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Proteins are the main working molecules of a cell. Typical protein molecules
contain thousands or more atoms and have complex shapes. Understanding
how atoms in proteins pack and how they form intricate shape in three di-
mensional space is an important task, as it helps us to gain insight on how
proteins fold and how they carry out biological functions. There exists a large
body of work using geometric constructs such as Voronoi diagram and Delau-
nay triangulation to study protein packing, folding, and its physical chemical
properties. We refer readers to several excellent reviews that discuss these
studies [1–4]. Among these, the review by Poupon provides a comprehensive
and concise discussion of recent studies [4].

In this chapter, we focus on several important issues in which computation
of the geometric structures of proteins improve our understanding of protein
molecules. We first briefly describe the underlying geometric models for ac-
curate description of the complex shapes of protein molecules. We then show
how improved geometry based on weighted Delaunay triangulation and alpha
shape can help to characterize protein folding speed. We further describe how
such accurate geometric description can aid in the development of empirical
statistical scoring function for protein structure prediction. We then discuss
findings on packing defects in the form of voids and pockets in protein struc-
tures, their overall distributions, and their scaling properties with protein size.
This is followed by a discussion on the origin of packing defects and the roles
played by evolution. Finally, we discuss how to extract evolutionary patterns
of protein binding pockets and how to predict enzyme binding activities and
functions.



2 Protein geometry

1 Geometric model for proteins.

The conformations of proteins and other biological macromolecules can be
modeled geometrically as a set of fused balls, in which balls represent atoms
and can have different radii [1, 2, 5, 6]. Our starting point is the weighted
Voronoi diagram and the weighted Delaunay triangulation of this model of
union of balls [6–11] (Fig 1).
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Fig. 1: Geometry of a simplified molecule in two-dimensional space for illustration.
(a) The molecule formed by the union of atom disks. Voronoi diagram is in
dashed lines. (b) The shape enclosed by the boundary polygon is tessellated by
the Delaunay triangulation. (c) The alpha shape of the molecule is formed by
removing those Delaunay edges and triangles whose corresponding Voronoi edges
and Voronoi vertices do not intersect with the body of the molecule. A molecular
void can be seen, and is represented in the alpha shape by two empty triangles
(Adapted from [12]).

Briefly, the Voronoi region of an atom ball is the set of points closest to
this ball by the power distance definition [6–10]. The power distance, denoted
as πx(y), of a point y ∈ R

3 from an atom ball b(x, r) centered at x ∈
R

3 with radius r is defined as πx(y) = ‖y − x‖2 − r2. The collection of
Voronoi regions and their boundaries form the weighted Voronoi diagram, or
the power diagram of the molecule [13]. For a set of balls B, the boundaries
of their Voronoi regions decompose the space and the union of balls

⋃
B into

convex cells VB. The well-studied weighted Delaunay triangulation is the dual
structure of the Voronoi diagram. It is formed by a set of vertices representing
atom centers, a set of edges connecting pairs of atoms whose Voronoi cells
intersect, a set of triangles spanning three atoms whose bodies have a 3-
overlap, and a set of tetrahedron whose vertices are centers of four atoms
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with common intersection. These vertices, edges, triangles, and tetrahedra
are called simplices and they form a simplicial complex [6, 7].

The alpha shape of a molecule is formed by a subset of the simplices in
the weighted Delaunay triangulation [7]. It captures the connectivity of the
convex Voronoi regions in the form of a dual complex, denoted as K0:

K0 = {σ = convxB |
⋂
VB ∩

⋂
B 6= ∅},

where the intersection of the Voronoi cells of a set of balls (
⋂
VB) overlap with

the intersection of the balls themselves (
⋂
B). Here convxB is the same as the

simplex formed by the convex hull of the atom centers, denoted as xB. Details
of the geometric model for protein structure can be found in [6, 7, 10, 12].

2 Improving understanding of protein structure and
folding through geometry

Although describing protein structure using alpha shape is not as straightfor-
ward as commonly used heuristics, such as declaring neighboring relationship
by a distance cut-off, or cubic grids for volume calculation, this approach offers
important advantages, which often lead to fresh insights with improved under-
standing of protein molecules. Here we show how such geometric descriptions
of protein contacts can lead to a better prediction of protein folding rates.

2.1 Native structure and folding rate

Proteins have complex three-dimensional native structures. A remarkable ob-
servation is that completely unfolded denatured proteins often could refold
spontaneously to their native conformations. However, the folding speed of
different proteins as measured by folding time (τ = 1/kf) can vary by 8-
orders of magnitude, from about 10−6 to 102 second (see [14] for a general
discussion of protein folding rates). An important question therefore is: What
determines the speed of protein folding?

One view postulates that the native structure of protein determines the
folding speed. Using a set of about 20 proteins whose folding rates have been
measured experimentally and whose three dimensional structures are known,
Plaxco, Simons, and Baker discovered that folding rate correlates well with
a parameter called contact order, which measures the localness of contact
interactions in the folded structures of proteins [15]. However, as more exper-
imental data become available, this correlation deteriorates [19].

One possible cause of the deterioration may lie in the inaccuracy of the
contact description. In most computational studies, pairwise contacts between
amino acid residues are declared if two residues are within a specific thresh-
old of Euclidean distance. But this definition can potentially include many
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implausible non-contacting neighbors, which have no significant physical in-
teraction [16]. Whether or not a pair of residues can make physical contact
depends not only on the distance between their center positions (such as Cα

or Cβ, or geometric centers of side chain), but also on the size and the ori-
entations of side-chains [16]. Furthermore, two atoms close to each other may
in fact be occluded from contacting each other. By using a distance thresh-
old, fictitious contact interactions may be included. This is a well-recognized
problem [11, 17, 18].

Geometric Contact. An alternative approach is to define geometric con-
tacts between residues using criteria derived from the Voronoi diagram and
the alpha shape of the protein structure [19]. In this case, one can identify
interacting residue pairs following the edges in the alpha shape of the protein
structure. A useful parameter is the geometric contact number Nα, which is
just the number count of residues connected by alpha edges. 1

Folding rate correlation. Using Nα instead of contact order leads to im-
provement in correlation with folding rate. The correlation of Nα with ln kf of
experimentally determined folding rate kf for a set of 80 proteins with diverse
structures is summarized in Figure 2. The folding rates of these proteins span
a range over more than 8 orders of magnitude. For comparison, correlation
with ln kf for several other parameters reported in literature are also summa-
rized in Figure 2. Among these, the relative contact order RCO [15] is defined
as RCO =

∑
∆Si,j/(LN), where N is the total number of contacts, ∆Si,j is

the sequence separation between contacting residues i and j, and L is the to-
tal number of residues. It correlates poorly with folding rates of this set of 80
proteins. The absolute contact order ACO is defined as ACO =

∑
∆Si,j/N

[20]. It has better correlations. In addition, protein chain length has a strong
negative correlation for multi-state proteins (R = −0.79), but a weaker cor-
relation for two-state proteins (= −0.72) [19]. In contrast, the quantity Nα

computed from alpha shape correlates well with folding rates (R = −0.83 for
all 80 proteins). These results indicate that accurate description of geometric
contacts improves correlation of native protein structures with folding rates.

Nα is also a better predictor of folding rate than the simple measure of
protein chain length. This is demonstrated by results from a random test, in
which a subset of 30 proteins was selected out for the correlation analysis.
The correlation coefficients between the folding rate ln kf and the geometric
contact number Nα, between ln kf and the chain length L are recorded, re-
spectively [19]. This is then repeated several times. Chain length L is found
not to be a consistently good predictor of protein folding rates: The correlation

1 Two additional conditions are imposed, namely, contacts must be at least 4
residues apart in the primary sequence, and their spatial distance is no greater
than 6.5 Å. Here the distance cutoff is used as an upper bound instead of a lower
bound as cutoffs are used in other methods. As alpha shape of a protein is com-
puted with all atomic radii incremented by the radius of a solvent (1.4 Å), this
cutoff is necessary to exclude atoms not in physical contact but are within the
diameter of a solvent.
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Fig. 2: Relationship between different structural parameters and folding rates
of two-state (open squares) and multi-state (solid squares) proteins. Two state
proteins are those whose folding behavior can be described by one exponent com-
ponent, whereas multi-state proteins cannot be described by a single component.
(a) Contact order RCO (R = -0.15), (b) absolute contact order ACO (R = -0.77),
(c) c chain length (R = -0.72), and (d) Nα (R = -0.83) (Adapted from [19]).

R is better than −0.50 only for two subsets, and can be as little as −0.04. In
contrast, Nα gives consistently good correlations: all are better than −0.58,
with the best value being −0.79. Overall, these results show that accurate
description of geometric contacts can capture the nature of protein folding
better than contacts defined by distance cut-off and chain length.

2.2 Understanding folding rates from studies of model proteins

Although parameter derived from native protein structure can correlate well
with measured folding rate, the extent to which native structure determines
folding rate remains unclear. An experimental study showed that a designed
artificial protein with no homologous sequence in nature that adopts the same
structure as a natural protein can fold 4,000 times faster [21]. Such observa-
tions contradict with the view that different sequences for the same protein
structural fold would all have very similar folding rates.
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Fig. 3: Protein-like sequences and the set of primitive moves. The largest protein
family contains (a) 26 sequences that all fold into (b) the same structure. Here
filled circles are H residues. (c) The move set used to study folding dynamics
includes: among (1, 2, and 3), single point moves rotate around a single point;
between (1 and 4), generalized corner moves reflect around a diagonal axis con-
necting any two residues; between (1 and 5), generalized crankshaft moves reflect
around a horizontal or vertical axis. Points of rotation are on gray background.
For a given conformation, all possible point moves at different positions, all pos-
sible generalized corner moves and crankshaft moves at all pairs of positions are
exhaustively searched (Adapted from [22]).

Mechanistic understanding of folding dynamics can be gained by analyzing
folding of model protein molecules [22]. Two-dimensional hydrophobic and po-
lar (HP) lattice model [23] has been widely used for studying protein folding,
for example, on collapse and folding transitions [24–28], influence of packing
on secondary structure and void formation [29–32], and the roles of mutation
and recombination in the evolution of protein thermodynamics [33, 34]. In
this model, contacts between spatially neighboring sites that are not sequence
neighbors can be regarded as equivalent to the geometric contacts computed
from alpha shape in real protein structures. This simple toy model exhibits
complex protein-like behavior. For example, by evaluating a simple energy
scheme for all 216 HP sequences of 16-mers on all enumerated 802, 075 confor-
mations, it is found that there are 1,539 protein-like foldable sequences with
unique ground state conformations, and 456 conformations that are the unique
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ground state for 1 or more foldable sequences [22]. There are 26 sequences that
all fold into the same ground state conformation (Fig. 3a and 3b). This set
of sequences forms the largest protein family, where each sequence adopts the
same conformation, and all are connected by (a series of) point mutation [22].

1e−02 1e+00 1e+02 1e+04

1e
−

05
1e

−
03

1e
−

01

Time

P
op

ul
at

io
n

Fig. 4: The time evolution of the native state and several local minima states.
The probability of occupation of native state conformation (top) increases mono-
tonically through a time span of 10−2 − 105, but local minima conformations go
through transiently accumulating intermediate states [22]).

By employing a set of physically realizable move set (Fig. 3c) and solving
a master equation describing the probability of transition between any two
different conformations through realizable moves, the folding dynamics of all
802, 075 conformations of the model proteins spanning 7 decades of time scale
can be followed (Fig. 4). It was found that folding rates vary enormously for
sequences of the same length, same energy, same energy gap, and even for
the 26 sequences with the same ground state conformation [22]. Furthermore,
thermodynamic parameters such as collapse cooperativity are found to be
weak predictors of folding rates. Instead, properties of the kinematic landscape
(defined by the conformations and the physical moves connecting them), such
as the number of local minima on this connected landscape, provide excellent
correlation with folding rates [22].

2.3 Remark

The physical basis for the observed correlation of folding rate and Nα is likely
that proteins fold via a mechanism of zipping and assembly, where contacts
among monomers that are more widely separated in the sequence are slower
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to form because their conformational search is more costly in chain entropy
[35–40]. It is expected that further studies on correlating specific types of
contact interaction of residues pair may shed further light on the nature of
the determinants of protein folding rates.

Another area where geometric analysis could contribute is the evaluation
of the compactness of three dimensional conformations. An important aspect
of protein structure prediction is to recognize native-like conformation from
a large number of decoy structures that are far from the native structure of
protein. Although various force fields can model physical interactions in details
and often can be used to sample a large number of conformations, they often
have limited discrimination in selecting protein-like compact structures from
loosely packed but low energy structures. It is likely that simple geometric
contact analysis similar to what was applied in folding rate study can help to
resolve this problem.

3 Scoring function for predicting protein structure

The observation of spontaneous refolding of a denatured protein indicates
that the sequence of amino acids of the protein contains all of the information
needed to specify its three-dimensional native structure [41–43]. A fundamen-
tal problem in molecular biology therefore is to the predict three-dimensional
structures of proteins from sequences. As sequences of most proteins are now
available, while the number of proteins with known structures lags far behind,
protein structure prediction can be valuable for gaining understanding on how
protein molecules work.

In protein structure prediction, often a large number of candidate con-
formations are generated, and a scoring function or energy potential is used
to select the correct conformations, called the native or near-native confor-
mations, from an ensemble of alternative conformations (called decoys) [44].
The discrimination of native and near native conformations is a stringent re-
quirement for a scoring function. An effective approach for developing scoring
functions is to empirically generate parameters based on statistical analysis of
geometric features of protein structures [44–50]. These scoring functions are
also called knowledge-based potentials or empirical potentials.

Geometric analysis of protein structures can be used to design very effec-
tive knowledge-based scoring functions, as they reflect the shape and contact
interactions of proteins with high accuracy. Potential functions based on geo-
metric constructs include those that employ the Voronoi diagram [49, 51], the
Delaunay triangulation [52–57], and the alpha shape [11, 50, 58, 59] of the pro-
tein molecules. These geometry based scoring functions have achieved signifi-
cant successes. For example, a scoring function based on the Voronoi diagram
of proteins structures is among one of the best performing atom-level scoring
functions [49].
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Because the alpha shape of a protein structure contains rich topological,
combinatorial, and metric information [6], we discuss a scoring functions based
on alpha edges in more detail below as an example of this class of geometric
scoring function. More details can be found in [12]

3.1 Principle of knowledge-based scoring function for protein

structures.

The main assumption in developing empirical scoring functions is that the
frequencies of structural features observed in a protein structural database
follows the Boltzmann distribution under a potential function. The probabil-
ity of each structural feature in native conformations is assumed to be inde-
pendent. By estimating the probability of the occurrence of these structural
features and assuming Boltzmann distribution, one can reconstruct empir-
ically a potential function as the scoring function. A widely used class of
structural feature is the number counts of various types of amino acid residue
pairs in contact interactions.

Statistical probability and empirical energy potential function.

Denote the collection of number counts of various structural features observed
in a conformation as a vector c, and the sequence of amino acid residues of the
protein as a. The Boltzmann distribution connects a scoring function H(c)
interpreted as an energy potential function for a conformation represented by
c to its probability of occurrence π(c):

π(c) = exp[−H(c)/kT ]/Z(a), (1)

where k and T are the Boltzmann constant and the absolute tempera-
ture measured in Kelvin, respectively. The partition function is Z(a) ≡∑

c exp[−H(c)/kT ], which sums over all possible feature count vectors c ob-
tained for all possible conformations for the sequence a.

Reference state and collection of non-interacting pairs.

In order to derive an energy potential function that encodes interactions spe-
cific to proteins, one has to remove the occurrence of structural features due to
random chances. For this purpose, a reference state is constructed that mod-
els the background random probability π′(c) of the occurrence of structural
features. In this reference state, the frequencies of structural features (such as
pairwise residue interactions) are of random nature and are independent of
the sequence and structure of the protein [60].

Denote the energy potential function that would result from these random
occurrence as H ′(c). A potential energy ∆H(c) is then obtained as:

∆H(c) = H(c) −H ′(c)

= −kT ln[
π(c)

π′(c)
] − kT ln[

Z(a)

Z ′(a)
], (2)
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Here −kT ln(Z(a)/Z ′(a)) is a constant that does not depend on the confor-
mation and the vector c. If one assumes that Z(a) ≈ Z ′(a) [60], the effective
potential energy can be calculated as:

∆H(c) = −kT ln[
π(c)

π′(c)
] (3)

Since we the probability distribution of each structural feature is assumed to
be independent, we have π(c)/π′(c) =

∏
i ci[

πi

π′

i

], where ci, πi, and π′

i are the

number count of a single i-th type of structural feature, the probability of
i-type feature in the database of native proteins and in the reference state,
respectively. We then have

∆H(c) = −kT ln[
π(c)

π′(c)
] = −kT

∑

i

ci ln[
πi

π′

i

]. (4)

We can now decompose ∆H(c) into basic energetic terms associated with
each structural feature that can be linearly summed up:

∆H(c) =
∑

i

∆H(ci) = −kT
∑

i

ciwi. (5)

where we have:
wi = ln[

πi

π′

i

]., (6)

as the distribution of each of the i-th feature is assumed to be independent.
Eqn(4) is just a manifestation of the statement that the probability of each
structural feature follows the Boltzmann distribution. Analysis of the distri-
butions of many protein structural features, including residues between the
surface and interior of globules, the occurrence of various φ, ψ, χ angles, cis

and trans prolines, ion pairs, and empty cavities in protein globules, all are
found to follow the Boltzmann distribution [61].

3.2 Alpha contact scoring function

The structural feature in scoring functions are often number counts of various
types of interacting amino acid residue pairs. Similar to the study of protein
folding rate, one can improve the description of protein contact interactions
by carrying out geometric analysis. Similar to the study of protein folding
rate, one can define that contact occurs if atoms from non-bonded residues
share a Voronoi edge, and this edge is at least partially contained in the body
of the molecule through the computation of the alpha shape [10, 62],

This condition models the requirement that atoms must be in physical
nearest neighbor contact.
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Probabilistic model for pairwise contact interactions.

Specifically, the probability π(i,j) for residue of type i interacting with residue
of type j can be derived from observed pairwise alpha contacts between atoms
involving both residue types. The number count of such observed contacts
from different proteins in the entire database of many selected diverse protein
structures are pooled together, and π(i,j) is calculated as:

π(i,j) =
c(i,j)∑

i′,j′ c(i′,j′)

Here c(i,j) is the count of atomic contacts between residue type i and residue
type j, and

∑
i′,j′ c(i′,j′) is the total number of all atomic contacts.

Model for reference state.

We can compute the random probability π′

(i,j) where residue i and j interact
randomly by adopting the model that a pair of contacting atoms is picked
from a residue of type i and a residue of type j. Here these atoms are chosen
randomly and independently [63]. We have:

π′

(i,j) = NiNj · (
ninj

n(n− ni)
+

ninj

n(n− nj)
), when i 6= j

and
π′

(i,j) = NiNi−1 ·
nini

n(n− ni)
, when i = j

where Ni is the number of interacting residues of type i, ni is the number of
atoms residue of type i has, and n is the total number of interacting atoms.

Energy evaluation of a protein.

The weight coefficient wi of the scoring function is calculated as:

w(i,j) = − ln[
π(i,j)

π′

(i,j)

] (7)

The overall energy of a protein structure is calculated as:

E =
∑

(i,j)

c(i,j) · w(i,j),

where the summation is over all contacts between different residue pairs.
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Fig. 5: Energy evaluated by alpha contact potential plotted against the RMSD to native
structures for conformations in the Park & Levitt Decoy Set. For vitamin D-dependent
calcium-binding protein (3icb), a structure with better resolution (4icb) has the lowest
energy (denoted by “+”). (Adapted from [65]).

3.3 Evaluation of scoring functions for protein structure prediction

To recognize typically only a few protein conformations similar to the native
conformation from an ensemble of a very large number of decoy conformations
(106) a scoring function needs to be very discriminative. How such discrimi-
nations work can be demonstrated through the example of the Park & Levitt
decoy set. This decoy test set contains native and near-native conformations
of seven sequences, along with about 650 misfolded decoy structures for each
sequence. The positions of Cα of these decoys were generated to mimic realis-
tically the geometry of real proteins. Conformations in the decoy sets all have
low energy by a number of potential functions, and have low RMSD to the
native structure [64].

The results of energy calculation using the alpha contact potential are
shown in Fig 5. For five of the seven proteins, the native structures have
lowest energy by alpha contact potential. For protein 3icb and 4rxn, the
native structures have the 5th and 51st lowest energy values, respectively. For
all proteins, decoys with the lowest energy are within 2.5 Å RMSD to the
native structure. These results show that alpha scoring function works well
for this class of decoys. Studies of alpha contact potential with other decoys
can be found in [65]
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3.4 Remark

In this section, we showed how accurate geometry can help in developing
effective scoring function for protein structure prediction. Using the edge sim-
plices in the alpha shapes of protein structures, a scoring function based on
the statistics of edge simplices is shown to work well [65]. In further analysis,
it was found that the geometric representation of accurate contact interaction
is very important, although the specific details of the residue types are often
less so [65].

4 Nature and origin of voids and pockets in protein
structures

4.1 Voids and pockets in protein structures

Protein cores are often considered to be solid-like [66, 67], as proteins have
high packing densities [1] and low compressibilities [68]. Analysis of Voronoi
diagrams of protein structures showed that the average packing density in a
protein is as high as that inside crystalline solids [69–71]. Sometimes protein
is compared to an assembled jigsaw puzzle [2].

However, there exists unfilled spaces both inside and on the surface of
proteins. Gerstein et al calculated the volume associated with atoms on the
protein surface using Voronoi diagram and water molecules generated by
molecular-dynamics simulation [72]. It was found that nonpolar atoms on the
protein surface and their associated water are less tightly packed, and charged
atoms and water are more tightly packed. The large volume fluctuation asso-
ciated with atoms at the protein-water interface was further studied for un-
derstanding the compressibilities of protein and solvent atoms [72]. By placing
water molecules randomly on a grid surrounding the molecule, Charavarty et

al carried out calculations using Voronoi diagram to identify empty spaces lo-
cated on protein surfaces [73]. By correlating volume of empty spaces created
after replacement of amino acid residues with measured stability change of
the protein, these authors were able to estimate the strength of hydrophobic
forces that drive protein folding [73].

Distribution of voids and pocket. Geometrically, the unfilled spaces
can be formally classified as voids, pockets, and depressions. Voids are unfilled
spaces inside the protein that are fully enclosed by atoms. Pockets are caverns
that open to the outside of the protein through mouths that are small relative
to cavern dimensions but big enough that the probe ball has access to the
outside of the molecule. The mouth of a pocket is narrower than at least one
cross section of the interior of the pocket. Depressions are concave regions on
protein surfaces that have no constriction at the mouth [74–77].

The prevalence of voids and pockets in proteins can be assessed using the
pocket algorithm described in [79]. For a set of 636 proteins representative
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Fig. 6: The scaling behavior of the geometric properties of proteins. (a) Voids
and pockets for a set of 636 proteins representing most of the known protein
folds. The number of voids and pockets detected with a 1.4 Å probe is linearly
correlated with the number of residues in a protein. Solid triangles and empty
circles represent the pockets and the voids, respectively. (b) The van der Waals
(vdw) volume and van der Waals area of proteins scale linearly with each other.
Here the van der Waals volume is the volume of the union of overlapping atom
balls adopting van der Waals radii (Adapted from [78]).

of all known protein structures of different backbone fold families [80], it
was found that the numbers of pockets and voids are approximately linearly
correlated with the number of residues in each protein, namely, the size of the
protein (Fig 6a) [81]. Roughly speaking, for every additional 100 residues, a
protein has about an additional 7–8 voids and 7–8 pockets. These spaces are
found by a 1.4 Å spherical probe, therefore are large enough to contain at
least one water molecule. This finding shows that voids and pockets are quite
common in protein structures.

Scaling behavior. A useful way to characterize protein interior packing
and to understand whether proteins are packed more like jigsaw or random
objects as in disordered material is through surface/volume relationships. For
a perfectly solid three-dimensional sphere of radius r, the relationship between
volume V = 4πr3/3 and surface area A = 4πr2 is: V ∝ A3/2. The volume of
proteins, however, is found to scale linearly with the surface areas of proteins
(Fig 6b).

A model for disordered materials is clusters of random uncorrelated
spheres, which has a characteristic scaling behavior [82]. Monte Carlo stud-
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ies show that the volume V of clusters of random spheres, of either uniform
radius or of mixtures of different radii, scales linearly with the surface area
A of the cluster: V ∝ A [82, 83]. The same scaling behavior is found in lat-
tice models of simple clusters [83]. This linear relation of V with A is also
what is observed in proteins (Fig 6b). Similarly, there is a linear correlation
between the volume and the number of atoms N (or the number of residues)
of proteins, the same as observed in random packed spheres [82].

A key property of randomly packed spheres is the so-called percolation

threshold. In randomly packed spheres, when the packing density p is greater
than a threshold density pc, clusters become connected to each other, and the
size of the largest cluster approaches the size of the whole system [82, 84, 85].
At this threshold pc, the volume V of a cluster of random spheres is known
to scale with the length R of the cluster as V ∝ RD, with a characteristic
exponent D = 2.5 in three-dimensional space [82, 83]. The same exponent is
also found in lattice models of clusters [86]. The size R of a cluster of spheres
can be calculated as the maximum extent of the cluster along the coordinate
axes: R = 1

2d

∑d
j=1(xj,max − xj,min), where d = 3 in R

3 [82]. For random
packed spheres, D = 2.5 at p = pc, but no scaling behavior is known for
p > pc. Based on three-dimensional lattice studies, it is expected that D will
cross over from D = 2.5 if p ≈ pc to D = 3 if p≫ pc [83].
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Fig. 7: The logarithm of protein molecular surface volume logV scales with the
logarithm of the length of the protein logR with the characteristic slope d of 2.47
(Adapted from [81]).

In proteins, it is found that lnV ∝ D lnR, with a fractal dimension D =
2.47 ± 0.04 (Figure 7) [81]. This suggests that packing in proteins behaves
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like random spheres near their percolation threshold. The surface areas A of
proteins also scale with R with a fractal exponent D = 2.26. Therefore, both
V and A scale with R with a similar fractal dimensionality. This is consistent
with the direct linear correlation we observed between V and A. A recent
study indicates that buried residues of a protein often contribute significantly
to its overall side chain entropy [87], consistent with the postulation of packing
in protein interior behaves like random spheres.

4.2 Origin of voids and pockets in protein structure

Another useful parameter describing packing is the packing density pd [2, 88].
pd can be thought of as the physical volume vvdw occupied by the union of
van der wall atoms, divided by the volume of an envelope venv that tightly
wraps around the body of atoms: pd ≡ vvdw/venv [81]. Voids contained within
the molecule will not be part of the van der Waals volume vvdw, but will be
included in venv. Using geometric algorithms, vvdw, venv and pd can be readily
computed for protein structures [10, 76]. The scaling relationship of pd and
chain length N obtained from such calculation is shown in Fig 8a [81], along
with the coordination number Zα calculated from alpha shapes.

To answer the question that whether the scaling behavior of pd with chain
length is unique to proteins, one can study voids and packing in generic model
chain polymers that are not proteins [78]. For this purpose, one needs to gen-
erate self-avoiding walks (SAW) to model chain polymers, namely, monomer
beads connected by a self-avoiding chain. These chain polymers have little re-
semblance to proteins, other than the imposed condition that they have similar
compactness as that of proteins. Specifically, one needs to generate samples
of long chain SAWs from the target distribution of uniformly distributed all
SAWs satisfying protein-like compactness requirement.

One technical challenge is that it is very difficult to generate long chain
SAWs. This is the well-known attrition problem: the success rate for gener-
ating SAW of length 48, regardless of its compactness, is only 0.79%, and
this rate deteriorates rapidly when chain length increases [89]. This difficulty
can be overcome by using the chain-growth based sequential Monte Carlo
method [90], which keeps proper weights for samples generated by growth.
Using a discrete 32-state off-lattice model and sequential Monte Carlo, one
can successfully generate thousands of SAWs in three dimensional space at
any specified intervals of compactness [78]. Void and packing density and coor-
dination number computation for these randomly generated SAWs show that
the scaling behavior of pd and chain length is very similar to that observed
in protein (Fig 8c and d). These results suggest that protein retain the same
packing property of generic compact chain polymers, and they are unlikely to
be optimized by evolution to eliminate voids [78].
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Fig. 8: Comparison of scaling behavior of packing density and coordination number
of proteins and compact chain polymers. (a) Packing density pd of proteins of differ-
ent lengths; (b) Scaling behavior of coordination number Zα calculated based on alpha
contact and protein chain length. (c) Packing density pd of randomly generated ho-
mopolymer of different lengths. Different curves reflect models generated using different
parameters (T, C) that adjust the importance of compactness, number of neighbors,
and distance to neighbor (see ref [78] for details.) (d) Scaling behavior of coordination
number Zα of random chain polymers (Adapted from [78]).

4.3 Remark

Proteins are found not to be packed like solid, rather, there are numerous voids
and pockets. The scaling behavior of volume, area, and cluster size all suggest
that proteins are packed more like random spheres than like jig-saw puzzles.
The origin of voids and pockets is the requirement of packing of random chain
in compact space, and evolution has played overall little role in this.
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Fig. 9: Functional surfaces on the catalytic domains of cAMP-dependent protein ki-
nase (1cdk) and tyrosine protein kinase (2src) are very similar. (a) In both cases, the
active sites are computed as surface pockets. (b) Residues defining the pockets are well
dispersed throughout the primary sequences (full sequence identity = 16%), (c) The
identity of their surface sequence patterns is much higher (51%) (Adapted from [92]).

5 Biochemical function prediction from protein geometry

5.1 Voids and pockets important for protein functions

The abundance of random voids and pockets poses a significant challenge,
namely, how can we distinguish those few that are important for biological
functions [77, 91] from those formed by random chance?

One approach is to determine if a void or a pocket on a protein structure
is strongly similar to a void or a pocket involved in binding on another protein
structure, and if the biological roles of the latter are known. For proteins car-
rying out similar functions such as binding similar substrates and catalyzing
similar chemical reactions, their binding surfaces experience similar physical
and chemical constraints. If a matching surface pocket or void from a protein
structure with known functions is found, one can infer that the protein un-
der investigation is likely to have similar biological functions as well. This is
reminiscent of inferring protein functions by sequence alignment, but with a
significant difference. Because key residues important for protein function are
often sparsely located in diverse regions of the primary sequence of a protein,
methods based on sequence similarity do not work well. Geometric analysis



Contacts, voids, and pockets in proteins 19

is required in this case, as these key residues fold together to form spatially a
pocket or a void.

Fig 9 provides an illustration. The overall sequence identity between the
catalytic domains of cAMP-dependent protein kinase (pdb 1cdk.A) and ty-
rosine protein kinase (2src) is low (16%), and it would be difficult to detect
that these two proteins have similar function by examining only the global
sequences of these two proteins, as reliable transfer of functional annotation
requires an overall sequence identity of >60-70% [93, 94]. However, with the
structural information of these two proteins, we can compute the surface pock-
ets on these two proteins and identify the residues that are involved in sub-
strate ATP binding [95]. As can be seen in Fig 9b, residues defining the pockets
are well dispersed throughout the primary sequences, and it would be very
difficult to select exactly these pocket residues important for binding from
sequence, without the knowledge of protein structures and the application of
geometric computation. Once these pocket residues are identified, the iden-
tity of the sequence fragments obtained from concatenation of the residues
is much higher (51%, Fig 9c), suggesting a strong relationship of these two
binding surfaces.

An implementation of this method called pvSoar can be used to detect
related binding pockets for protein function inference [96, 97]. A library (> 2
million) of concatenated sequence fragments of residues located on the wall
of a void or pocket is constructed and is used as the basis to search for func-
tionally related proteins. Specifically, the sequence fragment of the pocket
on the query protein is used to search against this library for detection of
similar pocket sequence fragment. This can be done through a standard dy-
namic programming algorithm. Further details such as the statistical model
for assessing significance of detected similarity, and the alternative measure
of orientational root mean square distance (oRMSD) for assessing shape sim-
ilarity can be found in reference [96]. With this approach, many previously
unrecognized protein binding surfaces are found to be related [96].

5.2 Evolutionary pattern of binding surface of voids and pockets

Success in detecting similarity between sequence fragments of binding surface
residues depends on the use of a scoring matrix, which is used to quantify the
similarity of two sequence fragments. In general, scoring matrix for assessing
sequence similarity is often derived from the evolutionary history of proteins
sharing similar functions. As proteins of similar functions are under the con-
straints of binding to the same substrate and carry out similar reactions, the
environment provided by the binding surface must maintain certain proper-
ties. This is reflected in specific pattern of amino acid residues substitution, as
during evolution certain residues are free to mutate but others are constrained
and cannot tolerate any mutations. However, the widely used matrices (such
as the Pam matrix [98] and the Blosum matrix [99]) have implicit parameters
whose values were determined from precomputed analysis of large quantities
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Fig. 10: Patterns of substitution rates of residues in the functional binding surface and

the remaining surface of alpha-amylase (pdb 1bag) are very different. (a) Substitution

rates of the functional binding surface. (b) substitution rates of the remaining surface

on 1bag (Adapted from [102]).

of sequences, while the information of the protein of interest has limited or no
influence. A more effective approach for studying residue substitutions is to
employ an explicit model for residue substitution based on a continuous time
Markov process and a phylogenetic tree of the protein [100–102]. In this case,
residue substitution patterns are estimated from data specific to the protein of
interest [103]. In addition, by focusing on residues located in binding surface,
the selection pressure due to biological function can be clearly separated from
the selection pressure on residues in other locations due to structural or folding
requirement. In addition, it is easy to incorporate phylogenetic information
in this model, which is important when sample sequences are unbalanced,
i.e., sequences from branches of the phylogenetic trees that have not diverged
far will not skew the estimation. A Bayesian Monte Carlo method has been
developed that can estimate accurately the substitution rates of amino acid
residues located in a specific binding pocket, using a phylogenetic tree, a set
of multiple-aligned sequences, and computed pocket/void as input data [102].

The pattern of residue substitutions on protein functional surfaces is often
different from that of the remaining part of the surface. As an example, the
substitution rates for residues on the functional surface of alpha amylase (pdb
1bag) are shown in Figure 10, along with that of the remaining surface residues
of the protein. It is clear that the selection pressures for residues located in
the functional site and for residues on the rest of the protein surface are very
different.

5.3 Function prediction by detecting similar binding surfaces.

The estimated substitution rates can be converted into scoring matrices for as-
sessing similarity of residues in binding pockets [104, 105]. The utility of these
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scoring matrices can be tested by examining if one can discover functionally
related proteins, namely, whether one can identify protein structures that have
similar binding surfaces and carry out similar biological functions. This can be
demonstrated by the example of acetylcholinesterase [92]. Acetylcholinesterase
(Enzyme Commission number E.C.3.1.1.7) is found in the synapse between
nerve cells and muscle cells. It breaks down acetylcholine molecules into acetic
acid and choline upon stimuli. Using a template structure (pdb 1ea5), one
seeks to identify other structures that are also acetylcholinesterase with the
same E.C. number of all four digits and to locate the surface regions that are
involved in enzyme activities. E.C. numbers represent a progressively finer
classification of an enzyme, with the first digit about the basic reaction, and
the last digit often about the specific functional group that is cleaved during
reaction.

In this example, all pockets on a template structure of acetylcholinesterase
(protein data bank name 1ea5) are first exhaustively computed [77, 106].
Based on annotation derived from experimental literature, a pocket contain-
ing 32 residues is determined as the functional pocket (Fig. 11a), which con-
tains the Ser and His residues of the active site triad [92]. A set of 17 se-
quences homologous to the template protein are used to build a phylogenetic
tree (Fig. 11d) [92, 107]. The residue substitution rates on the surface of the
binding pocket are estimated, and scoring matrices for assessment of simi-
larity to this binding surface are then calculated [102]. Using these scoring
matrices, a total of 70 protein structures are found to have similar functional
surfaces as that of the query template 1ea5, and hence are predicted as acetyl-
cholinesterase. Indeed, all of them have the same E.C.3.1.1.7 label as that of
1ea5. The query protein and an example of matched protein surface is shown
in Fig. 11a and 11b, respectively. There are 71 Pdb entries with enzyme class
label E.C.3.1.1.7 in the Enzyme Structures Database (Esd, Version Oct. 2005,
www.ebi.ac.uk/thornton-srv). This approach successfully identified 70 of
them.

5.4 Remark

As there are many voids and pockets in protein structures, a challenging
problem is to distinguish those that are important for biological functions
from those formed by random chance. By identifying pockets or voids that
are similar to binding surfaces on protein structures with known biochemical
function, one can infer the function of the protein structure under investiga-
tion. A key element for this approach to work is the ability to capture subtle
selection pressure on binding surfaces due to biological function and to sep-
arate it from selection pressure due to protein structure and folding. This
can be achieved by estimating the substitution rates of residues on binding
voids or pockets. A Bayesian Monte Carlo method based on a continuous time
Markov process can be used for this task [102]. This idea has been carried out
further for computing the binding profiles of enzymes, which characterizes



22 Protein geometry

(a) (b)

Q.YDSWNPGGG.YSGLYESWWLSIFRFFFYG.HG.I Electric Ray (1ea5)
Q.YDTWNPWGGGYSGLYESWWLSVFRFYFYG.HGYI Human (2clj)
Q.YDTWNPGGG.YSGLYESWWLSIFRFYFY..HGYI Mouse (1n5m)
QRYYEWNPGGGM.TG.YESWWYILFYFYDFFWH..I Fruit fly (1qo9)

⋆ ⋆

Active Site Active Site

X acidic (−)

X basic (+)

X polar

X hydrophobic

(c)

1EA5

AAB86606

NP_571921

Q92035

P23795

XP_516857

XP_545267

NP_989977

AAH84275

XP_393751

CAG34298

XP_321792

NP_510660

XP_392492

CAE11223

CAE68981

T27009

0.1 substitutions/site

98

80

97

99

100

87

65

100

95

100

80

85

100

99

(d)

3.
1.

1.
7

3.
1.

1.
8

3.
4.

21
.4

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y
(e)

Fig. 11: Predicting biochemical functions of acetylcholinesterase (E.C. 3.1.1.7)
by comparison of binding pockets. (a) The functional pocket (castP id = 79)
on a structure of acetylcholinesterase (1ea5 ). It contains 32 resides and has a

molecular volume of 986.3Å
3
. Two residues from the catalytic triad are shown:

Ser200 (red) and His440 (blue). (b) A matched binding surface on a human
protein structure (2clj, castP id = 96), with 34 residues and a molecular

volume of 981Å
3
. (c) The multiple sequence alignment of several orthologous

sequence fragments of residues located in the binding pockets. The two triad
residues Ser200 and His440 are conserved. (d) The phylogenetic tree consisting
of 17 sequences of acetylcholinesterase is used for estimating substitution rates
of residues at the binding pocket. (e) The structure 1ea5 is predicted to be
an acetylcholinesterase (E.C. 3.1.1.7, with a probability π1 ≈ 0.99) (Adapted
from [92]).
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enzyme substrate specificity and promiscuity [92, 108]. It was shown that this
approach can be used to predict enzyme functions accurately. In a large scale
test of 100 enzyme families with thousands of structures, at the specificity
level of 99.98% (namely, few mistakes are made among predictions), enzyme
functions can be correctly predicted for 80.55% of the proteins. This approach
can also be applied to the challenging problems of inferring functions of or-
phan protein structure, whose biochemical roles are uncharacterized. More
details can be found in [92, 108].

6 Summary

The atomic structures of protein molecules provide a wealth of information
for understanding the how proteins work. With geometric characterization,
we can gain important insight on the structural basis of protein folding be-
havior, develop effective empirical potential function for protein structure pre-
diction, understand and characterize the prevalence of the geometric features
of voids and pockets, as well as explore their origin. By directly estimating
the evolutionary substitution rates of residues located on voids or pockets
functionally important, we can separate selection pressure due to biological
role from selection pressure due to the need to maintain protein structure and
folding stability. The estimated evolutionary pattern can be used to predict
and characterize protein functions. It is likely that continued geometric and
topological studies of protein structures and their interplay will continue to
generate new knowledge and lead to important innovation in computational
tools important for furthering our understanding of biology.
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24. A. Šali, E. I. Shakhnovich, and M. Karplus. How does a protein fold? Nature,
369:248–251, 1994.

25. N. D. Socci and J. N. Onuchic. Folding kinetics of proteinlike heteropolymer.
J. Chem. Phys., 101:1519–1528, 1994.



Contacts, voids, and pockets in proteins 25

26. I. Shrivastava, S. Vishveshwara, M. Cieplak, A. Maritan, and J. R. Banavar.
Lattice model for rapidly folding protein-like heteropolymers. Proc. Natl. Acad.

Sci. U.S.A, 92:9206–9209, 1995.
27. D. K. Klimov and D. Thirumalai. Criterion that determines the foldability of

proteins. Phys. Rev. Lett., 76:4070–4073, 1996.
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