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Accurate free energy estimation is essential for RNA structure prediction. The widely used
Turner’s energy model works well for nested structures. For pseudoknotted RNAs, however, there is
no effective rule for estimation of loop entropy and free energy. In this work we present a new free en-
ergy estimation method, named pk3D (for PseudoKnot predictor in three dimensional space), which
goes beyond the Turner’s model. Our approach is based on the physical consideration that the loop
entropy is determined primarily by the loop length, the end-to-end distance of the connected stems,
and the interference from nearby structures. We first generate a list of candidate secondary struc-
tures using an approximation algorithm that assembles all possible low energy stem regions without
conflicting assignment of nucleotides to multiple stems. For each candidate secondary structure, we
then systematically search possible arrangements of helical stems in space, and assess the overall free
energy of each arrangement for identification of the optimal spatial structure. Here we calculate the
loop entropy as the fraction of number of loop conformations with respect to the number of random
coil of the same length. It is estimated using a 6-state discrete RNA chain model and sequential
Monte Carlo sampling. Our approach treats nested and pseudoknotted structures alike in one uni-
fying physical framework, regardless how complex the RNA structures are. We first test the ability
of pk3D in selecting native structures from a large number of decoys for a set of 43 pseudoknotted
RNA molecules, with length ranging from 23 to 113. We find that pk3D performs slightly better
than the Dirks and Pierce extension of the Turner’s rule. We then test pk3D for blind secondary
structure prediction, and find that pk3D gives the best sensitivity and comparable positive pre-
dictive value (PPV, related to specificity) in predicting pseudoknotted RNA secondary structures,
when compared with other methods, including HotKnots, pknotsRG, NUPACK and ILM. A unique
strength of pk3D is that it also generates spatial arrangement of structural elements of the RNA
molecule. Comparison of three-dimensional structures predicted by pk3D with the native structure
measured by NMR or X-ray experiments shows that the predicted spatial arrangement of stems and
loops is often similar to that found in the native structure. These close-to-native structures can
be used as starting points for further refinement to derive accurate three-dimensional structures of
RNA molecules, including those with pseudoknots.
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modeling, RNA secondary and tertiary structure.
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I. INTRODUCTION

Biological functions of RNA range from carrying ge-
netic information, participating in protein synthesis, cat-
alyzing biochemical reactions, regulating gene expres-
sions, to acting as a structural molecule in cellular or-
ganelles [1]. To understand how RNA molecules perform
these tasks, knowledge of the three-dimensional struc-
tures of RNA is often required. Although the most re-
liable sources of RNA structural information are experi-
mental measurements from X-ray crystallography, NMR
spectroscopy, and cryo-electron microscopy, experimen-
tal structures of RNAs are technically challenging to ob-
tain and are costly in both time and efforts. As a re-
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sult, knowledge of RNA structures lags far behind that
of RNA sequences. Computational prediction of RNA
structures therefore can provide an alternative source of
information for gaining biological insights.

Prediction of secondary structures of small and non-
pseudoknotted RNAs has been very successful [2]. Pre-
dicted secondary structures of RNA molecules can pro-
vide valuable information, as they could reveal the func-
tions of RNA molecules [3], help understanding RNA
folding as RNAs often fold hierarchically [4]. They can
also be used for RNA comparison [5], for predicting three
dimensional RNA structures [6]. There are two gen-
eral strategies in predicting RNA secondary structures.
The most successful one is through comparative sequence
analysis [7, 8], which utilizes homology information and
incorporates many complex factors in determining RNA
structures implicitly. However, the approach of compar-
ative sequence analysis requires the availability of many
related RNA sequences, thus is not always feasible. The
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other approach is through minimization of free energies
(MFE). This is based on the thermodynamic hypothesis,
which states that the conformation with the lowest free
energy is the native RNA structure [9].

The most widely used secondary structure prediction
programs are based on the second strategy. Among these,
Mfold [10], RNAfold [11], and RNAstructure [12] are
based on dynamic programming and guarantee the gener-
ation of a structure with the lowest free energy, within the
accuracy limitations of the free energy rules employed,
and with the condition that the RNA secondary struc-
tures are nested and contain no pseudoknot. When pseu-
doknotted RNAs are excluded, Mfold, for example, can
correctly predict an average of 69% of known base-pairs
in a test involving a large data set containing tRNA, 5S,
16S, 32S, Group I, II intron, RNase P and SRP RNAs
[2].

However, prediction of RNA secondary structure with
pseudoknots is far more challenging. For example, when
the test set includes pseudoknotted RNAs, the accuracy
of Mfold prediction deteriorates to 54% − 68% [13–19].
The difficulties are two fold. First, there are exponen-
tially many ways that pseudoknots can form. It has
been shown that the general problem of predicting RNA
secondary structures containing pseudoknots is NP hard
[22, 23]. Methods based on dynamic programming can-
not solve this problem, aside from a few special cases
[14, 15]. Second, there is no known effective free energy
model that can describe accurately the free energy of
loops in pseudoknotted RNA molecules.

Recently, several methods have been designed to pre-
dict the secondary structures of RNAs with pseudo-
knots. These include NUPACK [13], pknotsRE [14],
pknotsRG-mfe [15], ILM [16], TdFold [17], STAR [18],
HotKnots [19], FlexStem [20], and Kinefold [21]. These
either employed approximation algorithms and generated
predicted structures that were within certain approxi-
mation ratio with the optimal structure [13–17], or em-
ployed empirical algorithms that were more stochastic in
nature [18–21]. The average accuracy were improved to
76% − 80% for small pseudoknots (< 150 nucleotides).
For large pseudoknots, the problem was still very chal-
lenging, and the accuracy ranged from 36% to 55%.

All these methods represented development of new al-
gorithms in generating candidate secondary structures.
They all employed the well-established Turner’s energy
rule and its modifications [2, 24, 25] to estimate the free
energy of pseudoknotted RNA secondary structures [13].
However, the lack of progress in calculating free energies
associated with pseudoknotted loops posed a significant
limit on what these methods could achieve.

There has been a long line of researches studying the
free energy rules of pseudoknots, with the entropic cost
as the main focus, since the enthalpic contribution can
be accurately obtained by using Turner’s energy rule.
Gultyaev et al. adjusted parameters of equations derived

from polymer theory such that they were consistent with
known data on pseudoknots. They have compiled a ta-
ble of recommended free energy values for H-type pseu-
doknots with different stem and loop lengths [26]. Using
the Gaussian chain approximation and neglecting the ex-
cluded volume effects, Aalberts et al. developed a model
to estimate the free energy of pseudoknots of ABAB-
type [27]. Isambert and Siggia treated pseudoknots in
two stages by modeling short-scale structures as “net”
and large-scale structures as “Gaussian crosslinked gel”
in their Kinefold method [21]. They calculated the short-
scale conformational entropy analytically from the Gaus-
sian chain model, and obtained the large-scale entropy by
algebraic integrations. According to the authors, the ex-
cluded volume effects were incorporated crudely by ad-
justing the value of an exponent [21]. Based on Rivas
and Eddy’s work [14], Dirks and Pierce developed a free
energy rule for pseudoknots using a phenomenological
linear equation, in which the coefficients were trained by
using known data of pseudoknots [13]. This model has
become the standard for pseudoknot free energy calcu-
lation and has been often regarded as an extension to
the Turner’s energy rule, due to its Turner-style formu-
lation as well as the linear functional form necessary for
dynamic programming algorithm. Although this free en-
ergy rule is used frequently, it is not realistic as it does
not model the important excluded volume effect.

Another important work on modeling RNA free ener-
gies was a constraint generation method presented by
Andronescu et al. [28], which employed an iterative
scheme to train hundreds of free energy parameters on
large sets of structural and thermodynamic data. Based
on the parameters optimized by this method, signifi-
cant improvements in prediction accuracy over the other
methods have been achieved. Aside from these thermo-
dynamical measurement based methods, there were al-
ternative probabilistic methodologies for modeling RNA
secondary structures. Among them, CONTRAfold was
based on conditional log-linear models and generalized
upon stochastic context-free grammars by using discrim-
inative training and feature-rich scoring [29]. The work
of CONTRAfold method demonstrated that statistical
learning procedures provide an effective alternative to
physics-based approach in deriving parameters for RNA
secondary structure prediction.

Despite these successes, calculating free energy of loop
regions in RNA pseudoknots is still an unsolved problem.
In our opinion, this is intrinsically a three-dimensional
problem. For loops embedded in pseudoknots, commonly
used secondary structural features such as number of
base pairs bordering the pseudoknots, loop asymmetric-
ity, and penalty for overlapping pseudoknots do not nec-
essarily capture the most relevant information. It is nec-
essary to develop new free energy rule based on three
dimensional spatial models rather than models solely re-
stricted to secondary structures. Based on self-avoiding
random walks of chain conformations on lattice models,
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Lucas and Dill, and Kopeikin and Chen developed theo-
retical models of pseudoknots and simple RNA tertiary
folds [30–32] . These models have been used in the stud-
ies of folding stability, thermal transitions, and general
shape of the free energy landscape of RNA folding. A lim-
itation of these models was that they were lattice-based
and cannot represent realistic RNA conformations. The
first ab-initio free energy model for realistic H-type pseu-
doknots that was easy to implement was the Vfold model
developed by Cao and Chen [33–35]. Since the loop con-
formation depends on the nearby helical stems through
chain connectivity and stem-loop volume exclusion, a
template was first constructed from experimentally mea-
sured atomic coordinates of RNA stem structures. The
number of conformations of loops was then enumerated
by generating self-avoiding walks on a diamond lattice
that connect the stem-ends. An important development
in these works was the three-dimensional templates cre-
ated for estimating the loop entropy of pseudoknotted
RNA structures, as they already contain rich informa-
tion. The Vfold method worked very well for studying
RNA thermodynamics and for RNA structure predictions
[33–35]. However, although it is not difficult to build tem-
plates for H-type pseudoknots and create a look-up table
for entropic costs of forming stem-loop structures with
different lengths, it is not feasible to do so for all possible
pseudoknots.

It is our goal here to go beyond previous approaches
and develop a general framework for computing free en-
ergies of RNA molecules with arbitrary secondary struc-
tures, including those with complex pseudoknots. Our
approach is based on considerations of the spatial nature
of RNA molecules, and is not restricted to any specific
type of pseudoknot, such as the H-type pseudoknot, but
is applicable to all types of pseudoknots. Physically, the
entropy of a loop of a specific length is determined to
a large extent by the end-to-end distance and the spa-
tial interference from nearby stems or loops. This is true
for loops of all nature, regardless whether it is a hairpin
loop, an internal or bulge loop, a multi-branch loop, or
a pseudoknotted loop [31, 32, 35, 36]. From this con-
sideration and our previous work [36], we have devel-
oped an efficient and accurate method to calculate the
loop entropy of RNA structures with pseudoknots. By
first growing multiple RNA chains in three-dimensional
space, our method searches among all possible arrange-
ments of helical stems for the optimal three-dimensional
structure. The loop entropy of RNA structures in each
spatial arrangement of helical stems is then computed by
accurately estimating the fraction of number of loop con-
formations with respect to number of random coils of the
same length based on a 6-state discrete RNA chain model
[36]. We call our method pk3D (for PseudoKnot predic-
tor in 3D). Our method is feasible because the constraints
from chain connectivity and the avoidance of geometric
collisions allow early pruning of a vast number of unlikely
spatial arrangements, which occur early in the branches
of a search tree. As a result, the actual number of spatial

arrangement is relatively small.

The pk3D method takes secondary structure candi-
dates of given RNA sequences as input and computes
their free energies using more realistic physical methods;
it also outputs the approximate shapes of the correspond-
ing three-dimensional structures. We note that our pk3D
and previous methods for predicting RNA tertiary struc-
ture such as the MC-Fold and MC-Sym pipeline [37] are
different: First, the MC-Fold and MC-Sym pipeline use
a statistical potential function, whereas ours is a physics-
based potential function; Second, our focus is not to pre-
dict exact tertiary structures using pk3D; instead, we
aim to develop the pk3D method for constructing ap-
proximate three-dimensional shapes of a given secondary
structure, and for accurate calculation of its free energy.
The approximate three-dimensional shapes generated by
the pk3D method can be further used by additional struc-
tural refinement methods to obtain accurate and more
detailed conformations; Third, the pk3D method is com-
putationally much faster than the MC-Fold and MC-Sym
pipeline, which is essential for large scale studies of RNA
molecules.

Since the pk3D method is designed to treat pseudoknot
of any complexity, we need a candidate list as input that
maximizes the diversity of pseudoknot topology. All pre-
vious methods for prediction of secondary structure were
not particularly designed for this purpose. Therefore we
have developed a method, called pk2D (for PseudoKnot
predictor in 2D), to create candidate secondary struc-
tures of RNAs for given sequences. The pk2D program
first uses dynamic programming based local alignment to
create a pool of helical stems, and then employs an ap-
proximation algorithm that can identify a large number
of close-to-optimal solutions of stem combinations with-
out conflicts, which is a well-known NP-complete prob-
lem [22, 23]. Details of both pk2D and pk3D are given
in the section of Materials and Methods.

The remainder of this paper is organized as follows:
First, we discuss the performance of pk2D, namely, its
ability to generate good candidate list for further evalua-
tion; Second, we then test the ability of pk3D in selecting
native structures from decoy structures; Third, we make
blind predictions and compare pk3D with several widely
used programs which can predict RNA secondary struc-
tures with pseudoknots; Finally, in the last part of the
Results and Discussions section, we show with several
examples the performance of pk3D in generating approx-
imate three dimensional shapes of the predicted RNA
structures. We summarize the paper with the Conclusion
section. The data set and detailed algorithms are given
in the Materials and Methods section, and can be down-
loaded from gila.bioengr.uic.edu/lab/tools/pk3d/.
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II. RESULTS AND DISCUSSIONS

Our overall goal is to develop a new approach to assess
free-energy of loops in pseudoknotted RNA molecules
and to generate coarse three-dimensional structures. We
first examine how this method can aid in prediction of
RNA secondary structures with pseudoknots.

A. Generating candidate secondary structures with
pseudoknots: Performance of pk2D

The accuracy of our secondary structure prediction
method depends on the quality of the candidate list,
which in this work is created by a specially designed
program called pk2D. pk2D can generate a long list of
candidate secondary structures with enriched diversity
in pseudoknot topology.

To assess the quality of the candidate structures cre-
ated by pk2D and to explore the optimal number of can-
didate structures for prediction of correct spatial fold, we
first test the performance of pk2D. For each sequence in a
testing set of a total of 43 pseudoknotted RNA molecules
(see the Materials and Methods section), we create a pool
of stems using local alignment through dynamic program-
ming. These stems are then processed by the pk2D pro-
gram, which generates secondary structures consisting of
stems without conflicts. We take the top m structures
from these secondary structures, which are ranked by the
sum of stem free energies using the Turner’s rule. Note
that in pk2D, the free energy contribution from loops is
neglected temporarily, as it will be treated comprehen-
sively using a physical framework in pk3D. We find that
on average, more than 95% of the structures in the can-
didate list generated by pK2D contain at least one pseu-
doknot. We then compare the candidates with the true
known native structure, and calculate the sensitivity and
the positive predictive value (PPV) of each candidate.
The structure closest to the true native structure is then
identified (see the section of Materials and Methods).

On average, the best candidate is ranked 23rd by pk2D.
The average sensitivity of the best structure in the can-
didate list for this set of RNA molecules are 0.92, 0.93,
0.93, 0.95 for m = 30, 60, 100 and 500, respectively, and
the PPV of the best structure are 0.85, 0.86, 0.87, 0.90,
respectively. These results show that the quality of the
candidate list is adequate even though only the stem free
energy is accounted for in pk2D. For further structure
prediction, we find a candidate list of size 30− 50 is suf-
ficient.

B. Selecting native structure from candidate set by
free energy with improved loop entropy method:

Performance of pK3D

The free energy of an RNA loops, especially that in
pseudoknots, is difficult to evaluated. In pk3D, the free
energy of loops is estimated based on a physical model
on the assumption that the loop entropy is determined to
a large extent by the end-to-end distance and the spatial
interference of nearby stems. This assumption is reason-
able and is applicable to all nested and pseudoknotted
loops, regardless of its complexity. It provides a unifying
framework for the treatment of loop entropy. Details of
the pk3D method are given in the section of Materials
and Methods.

We first test the ability of pk3D in selecting native sec-
ondary structures out of the other candidate structures
(called decoys). For each of the 43 sequences in the data
set, we take the top m secondary structures output by
pk2D as decoys. These decoys have diverse structures,
about 95% of them are pseudoknotted. We then man-
ually insert the native structure into this list and use
the Turner’s energy rule and pk3D respectively to fur-
ther evaluate the free energies. When using the Turner’s
energy rule, we use the Dirks and Pierce extension for
calculating the loop entropy of pseudoknots [13]. The op-
timal structure with the lowest free energy in each case is
then compared with the native structure, and the corre-
sponding sensitivity and PPV are calculated. The results
averaged over the whole test set are shown in Table I.

As shown in Table I, the performance in selecting na-
tive structures from decoys for this test set is slightly
better using pk3D (∼ 2 percent improvement) than us-
ing the Turner’s energy rule. Although the improvement
is modest, this result is promising, considering that the
current form of free energy rule in pk3D is very simple,
as the entropy of both nested and pseudoknotted loops
are indexed by only two parameters, i.e., the loop length
and the end-to-end distance. Since pk3D is intrinsically
a spatial method, it can easily incorporate more com-
plex factors such as the docking of loops onto nearby
helices, which would be impossible for methods based on
secondary structures.

C. Secondary structure prediction: Comparing
pk3D with other methods

In this test, we make a blind secondary structure pre-
diction using pk3D and compare its performance with
those of other methods, including HotKnots [19], pknot-
sRG [14], NUPACK [13], and ILM [16]. For each given
RNA sequence, we first create the pool of stem regions,
which is used to generate m number of candidate sec-
ondary structures by pk2D ranked by the sum of stem
energy. We then apply the pk3D algorithm to further
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evaluate the free energies of these candidates. The sec-
ondary structure with the lowest free energy is predicted
to be the native one.

The overall accuracy of our prediction depends on the
size of the input candidate list for pk3D. It has been
shown that by carefully calibrating the size of sampled
space, the accuracy of secondary structure prediction can
be improved [20]. Here the evaluation of the free energy
stops when pk3D finds 30 “valid” secondary structures,
or else finishes evaluation of all of the top m = 500 candi-
dates. The secondary structure is assumed to be “valid”
if a corresponding three-dimensional structure satisfying
all chain constraints and free of geometric collisions is
found. This strategy of selecting proper candidate size
was tested and was found to give the best performance
for the current set of RNA sequences.

The optimal structure with the lowest free energy is
then compared with the true native structure, and the
corresponding sensitivity and PPV are calculated. The
prediction results by pk3D and by several other meth-
ods are listed in Table II. Overall, pk3D gives the best
sensitivity and comparable PPV. On average, the pk3D
method has a sensitivity 6 − 7% higher than that of
pknotsRG and NUPACK, and 10% higher than that of
HotKnots. In terms of PPV, HotKnots and pknotsRG
have the best performance, although pk3D’s PPV is quite
comparable. In both cases, ILM has poor performance,
possibly because we were unable to supply the best pa-
rameters to the ILM algorithm.

We also compare our results with a recently published
new model (Vfold) for predicting structures of general H-
type pseudoknots with inter-helix loops [35]. The Vfold
model computes the conformational entropy and folding
free-energy based on complete conformational ensemble
and rigorous treatment for the excluded volume effects.
In a test for 18 H-type pseudoknots, the model gave
an average value of 0.91 for both sensitivity and PPV,
about 5 percent higher than the other methods including
Hotknots, ILM, pknotsRE, STAR, pknots-RG and NU-
PACK. The 18-pseudoknot testing set used is a subset of
what is used in this study (Table II). We calculate the
performance of pk3D on this subset of 18-pseudoknotted
RNA molecules and find that the average sensitivity and
PPV are 0.89 and 0.84, respectively. Our result lags be-
hind that of Vfold slightly, although this is expected,
as our method is developed for general pseudoknots of
arbitrary complexity, whereas the Vfold method is cur-
rently restricted to H-type pseudoknots. It is interesting
to note that Vfold and pk3D perform very similarly on
this test set, with the difference mostly from Hs-PrP. For
Hs-PrP, Vfold gives a sensitivity of 0.45 and a PPV of
0.5, whereas pk3D fails and gives two zeroes. For another
RNA molecule, Bt-PrP, Vfold and pk3D give the same
sensitivity (0.42 for both) and very similar PPV (0.33
versus 0.31). Except these two cases, both methods give
very high sensitivity and PPV (usually close to 1.0) for
the remaining pseudoknotted RNAs . The similar perfor-

mance of Vfold and pk3D is understandable, since they
calculate the loop entropy based on the same physical
consideration, i.e., the loop entropy is determined pri-
marily by the loop length, the end-to-end distance, and
the interference from nearby structures.

We discuss in the following sections details of free en-
ergy evaluation of pk3D using several specific examples.

tmRNA-Ec-PK4: Importance of spatial ar-
rangement of stems

The RNA molecule tmRNA-Ec-PK4 contains a H-type
pseudoknot. However, it has in addition a 1× 1 internal
loop embedded within each of its two stems (Fig. 1). As
shown in Table II, pk3D predicts exactly the true native
structure, with both sensitivity and PPV value of 1.00.
The prediction by NUPACK is also at 100% accuracy,
but HotKnots, pknotsRG and ILM miss more than 1/3
of the base pairs, with the sensitivity of prediction at 0.68
and a PPV ranging between 0.81 and 1.00.

We have examined all of the 500 candidate structures
generated by pk2D and found that more than 95% of
them contain pseudoknots. The native structure is cap-
tured automatically by pk2D and is within this candi-
date list. All of the 499 candidates other than the native
structure are easily recognized by pk3D as spatially in-
feasible, and are therefore ruled out immediately. Only
the true native secondary structure has a feasible spatial
arrangement with a reasonable free energy. In this case,
the prediction of the native structure is simple, as it is
sufficient to examine spatial feasibility of stems and there
is no need to calculate the loop free energy in detail. This
example illustrates the important role of the spatial ar-
rangement of double helices and its geometric constraints
in reduction of the feasible space of RNA structures.

mRNA-Hs-PrP: Importance of candidate struc-
tures

The native structure of this sequence is a simple H-type
pseudoknot (Fig 2a). However, despite of the simplicity
of its native structure, all of the tested methods except
ILM fail in this test, with 0.0 in both sensitivity and
PPV. The ILM method also gives a poor prediction with
very low sensitivity (0.36) and PPV (0.25).

For pk3D, the problem is that the native structure is
not among the list of candidates, and all of the 500 can-
didates are readily rejected as spatially infeasible, since
the specific combination of stem and loop lengths in each
cannot be satisfied without violation of geometric con-
straints when modelled in three dimensional space. Even
the best candidate closest to the native structure has an
uncommon pseudoknot and over-estimates the number of
base-pairings (about 35% over-estimation, Fig. 2b). The
important fact is, when the native structure is manually
inserted into the candidate list, it is correctly identified
by pk3D as the only spatially feasible secondary struc-
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ture, with a reasonable free energy.

For both tmRNA-Ec-PK4 and mRNA-Hs-PrP, when
the native structures are present in the candidate lists,
they are both selected as the only spatially feasible sec-
ondary structures among all candidates. The blind pre-
diction by pk3D of tmRNA-Ec-PK4 is successful but not
mRNA-Hs-PrP. Here the bottle-neck is not free-energy
estimation of loops in pseudoknotted RNAs, rather, it is
the generation of a candidate list that includes the na-
tive structure. These two examples show that the pk3D
algorithm is sensitive to the quality of the candidate list,
and the improvement in its generation has the promise
to significantly increase the overall accuracy of pk3D pre-
diction.

TMV.R and HDV: More complex structures

The native structure of the 3’ terminal region of the
tobacco mosaic virus RNA (TMV.R) contains two pseu-
doknots, one is a simple H-type, and the other is a H-type
with a long hairpin and a 1 × 5 internal loop embedded
within (Fig. 3a). The structure of hepatitis delta virus
genomic ribozyme (HDV) is an H-type pseudoknot with
two embedded substructures, a simple hairpin and an
imperfect hairpin with a bulge (Fig. 3b). pk3D per-
forms similarly for TMV.R and HDV as in the previous
two cases, that is, all candidates generated by pk2D are
deemed as infeasible, as the native structures are not cap-
tured by pk2D thus not included in the candidate list.
When the native structures of TMV.R and HDV are in-
serted manually into the corresponding candidate list,
both are found as the only spatially feasible structures
and correct predictions are made, with 100% prediction
accuracy in both cases.

D. RNA spatial arrangement and
three-dimensional structure prediction

The approach of pk3D towards secondary structure
prediction is spatial in nature. First, stem regions with
some stability are combinatorically assembled, second,
spatial considerations are enforced in the form of loop
entropy estimation, and the vast majority of candidate
structures with stems compatible by secondary structure
but spatially infeasible are eliminated. Here the loop
entropy calculation in pk3D is fundamentally different
from that in the Tuner’s energy rule. As we are only at
the very beginning of understanding the governing prin-
ciples of RNA three-dimensional structures, it is prema-
ture to adopt Turner-style empirical rules and inventing
additional phenomenological equations. Instead, pk3D
builds spatial models of stem regions, rejects infeasible
candidates, and searches among feasible arrangements of
stems for the optimal one and numerically estimates the
loop entropy by calculating the fraction of closed loops
with respect to random coils of the same length based

on the sequential Monte Carlo algorithm [36]. With this
strategy, each feasible secondary structure will be auto-
matically assigned a representative spatial arrangement
of helices, containing coarse grain information of its ter-
tiary structure. In essence, pk3D is a secondary structure
predictor that also generates tertiary information, even
though it only gives a coarse-grained shape of the three-
dimensional conformation of the RNA molecule, due to
the discrete nature of the state model used in the algo-
rithm. This coarse-grained spatial conformation is still
very useful: not only it makes it possible to estimate
the pseudoknotted loop entropy, but also can serve as a
starting point for further structural refinement.

Here we use several examples to describe how pk3D
predicts the general shape of the native conformations.
These examples are not selected from the 43-sequence
testing set, since it is difficult to find the correspond-
ing Protein Data Bank (PDB) structures from these se-
quences to compare our predictions with. Instead, we
directly obtain from the PDB data bank several typi-
cal RNA structures, including nested and pseudoknotted
with varying complexity, extract the sequences, and use
the combination of pk2D and pk3D to predict their na-
tive structures.

Predicting the spatial structure of a H-type
pseudoknot within the gene 32 mRNA of bacte-
riophage T2

The PDB structure 2TPK contains a simple H-type
pseudoknot within the gene 32 mRNA of bacteriophage
T2. Figs. 4a and 4b show its native secondary and ter-
tiary structures as derived from NMR experiments, re-
spectively. Its secondary structure is predicted by pk3D
correctly with an accuracy of 1.0. The predicted tertiary
structure (Fig 4c) shares the major common structural
features with the native structure. These include: 1) the
two helices are co-axially stacked on each other and run
continuously in space, forming a long quasi-continuous
helix, which helps to stabilize the overall RNA structure;
and 2) the nucleotide A8 constitutes a loop of only one
nucleotide, which connects the far two ends of the two
helices, rendering a typical H-type pseudoknot structure.

Similar results are obtained using pk3D for the pseudo-
knot of SRV-1 RNA involved in ribosomal frameshifting
(PDB 1E95), and the P2B-P3 pseudoknot from human
telomerase RNA (PDB 1YMO). Both are simple H-type
pseudoknots but have different loop lengths (these figures
are similar and therefore not shown).

The acceptor arm of TYMV tRNA-like struc-
ture

The pseudoknotted T arm and acceptor arm of
the tRNA-like structure of turnip yellow mosaic virus
(TYMV, PDB 1A60) is a combination of a H-type pseu-
doknot and a coaxially stacked hairpin structure. Its sec-
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ondary structure is predicted correctly by pk3D with an
accuracy of 1.0. By comparing the NMR measured struc-
ture with the predicted spatial structure (Fig 5b and 5c,
respectively), it can be seen that the overall spatial rela-
tionship between three helices is the same: the two pseu-
doknotted helices are co-axially stacked on each other, on
the top of them is also stacked the hairpin helix. These
three helices assemble into a very long quasi-continuous
helix in both measured and predicted spatial structures.

PDB 1S9S-A core encapsidation signaling RNA
of the Moloney Murine Leukemia virus

The 101-nucleotide molecule of core encapsidation sig-
nal of the moloney murine leukemia virus (PDB 1S9S)
is important for efficient genome packaging. It is a non-
pseudoknotted RNA containing six helices. Among these
helices, five are co-axially stacked and form a single long
quasi-continuous helix. The first helix, on the other hand,
is flexible and is connected to the other helices via a flex-
ible five-nucleotide loop. The secondary structure, the
first spatial model of the NMR structure, and the struc-
ture predicted by pk3D are shown in Fig 6a, 6b, and 6c,
respectively.

The spatial arrangement of the last five helices in the
measured and predicted structures are in general agree-
ment. The position of the first helix in the predicted
structure is different from that of the NMR measured
model. This is due to the highly flexible nature of the
loop that connects the first helix with the rest of the
molecule. In fact, NMR measurement shows that the
first helix has very flexible positions, and the different
models of the structure as deposited in the PDB data-
bank show that this helix can be located in a wide range
of positions with respect to the other helices [38]. The
spatial position of the first helix predicted by pk3D is
well within the experimentally measured range.

The orientation of the fifth helix (colored in magenta)
is different for the experimentally measured and compu-
tationally predicted structures. In the NMR-measured
structure, this helix is loosely stacked on the fourth he-
lix (colored in yellow), and the central axes of these two
helices form a large angle, apparently due to the inter-
vening 4-nucleotide bulge (G62 to A65, Fig 6a and 6b)
between these two helices. In contrast, in the predicted
structure, the fifth and the fourth helices are co-axially
stacked closely together. This discrepancy is due to the
fact that there is a competition between the favorable
co-axial stacking energy bonus and the loop entropy. A
flush co-axially stacked structure is favored by the stack-
ing energy bonus, whereas the loosely stacked structure
as given by the NMR experiment is consistent with the
larger entropy of the bulge loop. This disparity between
measured and calculated structures indicates the need to
model accurately the delicate balance between these two
energetic factors. Our algorithm will likely improve once
the balance between these two factors is fine tuned.

Protein S15 binding fragment of 16S rRNA

In bacterial ribosomes, protein S15 binds to 16S rRNA
and forms a key element required by the assembly of
the small subunit of ribosome. This element is also im-
portant for the inter-subunit association. The relevant
rRNA fragment is a non-pseudoknotted structure with
five helices (Fig 7a, PDB 1DK1). An interesting fea-
ture of this structure is that it has a three-way junction,
which is constrained by a conserved base triple and the
associated stacking interactions, and is locked into place
by magnesium ions and side chains from bound protein
(Fig. 7b) [39].

The predicted spatial structure of this RNA molecule
reproduces the spatial positions of all helices correctly,
except helix-1 and helix-2 (colored in magenta and green,
respectively, Fig 7c). The position of helix-1 in the pre-
dicted structure is only roughly correct, whereas helix-2
locates far away from its correct position. This discrep-
ancy is not surprising, since the junction region involving
helix-1 and helix-2 is stabilized by the combination of a
base triple, magnesium ions, and bound protein [39]. In
addition, the chain is locally parallel in the junction re-
gion [39]. None of these factors are accounted for explic-
itly in our model, nor in any other RNA models used in
existing RNA structure predictors.

Hepatitis delta virus (HDV) ribozyme precur-
sor

The hepatitis delta virus (HDV) ribosome precursor
is among the most complicated pseudoknotted RNA
molecules discovered so far. Its secondary structure and
three-dimensional structure obtained from X-ray crystal-
lography (PDB 1SJ3) are shown in Fig 8a and 8b, re-
spectively. Its tertiary structure contains two long quasi-
continuous double helices. The first consists of two coax-
ially stacked short helices, helices P1 and P1.1. The sec-
ond also contains two coaxially stacked helices, P2 and
P3. The two long quasi-continuous helices are parallel to
each other, and each resembles locally a H-type pseudo-
knotted structure. That is, each appears as a long quasi-
continuous pseudoknotted helix formed by one long con-
tinuous strand and two separate shorter strands. In addi-
tion, a hairpin structure (P4) is loosely stacked on helix
P1.1, rendering an extended long helix (P1+P1.1+P4)
[40].

The pk3D correctly selects the native secondary struc-
ture as the optimal one out of the top 100 candidates and
at the same time predicts the spatial arrangement of the
helices and the loops. Note that in this example, pk2D
fails to find the native secondary structure automatically
as a candidate. Therefore we manually insert the na-
tive secondary structure into the candidate list created
by pk2D, to test the ability of pk3D in identifying the
native structure out of decoys and the ability to predict
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three dimensional shapes. The overall predicted tertiary
conformation is shown in Fig 8c. It can be seen that the
structure generated by pk3D contains most features of
the X-ray structure: the two quasi-continuous long he-
lices are reproduced, and they consist of the same two
shorter coaxially stacked helices as in the experimentally
determined structure (P1+P1.1, P2+P3, respectively);
plus, these two long helices are parallel to each other,
also consistent with experiments.

There are subtle but important structural features of
this RNA molecule that are correctly predicted by pk3D.
In HDV ribozyme precursor, there are three 0-length
loops in the secondary structure (see the Materials and
Methods section for the detailed definition of 0-length
loops). Among these, loop-1 connects helices P1 and
P1.1, loop-2,3 connects helices P2 and P3, and loop-1,3
connects helices P1 and P3 (Fig 8a). Pk3D correctly se-
lects the first two interfaces and coaxially stacks the cor-
responding helices; it also correctly leaves the interface
around loop-1,3 alone without stacking helices P1 and
P3. The overall result is the formation of two long quasi-
continuous helices (P1+P1.1, and P2+P3) connected by
a simple loop-1,3 of zero length (Fig 8c), in excellent
agreement with the X-ray structure.

The two nucleotides (C21 and C22) within the hairpin
loop of helix P3 extend out and form base pairs with G38
and G39, thus forming the helix P1.1. It is likely that
this interaction is important to hold the overall RNA
structure together. Pk3D program correctly reproduces
this structural feature as well.

There is a structural aspect that pk3D does not pre-
dict correctly, i.e., the orientation of helix P4. Accord-
ing to the X-ray structure, helix P4 is positioned on
the top of helix P1.1, stabilized by a base triple (G61-
C44-C41), a non-canonical base-pair (A43-G62), and the
nearby metal ion [40]. The existence of base triples,
non-canonical base-pairs, and interactions between nu-
cleotides and metal ions are not considered explicitly in
our current model, therefore this failure is not surpris-
ing. In pk3D, the connection between P4 and P1.1, and
between P4 and P2 are modeled as a simple 4-nucleotide
loop and a 5-nucleotide loop, respectively (Fig 8a). These
two loops lead to much freedom for positioning and ori-
enting helix P4.

Summary of the performance of pk3D in ter-
tiary structure prediction

Overall, the pk3D algorithm can be used to generate
approximate spatial arrangements of helices and loops,
in addition to estimating free energies of loops and pre-
dicting native secondary structures. The overall ter-
tiary shape is often very similar to the native structure
of RNA molecule, regardless whether pseudoknots are
present or not. It works especially well when the in-
volved loops are short. These short loops impose sig-
nificant constraints on the number of feasible conforma-

tions, as seen in the predicted structure of the hepatitis
delta virus ribozyme precursor (PDB 1SJ3). Neverthe-
less, when the tertiary structure involves significant con-
tributions from non-regular elements such as base-triples,
non-canonical base pairs, metal ions, or bound proteins,
the pk3D algorithm usually fails to produce an accurate
three-dimensional structure. In fact, these complex fac-
tors present great challenges to all current efforts in pre-
dicting RNA structures.

Although in such cases the specific positions and orien-
tations of the helices involved are inaccurate, the general
arrangement of the overall structures may still be cor-
rect, as is the case of the core encapsidation signaling
RNA (1S9S), protein S15 binding fragment of 16S rRNA
(1DK1), and the hepatitis delta virus ribozyme precursor
(1SJ3). Although the three dimensional shapes provided
by pk3D are approximate in nature, they can be fairly
close-to-native. These structures can be very useful, for
example, in providing the initial seed conformations for
further structure refinement. This task can be performed
by using all-atom MD simulation packages such as AM-
BER, Charmm, or Gromacs. It is expected that these
close-to-native conformations would lead to significant
speed-up in structure predictions.

E. Timing information

For the testing set of 43 small RNA pseudoknots used
in this study, the computation time used by pk3D for
searching optimal arrangement for each candidate sec-
ondary structure usually finishes within 10−3 − 10−2 sec
on an AMD Opteron-256 CPU. However, the time com-
plexity of the pk3D algorithm is not directly related to
the length of the RNA chain. Rather, it is determined
by the total length of the loops in the “link”, as defined
in the section Materials and Methods. For the structures
with many long links, the computation time may take
up to several tens of seconds to finish. This limits the
current version of pk3D program to small RNAs (< 150
nucleotides), since longer chains are likely to have larger
links. We expect that this problem can be solved by di-
viding a large “link” into several small segments based
on the loop length pattern and treating them separately.
These structural fragments are inner-connected only by
short loops, hence are more rigid and likely to fold sepa-
rately. Further development of pk3D for long chain RNA
molecules will be in our future work.

III. CONCLUSION

Calculating the free energy of RNA loops, especially
that of pseudoknotted loops, is an important unsolved
problem. We have developed a novel method called
pk3D to address this problem. Our method is based on
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the physical consideration that the entropy of an RNA
loop is largely determined by its loop length, the end-to-
end distance of the helices connected by the loop, and
the steric interference from nearby helices. To calculate
the loop entropy, our method searches among all pos-
sible spatial arrangements of helical stems for the opti-
mal structure, and then estimates the number of loop
conformations for the optimal structure using a 6-state
discrete model and the Sequential Monte Carlo method.
The excluded volume effect is explicitly treated by the
algorithm. Our method treats both nested and pseu-
doknotted loops within a unifying physical framework,
regardless how complex the pseudoknot might be.

We have also developed the pk2D method, which finds
approximately optimal combination of low energy non-
conflicting helical stems for a given sequence. The list of
secondary structures created by pk2D are used as input
to pk3D for further free energy evaluation. The spatial
arrangement of stems and loops with the lowest free en-
ergy is then predicted to be the native conformation of
the RNA sequence.

We have tested the performance of pk2D/3D on a data
set of 43 small RNA molecules with pseudoknots. The
quality of the list of candidate secondary structures cre-
ated by pk2D is good: on average, the best candidate
among the list has a sensitivity higher than 90% and a
PPV close to 90% in terms of base-pairs. In this test,
the ability for pk3D to select the native structure from
a large number of decoys is slightly better than that of
the extended Turner’s free energy rule. In the blind test
of predicting the secondary structures of these 43 RNA
molecules from sequences, pk3D is found to have the best
prediction results in terms of sensitivity and comparable
PPV of correctly predicted base-pairs, when compared
with several existing pseudoknots prediction methods.

Perhaps the most important contribution of this work
is that pk3D can frequently produce generally useful
coarse three-dimensional model of the native RNA struc-
ture. We found that the arrangement of stems and loops
in three-dimensional space is generally similar to that
of the native structure. This rough three-dimensional
model is useful as a starting point for further structural
refinement, as it provides a close-to-native physical struc-
ture. It is expected that refinements starting from pK3D
predicted structures will benefit significantly as a result
of accelerated folding and packing.

The weak point of the current version of pk3D is that
it does not perform well for long sequences, since the
computation time is determined by the total length of
the loops in the “links”, whose size is likely to increase
with the chain length. However, as discussed earlier, this
problem can be solved by dividing the links into several
smaller segments or domains. With this simplification,
the algorithm can in addition incorporate aspects of ki-
netic folding of RNA molecules, which is likely to be very
important for large RNAs [41].

IV. MATERIALS AND METHODS

A. Definition of pseudoknots and H-type
pseudoknots

An RNA structure is called pseudoknotted if it con-
tains interleaved stem regions. Formally, if we denote a
base pair as an ordered pair of positions of upstream and
downstream position (i, j), where i < j, a structure is
non-pseudoknotted if and only if for all pairs (i, j) and
(k, l), nowhere the relationship i < k < j < l holds;
otherwise, the structure is called pseudoknotted [19].

We also need to define the H-type pseudoknot explic-
itly to facilitate discussions in the text. H-type pseudo-
knot in this study is referred to as a structure formed
by base-pairing between a hairpin loop and the exterior
loop of another hairpin. It consists of two helical stems
and two loops as well as a possible third loop/junction
that connects the two helical stems [35]. An H-type
pseudoknot may also contain embedded sub-structures
such as hairpins, internal loops, bulges or their combi-
nations. Here the H-type pseudoknot is solely defined
in terms of its secondary structure, regardless whether
the involved helical stems form quasi-continuous helices
in three-dimensional space. Our definition of the H-type
pseudoknot is more general than that used in [35]. How-
ever, it should be emphasized that the pk2D and pk3D
algorithms are not restricted to H-type pseudoknots and
their more general versions. In our study, pseudoknots of
arbitrary complexity are treated in one unifying physical
framework.

B. Data set

All of our testings are based on a data set of 43 pseu-
doknotted structures unless indicated otherwise. They
are taken from the 50 small pseudoknotted RNAs in ref-
erence [17], with 7 sequences removed. These are re-
moved because all of them have a long unstructured
5′ loop of length > 13 nucleotides, which is unsta-
ble and can easily form internal structures within it-
self, or with another part of the RNA molecule. The
corresponding native structures resolved in the data-
bank may exist as a result of additional interactions
with proteins or other molecules to form stable com-
plexes. Therefore, it is not appropriate to include these
sequences in testing the performance of structure pre-
diction of single chain RNAs. These 7 sequences are:
frameshifting-EIAV, frameshifting-PLRV-S, viral-tRNA-
like-APLV, viral-tRNA-like-CGMMV, viral-tRNA-like-
ORSV-S1, viral-tRNA-like-OYMV, and viral-tRNA-like-
SBWMV1.
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C. Generating the pool of stem regions

For a given sequence S with nucleotides ordered from 5′
to 3′, we use the Smith-Waterman dynamic programming
algorithm for local alignment to align it with its reverse
sequence S′, with the same nucleotides ordered from 3′
to 5′. Both Watson-Crick and wobble base pairings are
considered matches. This generates all possible stems
with energy scores below a given threshold.

D. Generate candidate secondary structures with
pk2D

All of the computed stable stems are processed by the
algorithm pk2D, which finds solutions of multiple com-
patible stems with overall low energies. These solutions
provided by pk2D form a list of candidate secondary
structures, each containing several non-conflicting stems.
That is, none nucleotide in any stem appears in an-
other stem of the same secondary structure. Finding
non-conflicting stems with overall lowest energy is a
known difficult NP-complete problem [22, 23]. Numer-
ous methods have been developed to address this chal-
lenging problem, including dynamic programming based
methods [13–15], heuristic methods [16, 19, 20], Monte
Carlo method [21], methods based on genetic algorithm
[18], and the strategy that reformulates this problem into
a combinatorial graph problem and solving it using the
technique of tree decomposition [17].

Here we use an approximation algorithm to generate
candidate secondary structures. The problem of finding
all consistent sets of candidate stems can be formulated
as an Integer Programming (IP) problem. The objec-
tive of the IP problem is to minimize the sum of the
free energy contributed by each selected stem. The con-
straints of the IP problem are formulated to encode the
non-conflicting condition between the selected stems. We
have adapted a method originally developed for protein
structural alignment in [42] to solve this IP problem.
This approach is based on an approximation algorithm
for scheduling split interval graphs [43].

An approximate solution of the IP problem can be
found by an iterative process, where the IP problem is
first relaxed into a Linear Programming (LP) problem
and solved using the commercial LP package BPMPD
[44]. A conflict graph G = (V, E) is then constructed
where vertex vi represents stem i. An edge ei,j is drawn
between two vertices vi and vj if the two corresponding
stems are in conflict. Each vertex is assigned three val-
ues. The first value is the free energy of the stem σi.
The second value xi is equal to the corresponding output
from the LP solution. The third value is called the local

conflict number:

α(i) =
∑

{vj |(i,j)∈E}∪vi

xj .

The vertex k with the minimum local conflict number
αk is then identified. A new free energy score σnew

i =
σi − σk is then assigned to vk and to all vertices that
share an edge with vk. After this update, all vertices with
σ ≤ 0 are pushed onto a stack S, and are removed from
further consideration. A new LP problem is subsequently
formulated using the remaining vertices. This process
is iterated until all vertices have been pushed onto the
stack.

Vertices on the stack are then continuously popped.
The first popped vertex forms the candidate set of com-
patible stems. A subsequently popped vertex is then in-
serted into each existing candidate set if it does not cause
conflict with stems already in the set. In addition, a new
candidate set is formed with the currently popped vertex
as the sole member. This process is repeated until all
vertices are popped from the stack.

The above procedure is another version of the maxi-
mum weight independent set problem [42, 45]. The set
created by the first popped vertex is guaranteed to be
within a factor of 1/2.89 from the optimal solution.

The candidate secondary structures generated by pk2D
are ranked by the sum of stem energies, estimated by the
standard Turner’s energy rules. Note that the free en-
ergy contributions from loops are neglected temporarily
at this stage, as they will be treated within a physical
framework in pk3D. The top 500 secondary structures
serve as the set of candidates for more accurate further
free energy estimation.

E. Generating RNA conformations by growth
using pk3D

The free energies of the secondary structures provided
by pk2D are further estimated by incorporating loop en-
tropies. Pk3D calculates the free energy for each candi-
date secondary structure based on the corresponding 3D
conformations, which are generated automatically using
a growth method. The procedures are as follows:

1) Finding the “link”. For each secondary struc-
ture, its “link” is defined as the set of n − 1 loops that
connects all the n stems in the secondary structure, such
that the overall length of the loops belonging to the “link”
is the shortest. Recall that a stem may have as many as
four loops. An example is shown in Fig. 10, which de-
picts the secondary structure of the hepatitis delta virus
(HDV) ribozyme precursor and its corresponding graph
representation. Note that in our method we have gen-
eralized the concept of loops to include the special case
when two stems are directly connected; the junction be-
tween these two stems is called a 0-length loop. The
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reason for this generalization is that, although its length
is zero, it can lead to different relative spatial orienta-
tions between two involved helices, similar to the loops
of non-zero length. The 0-length and non-zero-length
loops are therefore treated in the same way in pk3D. In
Fig. 10, the loops plotted as red thick curves define the
“link”, which contains three 0-length loops and one loop
of length 4. The overall length of the loops contained in
the “link” is therefore 4. The usage of “link” is inspired
by the work described in [32].

Since the number of stems (or vertices in the graph
representation) in the RNA pseudoknots is small (usually
4-8), we use a heuristic method to find the “link” for a
given secondary structure. Although a heuristic method
cannot guarantee an optimal solution, it works well in
practice for small graphs. We first select the shortest
loop, so the two stems at both ends are connected as one
component. We then iteratively select the next shortest
loop if it adds a new stem to the set(s) of components that
have been generated so far. This is repeated until n− 1
loops are chosen, and all components are merged into one.
For the candidate secondary structures generated for this
data set of 43 RNA molecules, n is typically between 4
and 8.

2) Generating three-dimensional structures. Af-
ter the link is identified, we generate the correspond-
ing three-dimensional structures or conformations of the
RNA molecule. This is accomplished by sequentially
enumerating all possible conformations for loops (typi-
cally with length < 7) in the link using a 6-state dis-
crete model [36] and by spatially arranging the connected
stems in all possible 6 orientations, followed by selecting
those that are physically plausible (e.g., without sharp
turns). We start with the shortest loop. After spatially
adding the connecting stem to this loop at all possible
orientations (typically 2 or 4 feasible out of all 6), we
continue by generating all possible conformations for the
loop of the next shortest length.

During this process, whenever a new stem is added to
a partial conformation, or when two partial components
are merged, we examine if steric collisions occur and if
the lengths of loops connecting this new stem to stems
already added are sufficiently long to accommodate them
spatially. For example, a loop length of 0 or 1 cannot
extend in space to connect stems that are distant from
each other. This examination usually rules out thousands
of infeasible conformations .

This process is repeated until all stems are added and
merged into one component. Altogether, we have theo-
retically O[(

∏
i lαi ) · Kn−1] number of spatial conforma-

tions, where li is the length of the i-th loop, and α is the
scaling exponent for the number of loops with loop length
li, which is estimated to be between 3 and 5 [36]. K is the
number of the possible orientations of a stem when con-
nected to an end of a loop. Typically, K = 2 or K = 4,
and n − 1 is the number of loops in the link. In prac-
tice, because of the strong constraints of the loops and

excluded volume effect, the number of feasible conforma-
tions is substantially smaller than this bound. Among
the candidate secondary structures, about 90% are found
to be spatially infeasible after simple examinations, and
are eliminated from further considerations at very early
stages. The overall procedure of pk2D is shown in Fig.
9a.

3) Speeding-up with look-up tables. In the cur-
rent implementation, the number of conformations for
each loop is solely determined by the loop length. To im-
prove the runtime efficiency, we pre-compute the confor-
mations of loops with length between 0 and 7, recording
the starting and end positions of each loop in a look-
up table for loop-conformations. This table can be fur-
ther improved by introducing sequence-dependent infor-
mation, which will be in our future work.

F. Further free energy estimation

For each spatial conformation constructed by pk3D,
its free energy is calculated as the sum of free energy
of stems and loops. The sub-structures are divided
into two groups and treated differently in pk3D. The
first group contains stem, hairpin, bulge and short in-
ternal loops (≤ 4 nucleotides). The free energies of
these sub-structures are calculated straightforwardly us-
ing the Turner’s energy rules. The second group con-
sists of all the other loops, including the longer internal
loops, all multibranch loops and all pseudoknotted loops,
whose physical models are explicitly constructed by pk3D
through sequential Monte Carlo sampling. Based on the
examination of the top 500 candidates for each of 43 se-
quences used in this study, we find that 75 − 80% loops
belong to the second group. Simple hairpin, bulge and
short internal loops only count for ∼ 20%. Therefore, the
majority of the loops are treated by our new free energy
calculation scheme. We also did another test in which
both groups are treated by our new scheme. We found
that the performance is still good, although there is a
slight deterioration. The reason is that the loop entropy
calculated by our new scheme is close to the empirical
value from the Turner’s energy rule, as shown in our pre-
vious works [36]. In the current implementation, we treat
two groups differently.

The model for loop free energy calculation in pk3D
is based on several physical assumptions. First, the en-
thalpy component is assumed to be zero. Second, as a
first order approximation, the loop entropy is assumed
to be determined by its length and the end-to-end dis-
tance, which is determined by the connected helices. The
volume exclusion effect between monomers within a loop
is also explicitly accounted for. To improve the runtime
efficiency, an entropy table is pre-built, with each entry
indexed by a loop length and an end-to-end distance.
Therefore the entropy of a loop, regardless whether it
belongs to a pseudoknotted or nested structure, is in-
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dexed by these two parameters. The entropy value is
calculated by estimating the fraction of number of con-
formations of closed loop over number of conformations
of random coil of the same length using a 6-state dis-
crete model through sequential Monte Carlo sampling.
This approach is described in more detail in our previ-
ous publications [36, 46–49]. This strategy of calculating
loop entropy treats both nested and pseudoknotted loops
in an unified physical framework, regardless how complex
the structures are.

The excluded volume effect between helices, and that
between nucleic acids within one loop are accounted for
explicitly. Nevertheless, the excluded volume effect be-
tween stems and loops are not fully considered. The
only reason for this is to improve performance. Although
it can be accounted for explicitly and rigorously in our
model, its incorporation will significantly decrease the
runtime efficiency, as it is difficult to pre-build a template
and hence a look-up table for all different types of com-
binations of loops and stems, and therefore they have to
be computed on the fly. In our current implementation,
this excluded volume effect is partially represented by the
sampled three-dimensional structural models when build-
ing the entropy look-up table, although detailed excluded
volume effect specific to individual candidate secondary
structure are not taken into account yet. The excluded
volume effect between different loops are of minor con-
tribution to the overall free energy, hence can be ignored
without much consequence [35].

Coaxial stacking can make important contributions to
the overall stability of RNA molecules. An advantage of
pk3D is that this effect can be modeled in a straightfor-
ward fasion, since the spatial arrangements among stems
are generated explicitly. Specifically, when the head of
stem A is close to the end of stem B, we find the location
of the center cA and the normal vector nA of the base
plane at the head of stem A, and the similarly defined cB

and nB for stem B. Define ∆c = cB − cA as the inter-
center vector pointing from cA to cB . Stems A and B
are coaxially stacked if the length of ∆c < 6 Å, and at
the same time the angle between nA and nB , between
∆c and nA, and between ∆c and nB are all smaller than
30 degrees. These criteria are slightly different from that
proposed by Tyagi and Mathews [50]. When two stems
are found to be coaxially stacked, the stacking free en-
ergy bonus is calculated using the parameter from the
Turner’s rule as if the helix were uninterrupted.

For each secondary structure, pk3D generates many
three-dimensionally feasible conformations and these
conformations may have different stacking patterns in the
loop/junction region. When multiple conformations are

found, the conformation with the lowest estimated free
energy is chosen as the representative three-dimensional
structure, whose free energy is assigned to the corre-
sponding secondary structure. The secondary structure
in the candidate list with lowest assigned free energy is
then predicted to be the native secondary structure of
the RNA molecule, and the associated three-dimensional
conformation is assumed to be the native conformation.
This predicted tertiary conformation could serve as a
good starting point for further structure refinement.

The overall procedure of pk3D is shown in Fig. 9b.

G. Calculation of the sensitivity and PPV

We use RP (real positive) to denote the number of base
pairs in the real structure; TP (true positive) the num-
ber of correctly predicted base pairs; FP (false positive)
the number of predicted base pairs that do not exist in
the real structure. The sensitivity (SE) of the prediction
of an algorithm is defined as TP/RP, and the positive
predictive value (PPV) is defined as TP/(TP+FP), and
the F value as 2 · SE · PPV/(SE + PPV ) [2]. We use
the term “accuracy” to summarize performance in both
sensitivity and PPV. The terms “lowest SE” and “lowest
PPV” are defined as the SE and PPV of the structure
that has the lowest calculated free energy, respectively.
The terms “best SE” and “best PPV” are the SE and
PPV of the candidate that is closest to true native struc-
ture, respectively, with the “closeness” measured by the
F value.
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Tables

TABLE I: The ability of the extended Turner rule and pk3D
to select the native structure from decoys.

Turner + DP ∗ pk3D
decoy size (m) Sensitivity PPV Sensitivity PPV

30 0.90 0.87 0.93 0.90
60 0.90 0.87 0.93 0.89
100 0.89 0.87 0.92 0.89
500 0.87 0.85 0.89 0.84

∗Note: DP denoted the Dirks & Pierce’s extension to the
Turner’s energy rule to account for pseudoknots [13].
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Figure Captions:
Fig. 1. The secondary structure of the native state of

tmRNA-Ec-PK4. Secondary structures in this paper are
drawn using pseudoviewer [51] unless otherwise indi-
cated.

Fig. 2. The native and predicted secondary struc-
tures of mRNA-Hs-Prp pseudoknotted RNA. (a) The na-
tive structure taken from the PseudoBase [52]. (b) The
best candidate secondary structure in the candidate list
that is most similar to the native secondary structure.
Compared with the native structure, it overestimates the
number of base pairs (SE = 1, PPV = 0.65) and has an
uncommon pseudoknotted structure.

Fig. 3. The native secondary structures of (a) the 3’
terminal region of the tobacco mosaic virus (TMV.R) and
(b) the hepatitis delta virus genomic ribozyme (HDV),
respectively.

Fig. 4. The secondary and tertiary structures of a
fragment of gene 32 mRNA of bacteriophate T2. (a)
The native secondary structure. (b) The native tertiary
structure, taken from the PDB databank (PDB 2tpk).
(c) The tertiary structure predicted by pk3D. Note that
in both (b) and (c), loops are shown in yellow dashed lines
to illustrate chain connectivity and to facilitate structural
comparison. The orange spheres show the position of A8
nucleotide, which forms a short loop of length 1. All
tertiary structures are drawn using Pymol.

Fig. 5. The native secondary structure and tertiary
structure of the T arm and acceptor arm of the tRNA-
like structure of turnip yellow mosaic virus. (a) The na-
tive secondary structure, (b) The native tertiary struc-
ture taken from the PDB databank (PDB 1A60). (c)
The tertiary structure predicted by pk3D, which repro-
duces correctly the spatial arrangement of three stems,
as well as their coaxial stacking observed in the experi-
mental structure. The helices in (b) and (c) are colored
using the same scheme. The loops are shown in yellow
dashed lines to illustrate the chain connectivity.

Fig. 6. The native secondary structure and tertiary
structure of the core encapsidation signaling RNA of the
molney murine leukemia virus. (a) The native secondary
structure. (b) The native tertiary structure taken from
the first NMR model in the PDB databank (PDB 1S9S)

(c) The tertiary structure predicted by pk3D. The he-
lices are numbered from 1 to 6, in the direction from 5’-
end to 3’-end, and are colored in the order of red, green,
blue, yellow, magenta, and cyan, respectively. The or-
ange spheres in (b) show the positions of the phosphorus
atoms in the first nucleotide G1 for all of the first 20 mod-
els given by NMR experiments. The diverse positions
demonstrate the experimentally observed large flexibility
of the first helix. The gray segment at the upper right re-
gion in (b) connecting the fourth and fifth helices shows
the conformation of the bulge loop G62-A65 determined
by experiments.

Fig. 7. The native secondary structure and tertiary
structure of the protein S15 binding fragment of 16S
rRNA. (a) Its native secondary structure. (b) Its native
tertiary structure as observed in X-ray crystallography
(PDB 1DK1). The helices are numbered from 1 to 5
in the direction from 5’ end to 3’ end, and are colored
in the order of magenta, green, yellow, blue, and cyan,
respectively. The three-way junction is colored in red,
which contains a base-triple and the metal binding site.
In addition, local strands in this junction are in parallel
direction instead of the canonical antiparallel direction.
(c) The tertiary structure predicted by pk3D, plotted in
the same color code as in (b). The spatial arrangement of
the helices 3-5 are predicted correctly. The overall posi-
tion of helix 1 is only roughly correct, tilted at a different
angle.

Fig. 8. The native secondary structure and tertiary
structure of the hepatitis delta virus (HDV) ribozyme
precursor. (a) Its native secondary structure. (b) The
tertiary structure (PDB 1SJ3). (c) The tertiary struc-
ture predicted by pk3D. The helices in (b) and (c) are
colored in the same code. The loops are shown in or-
ange dashed lines to illustrate chain connectivity. The
structure generated by pk3D contains most features of
the X-ray structure.

Fig. 9. The flow chart of pk2D and pk3D.

Fig. 10. The secondary structure of the hepatitis delta
virus ribozyme precursor and its graph representation.
The vertices in the graph correspond to helical stems and
the edges correspond to loops; the weight of edges are set
to the length of the corresponding loops. Note that this
graph is not a metric graph.
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TABLE II: The accuracy of prediction of secondary structures
of 43 small pseudoknotted RNA molecules using five different
algorithms.

Lowest Sensitivity Lowest PPV
Sqeuence Length pk3D HotKnots pknotsRG NUPACK ILM pk3D HotKnots pknotsRG NUPACK ILM
NGF-L6 48 1 1 0.65 1 0.94 1 1 0.69 1 1
BWYV 28 1 1 1 1 1 0.89 0.89 0.89 0.89 0.89
Rr-ODCanti 70 0.82 0.65 0.65 1 1 0.54 0.52 0.5 0.63 0.65
HDV 87 0.7 0.4 0.97 0.63 0.87 0.68 0.46 0.94 0.61 0.7
HDV-anti 91 0.92 0.17 0.17 0.42 0.71 0.65 0.14 0.14 0.32 0.5
HIVRT322 35 1 1 1 1 0.55 1 1 1 1 1
HIVRT32 35 1 1 1 1 0.91 1 1 1 1 1
HIVRT33 35 1 1 1 0.91 0.91 1 1 1 1 1
minimalIBV 45 1 0.94 0.94 0.94 0.94 0.94 0.89 0.94 0.94 0.89
MMTV 34 1 1 1 0.45 0.91 0.92 0.92 0.92 0.5 0.91
MMTV-vpk 34 1 1 1 0.91 0.91 0.92 0.92 0.92 1 0.91
mRNA-Bt-PrP 45 0.42 0.42 0.33 0.42 0 0.31 0.42 0.27 0.42 0
mRNA-Ec-alpha 108 0.79 0.46 0.46 0.46 0.54 0.54 0.31 0.29 0.31 0.28
mRNA-Ec-S15 67 0.94 1 0.76 0.88 0.88 0.73 0.74 0.68 0.71 0.68
mRNA-Hs-PrP 45 0 0 0 0 0.36 0 0 0 0 0.25
mRNA-T4-gene32 28 1 0.64 1 1 0.91 1 1 1 1 1
pKA-A 36 1 1 1 1 0.92 0.92 0.92 0.92 0.92 0.92
Bp-PK2 90 1 0.79 0.79 1 0.79 0.91 0.85 0.74 0.91 0.72
HDV-It-ag 89 0.92 0.16 0.16 0.4 0.68 0.68 0.14 0.14 0.32 0.49
satRPV 73 0.77 0.59 0.82 0.59 0.23 0.71 0.68 0.86 0.68 0.25
Tt-LSU-P3-P7 65 0.84 0.95 0.85 0.95 0.8 0.73 1 1 1 0.69
Sc-18S-PKE21-7-8 51 0.89 0.5 0.5 0.5 0.56 0.89 0.53 0.53 0.53 0.56
SRV-1 38 1 1 1 1 0 0.92 0.92 0.92 0.92 0
T4-gene32 31 1 1 1 1 0.91 1 1 1 1 1
T.the-telo 35 0.67 0.58 0.67 0.67 0.33 0.67 1 0.89 0.89 0.44
tmRNA-Ec-PK1 30 1 1 1 1 1 1 1 1 1 1
tmRNA-Ec-PK4 52 1 0.68 0.68 1 0.68 1 1 1 1 0.81
tmRNA-Lp-PK1 30 0.9 0.5 0.5 0.8 0.5 0.9 1 1 1 0.71
TMV.L 84 0.88 0.54 0.83 0.54 0.46 0.81 0.65 0.83 0.65 0.44
TMV.R 105 0.5 0.68 0.68 0.53 0.56 0.4 0.74 0.74 0.55 0.61
TYMV 86 0.84 0.72 0.76 0.44 0.52 0.72 0.78 0.79 0.5 0.46
BSBV1-UPD-PKc 24 1 1 1 1 0.67 1 1 1 1 1
BSBV3-UPD-PKc 24 0.67 1 0.67 0 0.67 1 1 1 0 1
BVQ3-UPD-PKb 33 0.78 0.56 1 1 0.56 0.7 1 1 1 0.5
PSLVbeta-UPD-PK1 23 0.62 0.62 0.62 0.62 0.62 1 1 1 1 1
PSLVbeta-UPD-PK3 35 1 1 1 1 1 0.92 0.92 0.92 0.92 0.92
SBRMV1-UPD-PKb 27 1 0.7 1 1 0.7 1 1 1 1 1
STMV-UPD2-PK3 24 1 1 1 1 0.75 0.89 0.8 0.89 0.89 0.75
TMV-L-UPD-PK3 32 0.88 0.5 1 1 0.38 0.7 1 1 1 0.3
PSIV-IRES 47 0.86 0.64 0.64 0.93 0.36 0.8 0.69 0.69 1 0.42
AMV3 113 0.64 0.87 0.87 0.69 0.87 0.66 0.89 0.89 0.68 0.83
BSMVbeta 96 0.45 0.74 0.84 0.71 0.94 0.42 0.79 0.81 0.67 0.85
CGMMV-PKbulge 69 0.43 0.83 0.65 0.61 0.61 0.43 1 0.68 0.61 0.64
Average 53 0.84 0.74 0.78 0.77 0.68 0.79 0.80 0.80 0.77 0.70
*Note: in some cases (such as TMV.R and HDV), the pk3D
program rules out all the candidate secondary structures,

since none are spatially feasible because of chain constraints
or geometrical collisions. In these cases, the structure with

the lowest free energy ranked by pk2D is taken as the native
secondary structure.
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Fig. 1. The secondary structure of the native state of tmRNA-Ec-PK4. Secondary structures in this 

paper are drawn using pseudoviewer unless otherwise indicated. 

 

 

 

0

44

U
C
A
U
G
G

C
A

G
C

C
U

C
A

U
G

G

G
G
C
U
G

G
C

C

UG
G

U
G
G
C

U
G G G G

G

U G
G
U

G G G

G G

G GG GG

UACUCCGAC

CUG

UGU G

G G C U G GG G G

GG UCAU

U G G U

CCG0

44

 
 

Fig. 2. The native and predicted secondary structures of mRNA-Hs-Prp pseudoknotted RNA. (a) The 

native structure taken from the PseudoBase [52]. (b) The best candidate secondary structure in the 

candidate list that is most similar to the native secondary structure. Compared with the native structure, 

it overestimates the number of base pairs (SE = 1, PPV = 0.65) and has an uncommon pseudoknotted 

structure. 
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Fig. 3. The native secondary structures of (a) the 3’ terminal region of the tobacco mosaic virus 

(TMV.R) and (b) the hepatitis delta virus genomic ribozyme (HDV), respectively. 
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Fig. 4. The secondary and tertiary structures of a fragment of gene 32 mRNA of bacteriophate T2. (a) 

The native secondary structure. (b) The native tertiary structure, taken from the PDB databank (PDB 

2tpk). (c) The tertiary structure predicted by pk3D. Note that in both (b) and (c), loops are shown in 

yellow dashed lines to illustrate chain connectivity and to facilitate structural comparison. The orange 

spheres show the position of A8 nucleotide, which forms a short loop of length 1. All tertiary structures 

are drawn using Pymol. 
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Fig. 5. The native secondary structure and tertiary structure of the T arm and acceptor arm of the 

tRNA-like structure of turnip yellow mosaic virus. (a) The native secondary structure, (b) The native 

tertiary structure taken from the PDB databank (PDB 1A60). (c) The tertiary structure predicted by 

pk3D, which reproduces correctly the spatial arrangement of three stems, as well as their coaxial 

stacking observed in the experimental structure. The helices in (b) and (c) are colored using the same 

scheme. The loops are shown in yellow dashed lines to illustrate the chain connectivity. 
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Fig. 6. The native secondary structure and tertiary structure of the core encapsidation signaling RNA of 

the molney murine leukemia virus. (a) The native secondary structure. (b) The native tertiary structure 

taken from the first NMR model in the PDB databank (PDB 1S9S) (c) The tertiary structure predicted 

by pk3D. The helices are numbered from 1 to 6, in the direction from 5’-end to 3’-end, and are colored 

in the order of red, green, blue, yellow, magenta, and cyan, respectively. The orange spheres in (b) 

show the positions of the phosphorus atoms in the first nucleotide G1 for all of the first 20 models 

given by NMR experiments. The diverse positions demonstrate the experimentally observed large 

flexibility of the first helix. The gray segment at the upper right region in (b) connecting the fourth and 

fifth helices shows the conformation of the bulge loop G62-A65 determined by experiments. 
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Fig. 7. The native secondary structure and tertiary structure of the protein S15 binding fragment of 16S 

rRNA. (a) Its native secondary structure. (b) Its native tertiary structure as observed in X-ray 

crystallography (PDB 1DK1). The helices are numbered from 1 to 5 in the direction from 5’ end to 3’ 

end, and are colored in the order of magenta, green, yellow, blue, and cyan, respectively. The 

three-way junction is colored in red, which contains a base-triple and the metal binding site. In addition, 

local strands in this junction are in parallel direction instead of the canonical antiparallel direction. (c) 

The tertiary structure predicted by pk3D, plotted in the same color code as in (b). The spatial 

arrangement of the helices 3-5 are predicted correctly. The overall position of helix 1 is only roughly 

correct, tilted at a different angle. 
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Fig. 8. The native secondary structure and tertiary structure of the hepatitis delta virus (HDV) ribozyme 

precursor. (a) Its native secondary structure. (b) The tertiary structure (PDB 1SJ3). (c) The tertiary 

structure predicted by pk3D. The helices in (b) and (c) are colored in the same code. The loops are 

shown in orange dashed lines to illustrate chain connectivity. The structure generated by pk3D contains 

most features of the X-ray structure. 

 

 



 

Fig. 9. The flow chart of pk2D and pk3D. 

 



 

Fig. 10. The secondary structure of the hepatitis delta virus ribozyme precursor and its graph 

representation. The vertices in the graph correspond to helical stems and the edges correspond to loops; 

the weight of edges are set to the length of the corresponding loops. Note that this graph is not a metric 

graph. 
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Fig. 1. The secondary structure of the native state of tmRNA-Ec-PK4. Secondary structures in this 

paper are drawn using pseudoviewer unless otherwise indicated. 
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Fig. 2. The native and predicted secondary structures of mRNA-Hs-Prp pseudoknotted RNA. (a) The 

native structure taken from the PseudoBase [52]. (b) The best candidate secondary structure in the 

candidate list that is most similar to the native secondary structure. Compared with the native structure, 

it overestimates the number of base pairs (SE = 1, PPV = 0.65) and has an uncommon pseudoknotted 

structure. 
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Fig. 3. The native secondary structures of (a) the 3’ terminal region of the tobacco mosaic virus 

(TMV.R) and (b) the hepatitis delta virus genomic ribozyme (HDV), respectively. 
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Fig. 4. The secondary and tertiary structures of a fragment of gene 32 mRNA of bacteriophate T2. (a) 

The native secondary structure. (b) The native tertiary structure, taken from the PDB databank (PDB 

2tpk). (c) The tertiary structure predicted by pk3D. Note that in both (b) and (c), loops are shown in 

yellow dashed lines to illustrate chain connectivity and to facilitate structural comparison. The orange 

spheres show the position of A8 nucleotide, which forms a short loop of length 1. All tertiary structures 

are drawn using Pymol. 

 



 

0

16

43

G
G

G
A

G
C
U
C
C
C

C
C
C

U
U

C
C

G
A

G
G

G

U
C
G
G
A
A

C
U

CA
A
C
U

C U
UU

C
A

C
C
A

a) c)b)

 

Fig. 5. The native secondary structure and tertiary structure of the T arm and acceptor arm of the 

tRNA-like structure of turnip yellow mosaic virus. (a) The native secondary structure, (b) The native 

tertiary structure taken from the PDB databank (PDB 1A60). (c) The tertiary structure predicted by 

pk3D, which reproduces correctly the spatial arrangement of three stems, as well as their coaxial 

stacking observed in the experimental structure. The helices in (b) and (c) are colored using the same 

scheme. The loops are shown in yellow dashed lines to illustrate the chain connectivity. 
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Fig. 6. The native secondary structure and tertiary structure of the core encapsidation signaling RNA of 

the molney murine leukemia virus. (a) The native secondary structure. (b) The native tertiary structure 

taken from the first NMR model in the PDB databank (PDB 1S9S) (c) The tertiary structure predicted 

by pk3D. The helices are numbered from 1 to 6, in the direction from 5’-end to 3’-end, and are colored 

in the order of red, green, blue, yellow, magenta, and cyan, respectively. The orange spheres in (b) 

show the positions of the phosphorus atoms in the first nucleotide G1 for all of the first 20 models 

given by NMR experiments. The diverse positions demonstrate the experimentally observed large 

flexibility of the first helix. The gray segment at the upper right region in (b) connecting the fourth and 

fifth helices shows the conformation of the bulge loop G62-A65 determined by experiments. 
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Fig. 7. The native secondary structure and tertiary structure of the protein S15 binding fragment of 16S 

rRNA. (a) Its native secondary structure. (b) Its native tertiary structure as observed in X-ray 

crystallography (PDB 1DK1). The helices are numbered from 1 to 5 in the direction from 5’ end to 3’ 

end, and are colored in the order of magenta, green, yellow, blue, and cyan, respectively. The 

three-way junction is colored in red, which contains a base-triple and the metal binding site. In addition, 

local strands in this junction are in parallel direction instead of the canonical antiparallel direction. (c) 

The tertiary structure predicted by pk3D, plotted in the same color code as in (b). The spatial 

arrangement of the helices 3-5 are predicted correctly. The overall position of helix 1 is only roughly 

correct, tilted at a different angle. 
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Fig. 8. The native secondary structure and tertiary structure of the hepatitis delta virus (HDV) ribozyme 

precursor. (a) Its native secondary structure. (b) The tertiary structure (PDB 1SJ3). (c) The tertiary 

structure predicted by pk3D. The helices in (b) and (c) are colored in the same code. The loops are 

shown in orange dashed lines to illustrate chain connectivity. The structure generated by pk3D contains 

most features of the X-ray structure. 

 

 



 

Fig. 9. The flow chart of pk2D and pk3D. 

 



 

Fig. 10. The secondary structure of the hepatitis delta virus ribozyme precursor and its graph 

representation. The vertices in the graph correspond to helical stems and the edges correspond to loops; 

the weight of edges are set to the length of the corresponding loops. Note that this graph is not a metric 

graph. 
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