DB entries with enzyme class
uous time Markov process and a phylogenetic tree of thigbel E.C.3.1.1.7 in the Enzyme Structures Databases (&
specific protein [26-28]. By focusing on residues locate§ersion Oct. 2005wwv. ebi . ac. uk/ t hor nt on- srv).
in binding surface, the selection pressure due to bioldgicahis approach successfully identified 70 of them. In a
function can be clearly separated from the selection pressuarge scale test of 100 enzyme families with thousands of
on residues in other locations due to structural or foldingtructures, at the specificity level of 99.98% (namely, few
requirement. It is also easy to incorporate phylogeneti;istakes are made among predictions), enzyme functions
information in this model, which is important when samplecan be correctly predicted for 80.55% of the proteins. This
sequences are unbalanced, sequences from branches ofapproach can also be applied to the challenging problems
the phylogenetic trees that have not diverged far will nodf inferring functions of orphan protein structure, whose
skew the estimation. A Bayesian Monte Carlo method hasiochemical roles are uncharacterized. More details can be
been developed that can estimate accurately the substitutfound in [23, 30].
rates of amino acid residues located in a specific binding Summary. The atomic structures of protein molecules
pocket, using a phylogenetic tree, a set of multiple-aliyneprovide a wealth of information for understanding the bi-
sequences, and computed pocket/void as input data [28]. ological roles of proteins. With geometric characteriaafi
The pattern of residue substitutions on protein functionake can gain important insight on the structural basis of
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Fig. 6. Predicting biochemical functions of acetyl- (sl
cholinesterase (E.C. 3.1.1.7) by comparison of binding [16]
pockets. (a) The functional pocket (casTP id = 79) on a
structure of acetylcholinesterase (1lea5 ) was identified. It
includes two residues from the catalytic triad: Ser200 (red) (17]
and His440 (blue). (b) A matched binding surface on a human
protein structure (2clj, casTP id = 96), with 34 residues

and a molecular volume of 981A%, (c) The multiple sequence
alignment of several orthologous sequence fragments of  [19]
residues located in the binding pockets. The two triad residues
Ser200 and His440 are conserved. (d) The phylogenetic

tree consisting of 17 sequences of acetylcholinesterase [20]
is used for estimating substitution rates of residues at the
binding pocket. (e) The structure 1lea5 is predicted to be an
acetylcholinesterase (E.C. 3.1.1.7, with a probability 4 = 0.99)
(Adpated from [23]).

(18]

[21]

[22]

proteins. By directly estimate the evolutionary pattern of
residue substitituon for voids or pockets, we can separa
selection pressure due to biological role from that due & th
need to maintain protein structure and folding stabilitheT [24]
evolutionary pattern can be used to predict and charaeteriz
protein functions. It is likely that continued geometricdan o5
topological studies of protein structures and their int@yp
will generate new knowledge and lead to important innova}-%]
tion in computational tools for furthering our understamgli
of biology.

[27]
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