
Bioorganic & Medicinal Chemistry xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier .com/locate /bmc
Structure-based shape pharmacophore modeling for the discovery of novel
anesthetic compounds

Jerry O. Ebalunode a, Xialan Dong a, Zheng Ouyang b, Jie Liang b, Roderic G. Eckenhoff c, Weifan Zheng a,*

a Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville Street,
Durham, NC 27707, United States
b Bioengineering Department, University of Illinois at Chicago, Chicago, IL 60612, United States
c Department of Anesthesiology and Critical Care, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 March 2009
Revised 18 May 2009
Accepted 22 May 2009
Available online xxxx

Keywords:
Anesthesia
Apoferritin
Shape pharmacophore
SHAPE4
0968-0896/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.bmc.2009.05.060

* Corresponding author. Tel.: +1 919 530 6752; fax
E-mail address: wzheng@nccu.edu (W. Zheng).

Please cite this article in press as: Ebaluno
Current anesthetics, especially the inhaled ones, have troublesome side effects and may be associated
with durable changes in cognition. It is therefore highly desirable to develop novel chemical entities that
reduce these effects while preserving or enhancing anesthetic potency. In spite of progress toward iden-
tifying protein targets involved in anesthesia, we still do not have the necessary atomic level structural
information to delineate their interactions with anesthetic molecules. Recently, we have described a pro-
tein target, apoferritin, to which several anesthetics bind specifically and in a pharmacodynamically rel-
evant manner. Further, we have reported the high resolution X-ray structure of two anesthetic/
apoferritin complexes (Liu, R.; Loll, P. J.; Eckenhoff, R. G. FASEB J. 2005, 19, 567). Thus, we describe in this
paper a structure-based approach to establish validated shape pharmacophore models for future applica-
tion to virtual and high throughput screening of anesthetic compounds. We use the 3D structure of apo-
ferritin as the basis for the development of several shape pharmacophore models. To validate these
models, we demonstrate that (1) they can be used to effectively recover known anesthetic agents from
a diverse database of compounds; (2) the shape pharmacophore scores afford a significant linear corre-
lation with the measured binding energetics of several known anesthetic compounds to the apoferritin
site; and (3) the computed scores based on the shape pharmacophore models also predict the trend of
the EC50 values of a set of anesthetics. Therefore, we have now obtained a set of structure-based shape
pharmacophore models, using ferritin as the surrogate target, which may afford a new way to rationally
discover novel anesthetic agents in the future.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

General anesthesia, introduced formally in the mid nineteenth
century, is now delivered to 40 million patients per year in the Uni-
ted States. Despite its central role in healthcare, a molecular under-
standing of anesthesia or anesthetics is still very poor. Its
definitions are at best operational and convey little understanding
of the underlying neurobiology or the molecular mechanisms as to
how these molecules interact with the body’s receptors.1 Contem-
porary anesthetics, especially the inhaled ones, are well recognized
to have troublesome physiologic side effects, and may even have
durable cognitive effects, especially at the extremes of age.2,3 Thus,
it is highly desirable to discover novel chemical entities that can be
used as either probes to help understand the molecular mecha-
nisms of anesthesia, or as lead compounds for further development
into novel and safer anesthetic agents.
ll rights reserved.
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Most investigators now believe that anesthetics produce their
effects by interacting directly with specific proteins via unique
binding sites.4,5 Some of these targets may be more important than
others in producing the desired endpoint, and more mechanisti-
cally linked to some endpoints than others. For example, it is
widely held that members of the Cys-loop ligand-gated ion chan-
nel family are uniquely sensitive and plausible targets underlying
hypnosis.6 The GABAA receptor, known through years of mecha-
nisms research to be anesthetic sensitive, produces anxiolysis
and amnesia, two essential and desirable components of general
anesthesia.7 In spite of knowing the probable involvement of GA-
BAA in anesthesia, we do not have the necessary atomic level struc-
tural information to delineate its interactions with anesthetic
molecules. High resolution structures of plausible targets, like GA-
BAA receptors, are exceedingly difficult to obtain, owing to the low-
abundance of these receptors, their complex heterooligomeric nat-
ure, and the fact that they are poorly soluble membrane proteins.
Thus, structure-based rational drug discovery techniques cannot
be directly applied to analyze these protein targets; structures of
hem. (2009), doi:10.1016/j.bmc.2009.05.060
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anesthetic binding sites from other, surrogate proteins, may be
needed for this purpose. The protein data bank has the structures
of only three protein complexes with clinically-used general anes-
thetics: human serum albumin,8 horse apoferritin9 and a de novo
designed 4-helix bundle.10,11

In the pursuit of proteins to serve as an anesthetic template, one
of our authors has discovered that apoferritin mimics features
thought to exist for the GABAA receptor’s anesthetic site.5,9,12 In
addition, the binding energetics of a wide range of anesthetic com-
pounds to this apoferritin site correlates extremely well to the po-
tency for producing anesthesia in a mammal.13 This has laid a
sound foundation for employing structure-based drug design
(CADD) tools to discover improved GABAergic general anesthetics.

Although commercially available structure-based tools, such as
Gold,14 FRED,15 DOCK,16 AutoDock17 and FlexX,18 can be used for
our purpose, we have employed a new shape pharmacophore mod-
eling method developed in our laboratories due to its effectiveness
and speed for virtual screening.19 It uses the architecture and phys-
icochemical texture of the binding pocket to perform virtual
screening experiments. The binding pocket is modeled as an in-
verse shape with complementary functionalities to the binding
pocket, and then used to screen in silico against large chemical li-
braries. More specifically, we first derive the shape from the X-ray
structure of ligand-bound ferritin, then extract the complementary
pharmacophore information with a procedure similar to that
adopted by LigandScout.20 We then combine the shape and phar-
macophore information and represent it using the shape functions
encoded in the OEShape ToolKit.21 To validate the effectiveness of
the shape pharmacophore models, we used a database of diverse
chemical structures selected from Asinex database, and mixed
them with known anesthetic agents. The results show that the
known anesthetic agents are always ranked at the top, together
with a few other new molecules. We further show that the scores
of the known anesthetic agents correlate in a linear fashion to the
binding data (KD), even though the scoring functions were never
calibrated using these data. The shape pharmacophore scores are
also correlated, in a less linear fashion, with the EC50 data of 14
known anesthetic compounds.

2. Materials and methods

2.1. X-ray structures of ferritin

Two X-ray crystal structures have been used in this work for
creating the shape pharmacophore models. They are the structure
of apoferritin complexed with isoflurane (1XZ3), and that of halo-
thane complexed with apoferritin (1XZ1). Both structures were
solved at 1.75 A resolution.9 The dimer structures were generated
based on the crystal symmetry information before being used by
the SHAPE4 program19 for virtual screening.
2.2. Binding pocket shape pharmacophore extraction

The SHAPE4 program employs a computational geometry algo-
rithm (i.e., alpha-shape analysis) to detect the binding site atoms
and generate a negative image of the binding pocket. This negative
image is then represented by a set of spheres, and converted into
the shape representation functions in OEShape Toolkit.21 The over-
all flow of the SHAPE4 program involves the following steps: (1) the
a-shape program is used to detect potential binding site atoms and
the Delauney tetrahedra formed by these atoms for a given protein
structure; (2) a program is then developed to calculate orthogonal
centers defined by the vertices of the above Delauney tetrahedra,
and generate inner spheres around each orthogonal center; (3)
the overall shape of this collection of spheres is then represented
Please cite this article in press as: Ebalunode, J. O.; et al. Bioorg. Med. C
by GAUSSIAN functions; and (4) the shape representation is then used
by SHAPE4 to query a database of molecules whose conformers are
pre-generated. To allow for more detailed information to be used,
pharmacophore group information is derived from the ferritin
complex structures (with isoflurane and halothane), and added in
the shape pharmacophore models. As reported in the SHAPE4 publi-
cation,19 it implements an efficient, structure-based shape match-
ing technology for virtual screening.

In this work, since a known ligand molecule (i.e., isoflurane in
1xz3 or halothane in 1xz1) is bound to the binding pocket of ferri-
tin, we skipped the step of a-shape analysis. Instead, we directly
used the coordinates of the bound ligand as the reference to con-
duct Delauney tessellation so that binding pocket residues form a
set of Delauney tetrahedra with the ligand atoms. The space occu-
pied by this set of tetrahedra fully characterizes the binding pocket
of ferritin.

2.3. Application of the shape pharmacophore models to virtual
screening

As described above, the overall workflow of SHAPE4 involves (1)
creating the binding pocket shape model that incorporates both
the shape and pharmacophore information, and then (2) applying
the shape pharmacophore models to search multi-conformer data-
base using the SHAPE4 program. Omega22 was used to generate the
multi-conformer molecular database. Kirchmair parameters were
adopted in this work due to its reported effectiveness in generating
bioactive conformers.23 We increased the maximum number of al-
lowed conformers from 500 to 2000. Our own studies indicated
that conformer generation with a maximum number of 2000 could
enumerate conformers that were much more similar to the exper-
imental ligand conformations in crystal structures when compared
to either the default OMEGA setting, or those recommended by Kir-
chmair. The whole set of database molecules are virtually screened,
that is, scored with the shape pharmacophore models, and are then
ranked according to the scores, which characterizes the fitness of
shape matching as well as the fitness based on combined shape
and pharmacophore matching.

2.4. Validation of shape pharmacophore models via
retrospective discovery of known anesthetics

One of the standard approaches to validating computational
model(s) is to conduct retrospective analysis based on virtual
screening results. To this end, we constructed a database of mole-
cules consisting of known anesthetic molecules and a set of ran-
domly sampled molecules. The randomly sampled set was
obtained from a collection offered by Asinex.24 The known anes-
thetic compounds include propofol analogs,25 isoflurane and halo-
thane. With this database, we can conduct virtual screening (as
described above) using the SHAPE4 models, and examine the enrich-
ment curves. The enrichment curves are obtained by calculating
the percentage of known anesthetics found at different fraction
levels of the SHAPE4-ranked database. Figure 1 has summarized
the overall workflow from binding site detection to virtual screen-
ing using SHAPE4. As described in previous two sections, the binding
pocket is first defined by applying the Delauney tessellation proce-
dure to the X-ray structure of ferritin–ligand complex (1xz3 or
1xz1). This procedure defines the space formed by both the ligand
atoms and the ferritin atoms, hence the binding pocket space. To
allow for SHAPE4 to use this information, this space is further
approximated by a grid representation, which is used by OEShape
ToolKit functions inside the SHAPE4 program. The ferritin–ligand
structure is also used to define pharmacophore centers that are
complementary to the binding pocket characteristics in terms of
hydrogen bond acceptor/donor, hydrophobic, or charged centers.
hem. (2009), doi:10.1016/j.bmc.2009.05.060



Table 2
EC50 values of 14 compounds25

Compounds EC50

Phenol 3.0
2,6-Dimethylphenol 3.9
2-Isopropylphenol 4.4
2,6-Diethylphenol 4.9
2-tert-Butyl-6-methylphenol 6.3
2,6-Diethylphenylbromide 4.7
2,6-Diethylphenylisocyanate 4.6
2,6-Diethylphenylisothiocyanate 4.8
2,6-Diisopropylphenol(propofol) 5.7
3,5-Diisopropylcatechol 4.4
3,5-Di-tert-butylphenol 4.0
4-Iodo-2,6-diisopropylphenol 5.0
2,6-Di-sec-butylphenol 5.6
2,4-Di-sec-butylphenol 4.5

Ferritin-Ligand Complex

Delauney tessellation
to define pocket space

Grid approximation of 
the pocket space

OEShape representation

Pharmacophore detection

Combined Shape and pharmacophore representation

Multiconformer
Database

Shape4

Sorted list
of molecules 

by Shape4 score

Figure 1. Flowchart for virtual screening using the SHAPE4 method.
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The combined shape and pharmacophore information is used by
the SHAPE4 program to score potential hits against the ferritin target.
The sorted list of molecules based on the SHAPE4 score is then used
to generate the aforementioned enrichment curves. Since the
whole methodology has been published, we refer interested read-
ers to the original article for more details.19

2.5. Binding data of known anesthetic molecules with ferritin

We have experimentally obtained the dissociation constants
(KD) for a set of known anesthetic agents with apoferritin mea-
sured by the ITC (Isothermal Titration Calorimetry) technique (Ta-
ble 1). Our goal is to obtain new experimentally determined data to
test the shape pharmacophore models quantitatively, by examin-
ing the correlations between the KD values and the calculated
shape pharmacophore scores. We note that these KD values have
been obtained as a totally separate experimental endeavor from
the computational modeling. No retrospective fitting has been per-
formed. Thus, they should be considered as an experimental vali-
dation of the SHAPE4 methodology.

2.6. EC50 data of known anesthetic molecules

The EC50 data of a group of 14 anesthetic active molecules have
been published by Krasowski et al.25 for GABAA current enhance-
ment. This is considered to be an important in vitro feature for a
large group of general anesthetics, and may contribute to the ob-
served in vivo effect (anesthesia). A correlation between the shape
pharmacophore model scores and these data would therefore test
not only the ability of the in silico approach to model apoferritin
Table 1
KD data for five known anesthetic compounds

MW Concn (mM) in
buffer

Binding Ka

Propofol (2,6-
diisopropylphenol)

178.28 0.23 Yes 2.5E+05

Diethyphenol 150 0.31 Yes 7.1E+04
2-Isopropylphenol 136.19 0.50 Yes 6.7E+04
2,6-Dimethyl phenol 122.17 0.36 Yes 1.7E+04
Phenol 94 3.8 Yes 1600

Please cite this article in press as: Ebalunode, J. O.; et al. Bioorg. Med. C
binding, but the relevance of the template itself to proteins of
in vivo significance (Table 2).

3. Results and discussion

Here, we report the results of a computational geometry analy-
sis of the X-ray structures of ferritin bound to halothane and isoflu-
rane. We also describe several shape pharmacophore models that
can be derived by focusing on different portions of the ferritin
binding pocket. We then show the enrichment curves obtained
from virtual screening experiments with each of these pharmaco-
phore models. We will explore the relationship between the bind-
ing energetic data (KD) of a few anesthetic molecules as well as that
between the known GABAA EC50 data and the shape pharmaco-
phore scores.

3.1. Delauney triangulation of the 3D structures of ferritin

An important feature emerging from a computational geometry
analysis26–28 of the apoferritin structure is the prominent ‘U’-
shaped concave binding pocket located at the dimer interface of
two 4-helix bundles, which accommodates halothane, isoflurane
and propofol analogs. The molecular graphics is shown in Figure
2, in which the binding pocket located at the dimer interface is
shown.

3.2. Shape pharmacophore models

We generated the 3D negative image of the apoferritin binding
pocket, which faithfully reflects the shape of the binding pocket.
Three most reasonable strategies to derive the shape pharmaco-
phore models include (A) the model derived from the deepest
‘base’ portion of the ferritin-dimer binding pocket; (B) model
derived from about half of the ferritin-dimer binding pocket;
and (C) the model derived from the entire ferritin-dimer binding
pocket. The derived shape pharmacophore models are shown in
Figure 3.

3.3. Virtual screening experiments found known anesthetics at
the top of the rank

Using the three shape pharmacophore models described above
(Fig. 3), we have conducted three virtual screening experiments.
Strategy A focuses on the binding pocket for known anesthetic
agents, halothane and isoflurane, bound to ferritin. These experi-
ments should demonstrate that SHAPE4 can discover/recover halo-
thane, isoflurane and other related compounds from among a set
of randomly sampled molecules. Due to the strict constraints put
hem. (2009), doi:10.1016/j.bmc.2009.05.060



Figure 2. The anesthetic binding pockets located on the dimer interface between two 4-helix bundles of apoferritin molecules. The same binding pocket can accommodate
(left) halothane, and (right) isoflurane. Residues colored in red are those that directly interact with anesthetics.

Figure 3. Three strategies to create the shape pharmacophore models. Strategy A uses only the base portion of the binding pocket (left), strategy B uses one side of the dimer
binding pocket (middle), and strategy C uses the whole binding pocket formed by the dimer (right). In each case, we show one of the molecules that can fit to the model.
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on the query, this model should prevent us from finding a more di-
verse set of candidate compounds that may also bind to ferritin.
Strategy B uses half of the ferritin-dimer binding pocket to create
the SHAPE4 query. This strategy captures additional space and phar-
macophore features available in the ferritin binding pocket, and
thus, potentially affords an opportunity to find more diverse set
of candidate compounds. Strategy C uses the whole binding pocket
formed by the ferritin-dimer structure. This last strategy should af-
ford the most opportunity to find additional diverse set of com-
pounds. These points are demonstrated in the enrichment curves
(Figs. 4–6).
Figure 4. Enrichment curves obtained from virtual screening using strategy-A derived s
isofluorane–ferritin-dimer derived model.

Please cite this article in press as: Ebalunode, J. O.; et al. Bioorg. Med. C
Enrichment curves were generated to demonstrate the effec-
tiveness of the virtual screening experiments. As described in Sec-
tion 2, we used a diverse subset of compounds extracted from the
Asinex database as ‘decoys’ and mixed them with known anes-
thetic agents (halothane, isoflurane and propofol analogs). We then
test if SHAPE4 can discover known anesthetic molecules from this set
of mixed molecules with each of the three shape pharmacophore
models.

For strategy A, the enrichment curves have the steepest ascent
at around 1% of the total database. This means that all the known
agents are found at the very top of the list. However, the constraints
hape pharmacophore models. Left: halothane–ferritin-dimer derived model. Right:

hem. (2009), doi:10.1016/j.bmc.2009.05.060



Figure 5. Enrichment curves obtained from virtual screening using strategy-B derived shape pharmacophore models. Left: halothane–ferritin-dimer derived model. Right:
isofluorane–ferritin-dimer derived model.

Figure 6. Enrichment curves obtained from virtual screening using strategy-C. Left: halothane–ferritin-dimer derived model. Right: isofluorane–ferritin-dimer derived
model.
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underlying this strategy may limit our ability to discover new
molecules. For strategy B, we were able to find novel molecules
and yet retain the ability to find known binders. In strategy C, we
found 100% of the known anesthetic agents only after screening
40% of the whole database. This indicates that we are now finding
much more diverse molecules that score better than these known
molecules in terms of their ability to match the whole binding
pocket of ferritin.

Thus, all three shape pharmacophore models seem to be able to
recover known anesthetic compounds from the mist of decoy
molecular structures. This observation indicates that we may be
able to use these models either individually, or in concert, to search
compound databases for potential anesthetic agents. Such virtual
screening approaches can be combined with experimental HTS
(high throughput screening) to effectively search for new
anesthetics.

3.4. Shape pharmacophore scores of known anesthetics
correlate well with binding data

We have examined if SHAPE4 can distinguish not only actives
from inactives, but can also correlate with the energetics of com-
pound binding to apoferritin, and most importantly, the degree
of GABAergic activity. Based on compound availability, we have
determined 5 of the 14 compounds for their binding to apoferritin
with Isothermal Titration Calorimetry (ITC) experimental tech-
nique, and this relationship is shown below as Figure 7. As noted
Please cite this article in press as: Ebalunode, J. O.; et al. Bioorg. Med. C
before, we emphasize that the ITC data have been obtained as a to-
tally separate experimental endeavor from the computational
modeling. No retrospective fitting has been performed. Thus, Fig-
ure 7 should be considered as an experimental validation of our
methodology. We found, somewhat surprisingly, that the shape
pharmacophore scores calculated with SHAPE4 correlate exceedingly
well with the experimental KD measurement using either strategy
A or B. We note that the correlation between the scores obtained
by strategy C and KD is less good. Fundamentally, strategy C in-
cludes more space in the binding pocket, and fewer molecules
can simultaneously fit the whole pocket due to the U-shape nature
hem. (2009), doi:10.1016/j.bmc.2009.05.060
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of the space. As a result, this additional volume adds more noise to
the scoring when quantitative correlation is sought.

For GABAergic activity, we took advantage of the EC50 data pub-
lished by Krasowski et al.25 for GABAA current enhancement of
each of 14 active compounds. Figure 8 below shows an excellent,
but non-linear relationship for the 14 compounds. The basis for
the non-linearity is not clear, but is not surprising because shape
pharmacophore only measures the similarity between the anes-
thetic molecule and ferritin binding pocket shapes, and the score
itself has limits that force non-linearity. Since the EC50 data have
never been used to calibrate our SHAPE4 scoring function, Figure 8
should be considered as an external validation of the SHAPE4 meth-
odology applied to the ferritin target. In Figures 7 and 8, strategy B
provides lower absolute scores than strategy A, but still a signifi-
cant correlation to GABAergic activity. This is remarkable given
that the score derives from a shape match to an unrelated protein,
and gives confidence that the new surrogate target approach may
yield novel GABAergic compounds. Further, it is important to note
that physicochemical properties have not yet been included, and
are expected to significantly enhance the relationship.

4. Conclusions and perspectives

We have introduced a surrogate protein target, apoferritin, as
the structural template for structure-based design of potential
anesthetic compounds. A shape pharmacophore modeling method,
introduced recently by our group,19 captures the essential features
of the ferritin binding pocket. The derived shape pharmacophore
models can recover known anesthetic molecules from a diverse
set of decoys randomly sampled from the Asinex database. Thus,
shape pharmacophore models can qualitatively distinguish anes-
thetic molecules from other unrelated compounds. This is remark-
able since no molecular energetic terms are included in the scoring
function. However, this is consistent with the fact that the ferritin
binding pocket is largely hydrophobic, and therefore, shape and
size play a dominant role in binding.

Further analysis also revealed significant quantitative relation-
ships between the shape pharmacophore model scores and exper-
imental KD values of a group of related anesthetic molecules. This is
unexpected due to the lack of energetic calibration of the scoring
function. Even more surprising is the finding that shape pharmaco-
phore model scores of known anesthetic compounds are nicely
correlated, in a nonlinear fashion, with the functional GABAA data
(EC50) of 14 compounds. This finding again probably arises from
the central importance of shape and size in anesthetic molecules,
Please cite this article in press as: Ebalunode, J. O.; et al. Bioorg. Med. C
and strengthens our confidence in applying these shape pharmaco-
phore models to virtual screening for novel anesthetic agents.

Thus far, we have not trained the shape pharmacophore model-
ing method with known binding (KD) or EC50 data. It is conceivable
that novel structure-based QSAR modeling can be employed when
more data is obtained for ferritin binding molecules. The trained
models may better encode the different contributions of shape
matching and pharmacophore matching, so that the models can
better quantitatively predict the activities of new molecules.

As pointed out by one of the reviewers, the ultimate validation
of any in silico approach would be by new experimental validation,
preferably by newly discovered molecules predicted by the com-
putational method. This is indeed our ultimate goal. The com-
pounds recommended by SHAPE4 will be obtained and
experimentally tested in a HTS screening project. The results will
be reported in the next phase of this project.
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