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Abstract—Motifs are overrepresented sequence or spatial patterns appearing in proteins. They often play important roles in

maintaining protein stability and in facilitating protein function. When motifs are located in short sequence fragments, as in

transmembrane domains that are only 6-20 residues in length, and when there is only very limited data, it is difficult to identify motifs. In

this study, we introduce combinatorial models based on permutation for assessing statistically significant sequence and spatial

patterns in short sequences. We show that our method can uncover previously unknown sequence and spatial motifs in �-barrel

membrane proteins and that our method outperforms existing methods in detecting statistically significant motifs in this data set.

Last, we discuss implications of motif analysis for problems involving short sequences in other families of proteins.

Index Terms—Motifs, combinatorial models, short sequence, sequence analysis.
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1 INTRODUCTION

THE identification of spatial and sequence motifs plays
an important role in understanding protein stability

and function. Often these motifs are embedded in short
sequence fragments, as in the transmembrane domains of
membrane proteins, which are usually only 6-20 residues
in length. In studies of �-helical membrane proteins,
Senes et al. discovered a large number of sequence motifs
in transmembrane helices based on exhaustive permuta-
tion [1]. These sequence motifs were found to play
important roles in the folding and assembly of TM
helices. Examples include the well-known GxxxG motifs
that promote the dimerization of Glycophorin A [1] and
other Small-xxx-Small motifs [2].

Motifs are spatial or sequence patterns that are observed

with much higher frequency than would be expected by

chance, while antimotifs are patterns observed with much

lower frequency. Here, spatial pattern refers to two interact-

ing residues from short sequence fragments that are spatially

adjacent. Examples of such sequence pairs are adjacent

strands in a �-sheet, arranged parallel or antiparallel, or

interacting �-helices in transmembrane proteins. Sequence

pattern refers to two ordered residues along the N-to-C

direction of a short sequence fragment, following the

convention of Senes et al. [1]. These patterns can be

expanded to involve an arbitrary number of residues.

Identifying motifs from sequence information is an
important task, and there is a large body of literature on
motif discovery (see the book by Robin et al. [3] and
references within). For short sequence fragments, discov-
ery of motifs is a challenging task, especially when the
amount of available data is limited. The statistics of spatial
motifs from short fragments cannot be approximated by a
�2 distribution, as was used by Wouters and Curmi [4].
The �2 distribution requires assumptions of normality that
are not generally true in short sequences when data is
scarce. For sequence motifs, methods based on the
binomial distribution, as was used by Hart et al. [5] and
by Robin et al. [3], are also inappropriate. The binomial
distribution requires unrealistic assumptions that become
more apparent in short sequences, such as drawing from a
universal residue population with replacement.

In this study, we present formulas for discovery of
spatial motifs of interacting residue pairs and sequence
motifs consisting of residues embedded in short sequence
fragments based on a combinatorial model called the
permutation model [3]. This model relies on drawing from a
population of residues without replacement and was used
by Senes et al. to study membrane proteins [1]. We are
concerned with not only finding motifs in short sequences
but also calculating accurate p-values that determine the
statistical significance of the identified motifs. We introduce
modifiable combinatorial models for several different types
of analyses. Specifically, we have derived analytical forms
to describe all possible two-residue spatial motifs, as well as
for two-residue and multiresidue sequence motifs under a
variety of conditions.

Our models use as input a data set of short sequence
fragments and are designed to obtain optimal statistical
power from small data sets. We believe that our methods
represent a more robust alternative to earlier methods, a
necessity when dealing with the smaller amount of
information provided by short sequences. Our models can
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be applied generally to any set of interacting short sequence
pairs for spatial motif discovery and to any set of short
sequences for sequence motif discovery. We illustrate the
effectiveness of our models for motif discovery in �-barrel
membrane proteins, of which only a small structural data
set exists [6]. We also compare these results to other existing
models, in order to show that our models are more
appropriate for data sets of short sequences.

2 MODEL AND METHODS

2.1 General Model

We introduce the definition of residue pair XY as some
meaningful combination of two residues of amino acid
types X and Y . We will focus on two major classes of pairs
(Fig. 1). We define a spatial interaction pair X-Y as a pattern
in which a residue of type X is found interacting with a
residue of type Y on two interacting sequences (Fig. 1a). In
this case, interacting sequences are assumed to be the same
length, and each residue on one sequence interacts with
exactly one residue on the other sequence, though different
pairs of interacting sequences in a data set may be of
different lengths. We will introduce a method to relax the
matching length requirement later. We define a sequence pair

XY k as a pattern in which a residue of type Y is found at
the kth position from a residue of type X along a single
sequence (Fig. 1b).

We define the propensity P ðX;Y Þ of residue pair XY as

P ðX;Y Þ ¼ fobsðX;Y Þ
IE fðX;Y Þ½ � ;

where fobsðX;Y Þ is the observed count of XY patterns, and
IE½fðX;Y Þ� is the expected count of XY patterns. We define
a motif as a residue pair with propensity > 1.0 (or greater
than some other predefined limit) and statistically signifi-
cant, based on p-value. Similarly, an antimotif is a residue
pair with propensity < 1.0 (or some other predefined limit)
and statistically significant. The null model used to calculate
IE½fðX;Y Þ� is similar for both pair types: the residues within
each sequence are exhaustively and independently per-
muted without replacement, and each permutation occurs
with equal probability. We call this internally random. It is
the same model used by Senes et al. [1] and is also called the
permutation model in literature [3]. We will also introduce an
alternative permutation model that is position dependent

and examine an existing model based on permutation with
replacement, called the Bernoulli model [3].

The focus of this paper is to determine explicit formulas
to calculate IE½fðX;Y Þ� for each pair type under different
conditions. Where possible, we will also determine explicit
probability distributions for fðX;Y Þ, which will allow for
the calculation of variance and p-values. Although these
formulas are designed for single sequences, we will also
describe how these models can be expanded to study whole
data sets of short sequences.

All formulas presented have been verified through
comparison to results obtained through full enumeration
of permutations in order to ensure correctness.

2.2 Propensity of Spatial Interactions

To identify spatial motifs, we calculate the intersequence
spatial propensity P ðX;Y Þ for interacting pairs of residue
types X and Y (Fig. 1a):

P ðX;Y Þ ¼ fobsðX;Y Þ
IE fðX;Y Þ½ � ;

where fobsðX;Y Þ is the observed count of X-Y contacts in
the sequence pair, and IE½fðX;Y Þ� is the expected count of
X-Y contacts in a null model.

In order to calculate IE½fðX;Y Þ�, we use an internally
random null model in which residues within each of the
two sequences in a sequence pair are permuted exhaus-
tively and independently, and each permutation occurs
with equal probability. An X-Y contact forms if in a
permuted sequence pair two interacting residues happen to
be type X and type Y . IE½fðX;Y Þ� is then the expected
number of X-Y contacts in the sequence pair.

Null model for residues of the same type. For cases in which

X is the same as Y (i.e., X-X pairs), let x1 be the number of

residues of type X in the first sequence, x2 be the number of

residues of type X in the second sequence, and l be the

length of the sequence pair (i.e., the length of either

sequence). In the internally random null model, we

randomly select residues from one sequence to pair up

with residues from the other sequence. We wish to know

IPXXðiÞ, the probability of exactly i ¼ fðX;XÞ number of

X-X contacts in this model. There are l
x2

� �
ways to place the

x2 residues of type X in the second sequence. Of these, i

will each be paired with one of the x1 residues of type X on

the first sequence, and x2 � i will each be paired with one of

the l� x1 non-X residues. There are x1

i

� �
and l�x1

x2�i

� �
ways to

do this, respectively. When multiplied together, we have

that IPXXðiÞ follows a hypergeometric distribution:

IPXXðiÞ ¼
x1

i

� �
l�x1

x2�i

� �
l
x2

� � : ð1Þ

IE½fðX;XÞ� is then the expectation of the hypergeometric
distribution:

IE fðX;XÞ½ � ¼ x1x2

l
:

JACKUPS JR. AND LIANG: COMBINATORIAL ANALYSIS FOR SEQUENCE AND SPATIAL MOTIF DISCOVERY IN SHORT SEQUENCE... 525

Fig. 1. Examples of spatial and sequence patterns. (a) Two X-Y spatial

patterns on interacting sequences. (b) An XY 3 sequence pattern.



For statistical significance, two-tailed p-values can be
calculated using the hypergeometric distribution for a data
set of sequence pairs (Section 2.4).

Null model for residues of different types. If the two
contacting residues are not of the same type, i.e., X 6¼ Y ,
the number of X-Y contacts in the internally random model
for one sequence pair is the sum of two dependent
hypergeometric variables, one variable for type X residues
in the first sequence s1 and type Y in the second sequence s2,
and another variable for type Y residues in s1 and type X
in s2. The expected number of X-Y contacts IE½fðX;Y Þ� is
the sum of the two expected values:

IE fðX; Y Þ½ � ¼ IE fðX;Y jX 2 s1; Y 2 s2Þ½ �
þ IE fðX;Y jY 2 s1; X 2 s2Þ½ �

¼ x1y2

l
þ y1x2

l
;

where x1 and x2 are the numbers of residues of type X in
the first and second sequence, respectively, y1 and y2 are the
numbers of residues of type Y in the first and second
sequence, and l is the length of the sequence pair. Despite
the fact that the variables fðX;Y jX 2 s1; Y 2 s2Þ and
fðX;Y jX 2 s2; Y 2 s1Þ are dependent (i.e., the placement
of an X-Y pair may affect the probability of a Y -X pair in
the same sequence pair), their expectations may be summed
directly because expectation is a linear operator.

However, because fðX;Y jX 2 s1; Y 2 s2Þ and fðX;Y jX 2
s2; Y 2 s1Þ are dependent, to determine the p-value for a
specific observed number of X-Y contacts, a more detailed
formula for the null model must be established. The
probability of a specific number of X-Y contacts occurring
in one sequence pair does not follow a simple hypergeo-
metric distribution. Here, we develop a general hypergeo-
metric model based on the multinomial with three
parameters to characterize such a probability. First, we
define a three-element multinomial function Mða; b; cÞ as

Mða; b; cÞ � a!

b!c!ða� b� cÞ! ; ð2Þ

where Mða; b; cÞ ¼ 0 if a� b� c < 0. This represents the
number of distinct permutations, without replacement, in a
multiset of size a containing three different types of
elements, with number count b, c, and a� b� c of each of
the three element types.

Consider residues in the first sequence of length l of a
sequence pair. These l residues are of three types: x1 count of
type X residues, y1 of type Y residues, and n1 ¼ l� x1 � y1

count of type “neither.” We now first fix the positions of
residues on sequence 1 and permute exhaustively the
l residues on sequence 2. We can fix one sequence in this
way without loss of generality, because only the number,
not the order, of residues pairs within a sequence pair is
relevant for calculating IPXY ðiÞ. Let x2, y2, and n2 be the
numbers of residues of type X, Y , and “neither” on
sequence 2, respectively. There are Mðl; x2; y2Þ ways to
permute these residues.

Consider the residues on sequence 2 that match to the
x1 number of residues of typeX on sequence 1 (Fig. 2). These
x1 residues on sequence 2 consist of h number of type X
residues, i number of type Y residues, and x1 � h� i number
of type “neither” residues. They can be permuted in

Mðx1; h; iÞ different ways. Similarly, the y1 residues on
sequence 2 that match type Y residues in sequence 1 consist
of j number of typeX residues, k number of type Y residues,
and y1 � j� k of type “neither” residues, and thus, the total
number of permutations for these y1 residues is Mðy1; j; kÞ.
Similarly, there are Mðn1; x2�h�j; y2�i�kÞ number of
permutations to match the remaining n1 ¼ l� x1 � y1 of type
“neither” residues on sequence 1.

We characterize the probability IPðh; i; j; kÞ of interse-
quence matches: 1) the x1 type X residues on sequence 1
with h type X residues, i type Y residues, and x1 � h� i
type “neither” residues on sequence 2; 2) the y1 type Y
residues on sequence 1 with j type X residues, k type Y
residues, and y1 � j� k type “neither” residues on se-
quence 2; and 3) the remaining n1 type “neither” residues
on sequence 1 with x2 � h� j type X residues, y2 � i� k
type Y residues, and the remaining type “neither” residues
from sequence 2. Equivalently, IPðh; i; j; kÞ is the probability
of h X-X contacts, i X-Y contacts, j Y -X contacts, and
k Y -Y contacts occurring in a random permutation.

We introduce a higher order hypergeometric distribution
for IPðh; i; j; kÞ as follows:

IPðh; i; j; kÞ

¼Mðx1; h; iÞ �Mðy1; j; kÞ�Mðl�x1�y1; x2�h�j; y2�i�kÞ
Mðl; x2; y2Þ

:

The marginal probability IPXY ðmÞ that there are a total of
iþ j ¼ m X-Y contacts in the internally random model,
namely, the pairings in which a residue of type X in the first
sequence is paired with a residue of type Y in the second
sequence, summed with the pairings in which a residue of
type Y in the first sequence is paired with a residue of
type X in the second sequence, is

IPXY ðmÞ ¼
Xx1

h¼0

Xx1�h

i¼0

Xy1�ðm�iÞ

k¼0

IPðh; i;m� i; kÞ;

where, again, h is the number of matched X-X contacts, i is
the number of matched X-Y contacts, j ¼ m� i is the
number of matched Y -X contacts, and k is the number of
matched Y -Y contacts. The remaining contacts involving
residues of type “neither” will then automatically be
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Fig. 2. Division of residues in spatial motif analysis when X 6¼ Y .

White ¼ X, black ¼ Y , and gray ¼ ‘‘neither} X or Y .



assigned, since all matches involving X and Y have been
accounted for. There are x1 possible values for h, one for
each residue of type X on sequence 1; x1 � h possible values
for i, once h has been determined; and y1 � j ¼ y1 � ðm� iÞ
possible values for k, once i has been determined. The i
number of X-Y contacts plus the m� i number of
Y -X contacts will sum to the m number of contacts desired.

This closed-form formula is important, because it allows
us to calculate p-values analytically for this null model. The
runtime is Oðl4Þ, due to the presence of three summations
and l! in the summand. However, because this formula is
intended for use with short sequences, this runtime is not
prohibitive. For much longer sequences, a null model based
on the Bernoulli model is an appropriate substitute
(Section 2.6.1).

Adjustment for sequences of different length within a sequence
pair. The requirement for interacting sequences to be of the
same length may be relaxed by introducing a 21st “dummy”
amino acid type. All unpaired residues in the longer
member of a sequence pair will be paired to this extra
amino acid type, and our standard method can be applied to
determine the propensity of unpaired amino acids (i.e.,
residues paired with the “dummy” amino acid type).

2.3 Propensity of Sequence Patterns

2.3.1 Propensity of Two-Residue Sequence Patterns

We introduce the propensity P ðX;Y jkÞ for two-ordered
intrasequence residues of type X and type Y that are
k positions away on the same sequence (Fig. 1b). We call
this pattern XY k following the convention established by
Senes et al. [1]. For instance, AL3 represents AxxL, where
“x” is any residue type. We define the propensity as

P ðX;Y jkÞ ¼ fobsðX;Y jkÞ
IE fðX;Y jkÞ½ � ;

where fobsðX;Y jkÞ is the observed count of XY k patterns,
and IE½fðX;Y jkÞ� is the expected count of XY k patterns.

In our null model, the sequences are internally random,
i.e., the residues within each sequence are permuted
exhaustively and independently, and each permutation
occurs with equal probability. An XY k pattern forms if in a
permuted sequence an X residue happens to be followed
by a Y residue at the kth position along the sequence in the
N-terminal to C-terminal direction of the peptide.

To determine IE½fðX;Y jkÞ�, we can represent fðX;Y jkÞ as
the sum of identical Bernoulli variables ftðX;Y jkÞ, each of
which equals 1 if one of the x number of residues of type X
occurs at position t in the sequence and one of the y number
of residues of type Y occurs at position tþ k, or equals 0
otherwise. Since an XY k pattern cannot occur if t > l� k,
we concern ourselves only with the first l� k positions. As
long as t � l� k, the probability of an XY k pattern
occurring at position t does not depend on t: there is a
x
l chance of an X residue occurring at position t and a
y
l�1 chance of a Y residue occurring at position tþ k, once
the residue at position t is drawn. Thus,

IE ftðX; Y jkÞ½ � ¼ IP ftðX;Y jkÞ ¼ 1½ � ¼ x
l
� y

ðl� 1Þ if t � l� k:

There are l� k such identical variables, and their expecta-
tions may be summed:

IE fðX;Y jkÞ½ � ¼ ðl� kÞ xy

lðl� 1Þ ; ð3Þ

where l is the length of the sequence, x is the number of
residues of type X, and y is the number of residues of
type Y . For XXk patterns, i.e., two residues of the same
type displaced by k residues, the expectation is calculated as

IE fðX;XjkÞ½ � ¼ ðl� kÞxðx� 1Þ
lðl� 1Þ ; ð4Þ

as there will be x� 1 residues available to place the second
X residue at position tþ k after the first X residue is placed
at t. Although these Bernoulli random variables are
dependent (i.e., the placement of one XY k pattern will
affect the probability of another XY k pattern), their
expectations may be summed, because expectation is a
linear operator. However, in order to calculate statistical
significance in terms of p-values, special formulas must be
derived to determine IPXY kðiÞ, the probability of the
occurrence of i ¼ fðX;Y jkÞ XY k patterns.

Null model for residues of different types if k ¼ 1. We first
consider the case where X 6¼ Y and k ¼ 1 (i.e., pairs of
different adjacent residues along a sequence). The number
of ways to permute x number of X residues, y number of
Y residues, and l� x� y number of type “neither” residues
is l!

x!y!ðl�x�yÞ! . We wish to enumerate how many of these
permutations contain exactly i XY 1 patterns.

First, we place the x residues of type X and l� x� y
residues of type “neither” in a subsequence of l� y
residues. There are l�y

x

� �
ways to arrange the X residues

in this subsequence. Second, we select i of these X residues
to participate in XY 1 patterns. There are x

i

� �
ways to do this.

Next, we add a Y residue after each of these i X residues to
complete the XY 1 patterns (Fig. 3a). We now have a
subsequence of length l� yþ i residues, and we have y� i
residues of type Y left to complete the full sequence.

We view this subsequence as having a “slot” at the
beginning position and after each residue and add these y�
i Y residues to the slots until the full sequence is obtained.
We choose which slot in which to place each Y residue with
replacement, so that some slots may contain more than one
Y residue, and some may contain none. We may not,
however, choose a slot just after an X residue without
forming a new XY 1 pattern or disrupting an already
existing one (Fig. 3a). There are thus l�x�yþiþ1 slots
available: one after each reside of type “neither” ðl� x� yÞ,
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Fig. 3. Examples of the internally random model for sequence motifs
when k ¼ 1. (a) Example when X 6¼ Y and k ¼ 1. After placing l� y
non-Y residues and i Y residues that form the desired number i of
XY 1 patterns, there are l� x� yþ iþ 1 “slots” in which to place the
remaining Y residues so that no additional XY 1 patterns are formed.
(b) Example when X ¼ Y and k ¼ 1. After placing l� x non-X residues
and x� i X residues without forming an XX1 pattern, there are
x� i “slots” in which to place the remaining i X residues so that each
one forms a new XX1 pattern.



one after each Y in an XY 1 pattern ðþiÞ, and one at the
beginning of the subsequence ðþ1Þ. Using the standard
formula for choosing objects with replacement but without
regard to order, the number of ways to place the remaining
y� i residues of type Y in the l�x�yþiþ1 available slots is

ðl� x� yþ iþ 1Þ þ ðy� iÞ � 1

y� i

� �
¼ l� x

y� i

� �
:

Combining these terms and simplifying, the probability
of i XY 1 patterns in one sequence follows a hypergeometric
distribution:

IPXY 1ðiÞ ¼
l�y
x

� �
x
i

� �
l�x
y�i

� �
l!

x!y!ðl�x�yÞ!
¼

x
i

� �
l�x
y�i

� �
l
y

� � :

Null model for residues of the same type if k ¼ 1. When
X ¼ Y and k ¼ 1, the probability of i XX1 patterns in one
sequence follows a different distribution, and the proof is
slightly different from the above case. There are l

x

� �
ways to

permute the x number of X residues in a sequence of
length l, and we wish to enumerate how many permuta-
tions contain exactly i XX1 patterns.

First, place all residues that are not of type X in a

subsequence of length l� x. There are now a total of

l� xþ 1 “slots” in which to place the x number of

residues of type X: one after each residue and one at the

beginning of the subsequence. We choose x� i of these

slots without replacement to be filled with exactly one

residue of type X, in l�xþ1
x�i

� �
number of ways. This is to

ensure that no XX1 pattern is formed in this step. In the

next step, we can ensure that there are i XX1 patterns

by placing the remaining i residues of type X only in

slots following one of these already placed X residues

(Fig. 3b). There are thus x� i available slots, but we may

choose them with replacement. There are ðx�iÞþi�1
i

� �
¼ x�1

i

� �
ways to do this. Combining these terms, we have another

hypergeometric distribution:

IPXX1ðiÞ ¼
l�xþ1
x�i

� �
x�1
i

� �
l
x

� � ; ð5Þ

with the convention that n
r

� �
¼ 0 if n < r.

Null model for residues of different types if x � 2 or y � 2. If
either x ¼ 1 or y ¼ 1, then

IPXY kð1Þ ¼ IE fðXY jkÞ½ � ¼ ðl� kÞ xy

lðl� 1Þ ;

since the maximum possible number i of XY k patterns

is 1, and

IE fðXY jkÞ½ � ¼ 0 � IPXY kð0Þ þ 1 � IPXY kð1Þ ¼ IPXY kð1Þ:

This is the same as (3). As a result, it is possible to determine
IPXY kð1Þ for all values of k if the number count of either one
of the residue types is 1. For i ¼ 0, we have simply

IPXY kð0Þ ¼ 1� IPXY kð1Þ:

If x ¼ 2 or y ¼ 2, the probability of two XY k patterns is

IPXY kð2Þ ¼
l�k
2

� �
� ðl� 2kÞ

� 	
lðl�1Þðl�2Þðl�3Þ
xðx�1Þyðy�1Þ

: ð6Þ

There are l�k
2

� �
positions in which to place twoXY k patterns.

However, the terminal residue of type Y in the first pattern

overlaps with and forbids the placement of the initial residue

of type X in the second pattern in l� 2k cases, in which the

initial residue of typeX in the first pattern is placed in one of

the first l� 2k positions of the sequence (Fig. 4a). Thus, there

are l�k
2

� �
� ðl� 2kÞ possible ways to place two XY k patterns.

Since there are lðl�1Þðl�2Þðl�3Þ
xðx�1Þyðy�1Þ possible ways to place two

residues of typeX and two resides of type Y , the probability

of exactly two XY k residues is as shown in (6).
Since there can only be a maximum of two XY k patterns

when x ¼ 2 or y ¼ 2, it is possible to determine the
probability of exactly one XY k pattern or zero patterns
using the definition of expectation. Because IE½fðXY kÞ� ¼P2

i¼0 i � IPXY kðiÞ¼0 � IPXY kð0Þþ1 � IPXY kð1Þþ2 � IPXY kð2Þ and
IPXY kð0Þ þ IPXY kð1Þ þ IPXY kð2Þ ¼ 1, we have

IPXY kð1Þ ¼ IE fðXY kÞ½ � � 2IPXY kð2Þ; ð7Þ

IPXY kð0Þ ¼ 1� IPXY kð1Þ þ IPXY kð2Þ½ �: ð8Þ

Null model for residues of the same type if x � 3. If x ¼ 2,

then the probability of one XXk pattern is
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Fig. 4. (a) Visual explanation of why there are l� 2k forbidden placements of 2 XY k patterns when either x ¼ 2 or y ¼ 2. The terminal Y residue of
the first pattern interferes with the initial X residue of the second pattern. (b) Visual explanation of why there are l� 2k possible ways to place two
XXk patterns when x ¼ 3 in sequence motif analysis.



IPXXkð1Þ ¼ IE fðXXkÞ½ � ¼ ðl� kÞxðx� 1Þ
lðl� 1Þ ;

since it is only possible to have one XXk pattern. Then

IPXXkð0Þ ¼ 1� IPXXkð1Þ:

If x ¼ 3, then the probability of exactly two XXk patterns is

IPXXkð2Þ ¼
l� 2k

l
x

� � ;

since there are only l� 2k positions in which to place

an X � � �X � � �X pattern (i.e., the only way to obtain two

XXkpatterns ifx ¼ 3) and l
x

� �
ways to placex residues of type

X in a sequence of length l (Fig. 4b). It is then possible to

determine the remaining probabilities using expectation, as

was done in (7) and (8), since at most only twoXXk patterns

are possible when x ¼ 3 (i.e., an X � � �X � � �X pattern, where

“� � � ” corresponds to k� 1 residues).

Null model for residues if k > 1, x > 2, and y > 2. When

k > 1, x > 2, and y > 2, the analytical formulas for IPXY kðiÞ
become very complicated. However, when the sequences

in the data set used are short, it is possible to fully

enumerate all permutations of a sequence and calculate

IPXY kðiÞ and p-values exactly, as shown by Senes et al. [1].

Because x and y are usually small in short sequences, this

situation should not occur frequently enough to adversely

affect the computation time needed for motif analysis of

short sequences.

2.3.2 Propensity of Multiresidue Sequence Patterns

The model presented for two-residue sequence patterns

may be expanded easily to determine IE½fðX0; X1; X2; . . . ;

Xnjk1; k2; . . . ; knÞ�, the expected number of a specific

pattern containing nþ 1 residues placed in a contiguous

subsequence of kn þ 1 residues ðkn � nÞ. Here, Xi is the

residue type of the ith fixed residue in the pattern, and ki
is the position of this residue from the 0th residue

ðk0 ¼ 0Þ. Any other position not specified by ki can be

any residue type. For example, the pattern ðA;L; Y j2; 4Þ is

written as AL2Y4 and represents AxLxY. A graphic

example is shown in Fig. 5. There are many examples

of these multiresidue sequence motifs in proteins, includ-

ing the GxGxxG NADH binding motif [7] and the RSxSxP

14-3-3 binding motif [8].

The expected value can be calculated as

IE fðX0; X1; X2; . . . ; Xnjk1; k2; . . . ; knÞ½ �

¼ ðl� knÞ
Qn

i¼0 xi �# IIðXiÞð Þ½ �
l!

ðl�n�1Þ!
;

ð9Þ

where xi is the number of residues of typeXi, l is the length of
the sequence, and #ðIIðXiÞÞ is the number of times residue
type Xi appears in the “subpattern” fX0; X1; X2; . . . ; Xi�1g.

Equation (9) is an extension of (3) and (4). We can represent

fðX0; X1; X2; . . . ; Xnjk1; k2; . . . ; knÞ as the sum of identical

Bernoulli variables ftðX0; X1; X2; . . . ; Xnj k1; k2; . . . ; knÞ, each

of which equals 1 if the appropriate pattern occurs at

position t, and 0 otherwise. For t > l� kn, this value is always

0. For t � l� kn, the probability of the pattern does not

depend on t. The probability that the ith residue in the pattern

is of type Xi is xi�#ðIIðXiÞÞ
l�i , as there will be l� i residues to

choose from and xi �#ðIIðXiÞÞ residues of type Xi available

after the first i residues have been placed. The function

#ðIIðXiÞÞ is necessary in case there are identical residue types

in fX0; X1; � � � ; Xng. Multiplying these probabilities and then

multiplying by l� kn for the number of Bernoulli variables,

results in the expected value in (9).

2.4 Motif Analysis on Data Sets of Short Sequences

The previous motif analyses are useful for determining
propensities in a single short sequence or sequence pair.
However, under most cases, sequence analysis must be
performed on a data set of multiple short sequences in
order to attain sufficient statistical significance. This has the
advantage of capturing within-sequence relationships on a
scale large enough to obtain reliable p-values.

Because expectation is a linear operator, it is a simple
matter to sum the expected values of each sequence to
determine the expected value of the entire data set:

IE fðX;Y Þdataset
� 	

¼
Xm
n¼1

IE fðX;Y Þn
� 	

;

where IE½fðX;Y Þn� is the expected value of the nth sequence
in a data set of m sequences. If each distribution fðX;Y Þn is
independent among all sequences, the variance of the data
set may also be determined by summing the variances of
each sequence.

To determine the probability distribution function for the
data set as a whole, IP½fðX;Y Þdataset�, we follow the
approach of Senes et al. [1]. First, the probability distribu-
tions of the first two sequences, IP1 and IP2, are combined
into a single “database” distribution IPdbð2Þ as follows:

IPdbð2ÞðiÞ ¼
Xi
j¼0

IP1ðjÞ � IP2ði� jÞ;

that is, the probability IPdbð2ÞðiÞ of i total patterns in the two
sequences is the sum of the probabilities of all possible
combinations of j patterns occurring in the first sequence
and i� j patterns occurring in the second sequence. This
new probability, IPdbð2ÞðiÞ, can now be thought of as a single
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Fig. 5. Example of a multiresidue sequence pattern as described in the
text. This pattern contains five specified residues in a span of
10 residues. Here, X0, X1, X2, X3, and X4 are specified amino acid
types, and the corresponding k values are counted as the distance from
the first position of the sequence (i.e., the position occupied by X0).
Thus, k1 ¼ 2, k2 ¼ 3, k3 ¼ 6, and k4 ¼ 9. All other residues (in white) are
unspecified and may be any amino acid type. This pattern is written as
ðX0; X1; X2; X3; X4 j2; 3; 6; 9Þ.



sequence distribution, and so, the probability distribution
for the entire data set can be compiled using a recursive
formula:

IPdbðnÞðiÞ ¼
Xi
j¼0

IPdbðn�1ÞðjÞ � IPnði� jÞ;

where IPn is the probability distribution for the nth sequence,
and IPdbðnÞ is the probability distribution for the first
n sequences combined. When the recursion terminates at
the last (mth) sequence, IPdbðmÞðiÞ ¼ IP½fðX;Y Þdataset�. This
function can be used to determine p-values for the entire data
set. It is recommended that two-tailed p-values are used,
regarding the following hypothesis test:

H0 : fobsðX;Y Þ ¼ IE fðX;Y Þ½ �;
H1 : fobsðX;Y Þ 6¼ IE fðX;Y Þ½ �:

To calculate p-values, we use

p ¼ 2 �
XfobsðX;Y Þ

i¼0

IPdbðmÞðiÞ

when fobsðX;Y Þ < IE½fðX;Y Þ�, and

p ¼ 2 �
XUB

i¼fobsðX;Y Þ
IPdbðmÞðiÞ

when fobsðX;Y Þ > IE½fðX;Y Þ�, where UB is an upper bound
for all possible X-Y patterns in the data set. Because i � x
and i � y in each sequence under a permutation model, the
sum of minðx; yÞ for each sequence is always an acceptable
upper bound, though lower acceptable values may be used
to reduce unnecessary computations. Because we are using
two-tailed p-values, and because the distribution of fðX;Y Þ
is not necessarily symmetric, it is possible for p > 1:0 if
fobsðX;Y Þ falls between IE½fðX;Y Þ� and the median of
fðX;Y Þ. In that case, p is simply set to 1.0.

Multiple hypothesis testing for data sets of short sequences.
Using an alphabet of 20 amino acids, the spatial motif
analysis requires 210 tests (for each possible unordered pair
of amino acids) and the sequence motif analysis requires
400 tests (for each possible ordered pair of amino acids).
Because of the high number of tests used, it is possible that
some tests with p-values meeting the specified cutoff
(usually p < 0:05) are only significant because multiple
hypotheses are being tested and not due to true statistical
significance. This multiple hypothesis testing problem can be
corrected using the standard Bonferroni method [9].
However, in data sets of short sequences, this method
may be too conservative and overstate the effect of multiple
hypothesis testing.

We have applied a more appropriate method of multiple
hypothesis correction based on the Significance Analysis of
Microarrays (SAM) method developed by Tusher et al. [10].
This method calculates the false discovery rate (FDR), which
measures the proportion of significant test results that are
due to random sampling [11].

The method is the same for spatial and sequence motif
analysis. We randomly permute the residues of all
sequences in a data set and calculate p-values from this

data set using the same model as was used on the true data
set. We do this 1,000 times and average the number of
significant results from each permuted data set. This
method ensures that each data set has exactly the same
sequence lengths and amino acid distribution as the true
data set, but all significant results are due only to random
sampling. The ratio of this average to the number of
significant results from the true data set is the FDR. Their
difference is the presumed number of truly statistically
significant results in the data set.

2.5 Positional Null Model

The previous motif analyses are based on an internally
random null model in which the residues within each
sequence are permuted, and each permutation is equally
likely. This assumption can be problematic in certain cases
where there are biases of residue types for certain positions
in a sequence known a priori. For instance, aromatic residues
tend to be favored at either end of a transmembrane �-helix
or �-strand [12], [13], [14]. These single-residue biases may
confound two-residue propensities without providing addi-
tional information into the preferences of these patterns.
When such biases are known, it may be helpful instead to
consider a null model that accounts for them.

We therefore introduce a positional null model. Instead
of permuting residues across all positions within indivi-
dual sequences, we permute residues across all sequences
in a data set within specific positions (Fig. 6). We have
adapted this null model for both spatial and sequence
motifs. The full description of our work can be found in
the Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2008.101.

2.6 Binomial Null Model

The methods we have developed in Sections 2.2 and 2.3.1
are based on the permutation model, which relies on
permuting sequences without replacement. Methods based on
the Bernoulli model, which relies on permuting sequences
with replacement, have been well-developed and applied to
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Fig. 6. Difference between (a) an internally random null model for
sequence motif analysis and (b) a position-dependent null model. In
both cases, only residues of the same shade are permuted with each
other. In (a), residues are permuted only within each sequence
individually, while in (b), residues are permuted across sequences but
only within their specified position t.



important problems of motif analysis in long sequences [3].
Here, we examine whether the permutation model is more
powerful than the Bernoulli model for short sequences,
where coupling effects are great. We introduce a binomial

null model, which relies on permutation with replacement,
for both spatial and sequence motif analysis, for the
purpose of comparing its performance to our methods.

2.6.1 Binomial Null Model for Spatial Interaction Pairs

To calculate propensities for spatial interaction pairs under

a binomial null model, we permute each sequence in a

sequence pair of length l with replacement. We wish to find

the probability of exactly i X-Y pairs occurring in the

permuted sequence pair and the expectation IE½fðX;Y Þ� of

this probability distribution.
We first examine the case where X ¼ Y . We can

represent fðX;XÞ as the sum of l identical and independent
Bernoulli variables ftðX;XÞ, each of which equals 1 if an
X-X pair occurs at position t on the sequence pair, and 0
otherwise. The probability of a pair does not depend on t:
the probability that a residue of type X will occur at
position t on the first sequence is x1

l , where x1 is the number
of residues of type X in the first sequence, and the
probability that an X residue will occupy position t on
the second sequence is similarly x2

l , where x2 is the number
of X residues in the second sequence. Combining these
terms, we have

IP ftðX;XÞ ¼ 1½ � ¼ x1x2

l2

for all positions t. Because these residues are drawn with
replacement, these Bernoulli variables are independent, and
therefore, their sum, fðX;XÞ, is a binomial distribution, and
the probability of exactly i X-X pairs can be calculated as

IPXXðiÞ ¼ l �
x1x2

l2

� �i
� 1� x1x2

l2

� �l�i
:

The expected count of X-X pairs can be calculated using the

standard expectation of the binomial distribution:

IE fðX;XÞ½ � ¼ l � x1x2

l2
¼ x1x2

l
:

For the case where X 6¼ Y , we similarly represent

fðX;Y Þ as the sum of l Bernoulli variables ftðX;Y Þ with

the same characteristics. In this case, the probability that an

X-Y occurs at position t is the sum of the probability that an

X residue occurs at position t on the first sequence, and a

Y residue occurs at position t on the second sequence, with

the probability conversely that a Y residue occurs at

position t on the first sequence and an X residue occurs

at position t on the second sequence:

IP ftðX;Y Þ ¼ 1½ � ¼ x1y2

l2
þ y1x2

l2
¼ x1y2 þ y1x2

l2
;

where x1 and y1 are the number of residues of type X and

Y , respectively, on the first sequence, and x2 and y2 are the

number of residues of type X and Y on the second

sequence. Again, these independent Bernoulli variables

may be summed to a binomial distribution:

IPXY ðiÞ ¼ l �
x1y2 þ y1x2

l2

� �i
� 1� x1y2 þ y1x2

l2

� �l�i
;

with expectation

IE fðX;Y Þ½ � ¼ l � x1y2 þ y1x2

l2
¼ x1y2 þ y1x2

l
:

Note that the expected values for both cases are identical to
the expected values obtained by our internally random
model (Section 2.2). This ensures that the p-values obtained
by the two models can be compared directly to evaluate
statistical power.

For data sets of multiple sequences, we combine the
distributions for each single sequence into one database
distribution from which to derive p-values, as described in
Section 2.4.

2.6.2 Binomial Null Model for Sequence Pairs

The binomial null model for sequence pairs is more
complicated than that for spatial pairs, as the Bernoulli
variables are no longer independent. This model has
already been discussed in detail by Robin et al. [3]. For
our purposes, we have chosen to use full enumeration in
this study by calculating the probability of each possible
permutation of amino acids with replacement and summing
those containing the specified number of XY k patterns. As
with the spatial motif analysis, for data sets of multiple
sequences, we combine the distributions for each single
sequence into one database distribution from which to
derive p-values, as described in Section 2.4.

It is important to note, however, that the expected count
of sequence patterns under a binomial null model differs
from that under our internally random model. For the case
where X ¼ Y , we represent fðX;XjkÞ as the sum of
Bernoulli variables ftðX;XjkÞ, as we did for our internally
random model (Section 2.3.1), each of which equals 1 if an
XXk pattern occurs at position t, and 0 otherwise. Similarly,
this variable equals 0 if t > l� k and does not depend on t
otherwise:

IP ftðX;XjkÞ ¼ 1½ � ¼ x
l
� x
l

if t � l� k;

where x is the number of residues of type X in a sequence
of length l. Since we draw with replacement, the probability
that an X residue occurs at any position is simply x

l . As
there are l� k identical Bernoulli variables, their expecta-
tions may be summed:

IE fðX;XjkÞ½ � ¼ ðl� kÞx
2

l2
:

We note that, since l � x, this expectation is higher than
the expectation under our internally random model ((4)):

ðl� kÞx
2

l2
� ðl� kÞxðx� 1Þ

lðl� 1Þ ; ð10Þ

with equality only in the trivial cases where x ¼ l or x ¼ 0.
This reveals a particularly problematic aspect of the
binomial null model. When x ¼ 1, the expectation will be
nonzero, even though it is impossible for a sequence with
x ¼ 1 to contain an XXk pattern. Under our internally
random model, this expectation is appropriately zero.

For the case where X 6¼ Y , we again represent fðX;Y jkÞ
as the sum of Bernoulli variables ftðX;Y jkÞ, each of which
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equals 1 if an XY k pattern occurs at position t, and 0

otherwise. Again, this variable equals 0 if t > l� k and does

not depend on t otherwise:

IP ftðX;Y jkÞ ¼ 1½ � ¼ x
l
� y
l

if t � l� k;

where y is the number of residues of type Y in the sequence.

The expectation is then

IE fðX;Y jkÞ½ � ¼ ðl� kÞxy
l2
:

This expectation is lower than the expectation under our

internally random model ((3)):

ðl� kÞ xy
l2
� ðl� kÞ xy

lðl� 1Þ ;

with equality only in the trivial cases where x ¼ 0 or y ¼ 0.

3 RESULTS

Most of the combinatorial null models discussed above have
been applied to a real set of proteins, �-barrel membrane
proteins, with considerable success [6], [14]. This set is an
excellent example of a small data set of short sequences
that requires robust combinatorial models in order to
discover significant motifs. Less than 30 nonhomologous
members of this family of proteins are represented in crystal
structures, and transmembrane �-strands are on the average
9-10 residues in length. We describe and discuss these
results below. The most important feature of these
models, their robustness, can be noted in the number of
significant p-values.

We use the structures of 23 �-barrel membrane proteins
with a resolution of 3.0 �A or better as our data set,
comprising a total of 314 �-strands (Table 1). All proteins
share no more than 26 percent pairwise sequence identity.
The average length of a sequence in this set is 9.8 residues.
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TABLE 1
Data Set of 23 �-Barrel Membrane Proteins Used for This Study

TABLE 2
Spatial H-Bonded and Non-H-Bonded Motifs in TM �-Strand Pairs Significant at p < 0:05

Listed under “Permutation” are p-values from our internally random permutation model. Listed under “Binomial” are p-values from the alternative
binomial model described in the text.



The run time of each program on the entire data set was
less than a minute on an Intel Core Duo E4400 processor
at 2.0 GHz.

3.1 Analysis of Spatial Motifs in �-Barrel Membrane
Proteins

Table 2 lists pairwise interstrand spatial motifs we
discovered using the models described in Section 2.2.
These are divided into H-bonded and non-H-bonded pairs
(see reference for definitions [14]). Only motifs significant
at the threshold p-value of 0.05 are listed. Detailed
biological implications of these motifs are described in
[14]. Current analysis has led to the discovery of exciting
new roles for the motifs topping each list, G-Y in H-bonded
pairs and W-Y in non-H-bonded pairs. The former is a
result of “aromatic rescue” [38], the protection of the
backbone atoms of glycine from solvent by tyrosine’s large
side-chain. The latter motif, W-Y, appears frequently in the
“aromatic belt” of �-barrel membrane proteins, and allows
considerable van der Waals contacts between the two large
side chains.

Because there are 210 possible amino acid pairs in this
analysis, we calculate the false discovery rate (FDR), as
described in Section 2.4, in order to estimate the number of
significant results that are likely to be due to random
sampling rather than true statistical significance. For the
H-bonded motif analysis, random sampling produces an
average of 4.16 significant results (motifs and antimotifs
combined), compared with 9 significant results found in
the true data set (including antimotifs, not shown in
Table 2), which represents an FDR of 46 percent. For the
non-H-bonded motif analysis, random sampling produces
an average of 4.40 significant results, compared with 14 in
the true data set, which represents an FDR of 31 percent.
These results imply that 4-5 results from the H-bonded
analysis and 9-10 results from the non-H-bonded analysis
are truly statistically significant and, by extension, poten-
tially biologically significant.

We compare the results from our motif analysis, based
on the permutation model, to a binomial model, as
described in Section 2.6.1. For the H-bonded motif analysis,
the binomial model produces five significant results (motifs
and antimotifs combined), compared with nine significant
results found using our model. For the non-H-bonded motif
analysis, the binomial model produces nine significant
results, compared with 14 found using our model. In
Table 2, we compare p-values from our model and from the
binomial model. In every case, the p-value from our model
is more significant than the p-value from the binomial
model. It is clear from this comparison that our methods,
based on the permutation model, outperform the binomial
model on data sets of short sequences.

3.2 Analysis of Sequence Motifs in �-Barrel
Membrane Proteins

In Table 3, we report the pairwise intrastrand sequence
motifs we discovered, with calculated propensities and
p-values, as described in Section 2.3.1 [6]. Our method
allows us to calculate exact probability distributions
using the formulas provided for 306 of the 314 sequences.
Only eight of the sequences required full enumeration to

obtain exact distributions, either because x > 3 for an
XXk pattern or x > 2 and y > 2 for an XY k pattern.

Although we inspected multiple k values, the most
informative motifs occur when k ¼ 2, because in this
situation residues on �-strands are closest to each other.
Significant ðp < 0:05Þ motifs (propensity > 1.0) and anti-
motifs (propensity< 1.0) whenk ¼ 2 are displayed in Table 3.
Detailed biological implications of these motifs are published
elsewhere [6], but we discovered a clear pattern of the amino
acid tyrosine appearing in the second (C-terminal) position of
motifs and in the first (N-terminal) position of antimotifs. We
have called this phenomenon the aliphatic-Tyr dichotomy,
because it occurs most often with aliphatic residues, and it
may be involved in protein-lipid interactions.

Because there are 400 possible ordered amino acid pairs
for each value of k in this analysis, we correct for multiple
hypothesis testing by calculating the false discovery rate
(FDR), as described in Section 2.4, in order to estimate the
number of significant results that are likely to be due to
random sampling rather than true statistical significance.
For the case when k ¼ 2, random sampling produces an
average of 8.68 significant results (motifs and antimotifs
combined), compared with 30 significant results found in
the true data set (Table 3), which represents an FDR of
29 percent. This result implies that 21-22 results from our
analysis are truly statistically significant.

In addition to the standard null model, whose results
are listed in Table 3, we also utilized two other sequence
motif null models in our study, specifically, the posi-
tional null model for sequence motifs, which can be
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TABLE 3
Sequence Motifs and Antimotifs for k ¼ 2

and p < 0:05 in TM �-Strands



found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2008.101, and
the binomial model (Section 2.6.2).

The analysis of position-dependent motifs was per-
formed primarily to determine if single-residue position
preference confounds the results listed in Table 3. Motifs
were found to be similar between the two null models,
suggesting that there is little confounding effect. However,
some antimotifs showed divergence, and therefore, single-
residue preference must be taken into account when
discussing such antimotifs [6].

An analysis using the binomial model, as described in
Section 2.6.2, was performed to determine whether our
methods, based on the permutation model, are more power-
ful than existing methods based on the Bernoulli (i.e.,
binomial) model for data sets of short sequences. Although
the binomial method produces more statistically significant
results than our method for this data set (45 versus 30), these
results are misleading, as 19 of the 22 antimotifs discovered
by the binomial method are of the form XX2 (i.e., X ¼ Y ).
The only XX2 pattern not determined to be an antimotif,
CC2, does not appear in the data set, because cysteine is not
found in transmembrane �-strands. By comparison, the
antimotifs from our permutation method do not include any
XX2 pairs, while 4 of the 21 overrepresented motifs are of
the form XX2 (Table 3).

We investigate this discrepancy to determine which
model is more effective. It is possible that, even though
there were more significant results using the binomial
method, these results may be due to random sampling. We
calculate the false discovery rate (FDR) for the binomial
method using the same sampling technique described in
Section 2.4. Using the same data set, random sampling
produces an average of 38.68 significant results, compared
with 45 found in the true data set, which represents an FDR
of 86 percent. This is considerably worse than the FDR of
29 percent found for our internally random model, and
suggests that only 6-7 of the results from the binomial
method are truly significant. This compares unfavorably
with the 21-22 significant results from our method (Table 4).

The reason for this discrepancy becomes apparent when
the formulas for expectation between the two methods are
compared (Inequality 10). Under a binomial model, a
sequence with x ¼ 1 will have a nonzero expected count
of XXk patterns, even though it is impossible for an
XXk pattern to form in the true sequence. By comparison,
under our internally random model, the expected count of

XXk patterns is zero if x ¼ 1. In long sequences, such as
whole genes or genomes, it is rare for x ¼ 1, and therefore, the
binomial model is useful for its relative ease of calculation. In
short sequences, however, x ¼ 1 for most amino acidsX very
commonly. For example, in our data set of 314 sequences,
142 sequences contain exactly one alanine residue, while only
60 contain more than one. It is clear that coupling effects from
sampling with replacement introduce great unwanted bias in
the results of the binomial method, as shown by its high FDR
compared with our internally random model.

4 DISCUSSION

There are two well-known models for studying sequence
motifs: the permutation model and the Bernoulli model [3].
A third model, the Markovian model, is a form of the
Bernoulli model generalized to allow for dependence
between nearby residues in a sequence. The internally
random model proposed by Senes et al. in the context of
studying transmembrane helices is based on the permuta-
tion model, with a sequence pattern containing two
specified residues and a specified number of wildcard
residues between them [1]. This model provides one of the
most natural ways of building random sequences that share
common characteristics with the observed sequence. It is
well-suited for studying transmembrane helices and
strands, as they are short sequences (< 20 residues) for
which coupling effects are strong. However, this model is
not normally used for long sequences, such as whole genes
or genomes, because the methods for obtaining exact
distributions of null models greatly increase in complexity
for longer sequences [3]. In this situation, methods based on
the Bernoulli model, including Markovian methods, are
preferred [3]. For this reason, the permutation model is not
widely used.

The difference between the permutation and Bernoulli

models is determined by how sequences are permuted to

obtain null models. In the permutation model, they are

permuted without replacement, while in the Bernoulli model,

they are permuted with replacement. In long sequences, the

effects of this difference are negligible, and the power of the

two models to discover motifs is similar [3]. However, in

short sequences, this difference is significant, since not

replacing withdrawn residues greatly affects the sampling

space. It is well-known that, under the same conditions, the

hypergeometric distribution, which relies on sampling

without replacement and which we have used in this study

to derive formulas based on the permutation model, has a

lower variance than the binomial distribution, which relies

on sampling with replacement [39]. This difference trans-

lates into higher statistical power for hypothesis tests and is

greatest when the sample size (e.g., sequence length for

biological sequences) is small. Although tests based on the

hypergeometric distribution tend to be more computation-

ally complex, this complexity is manageable in short

sequences, and the statistical power takes priority. For this

reason, we adopt the permutation model in our study of

motifs in short sequences.
Several important results are known for the permutation

model and have been applied to the study of motifs in
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TABLE 4
False Discovery Rates for Sequence Motif Analysis

Under Two Competing Models

“# Signif. Results” is the number of significant results found in original
data set. “Avg. False Discoveries” is the average number of significant
results found after permuting residues in data set 1,000 times. “FDR” is
the false discovery rate.



nucleotide sequences. The total number of possible se-
quences for fixed nucleotide and dinucleotide compositions
can be derived using Whittle’s formula [40], and further
generalization using an embedding technique to fixed
compositions of tri- and tetranucleotides exists [3]. In
addition, the number of sequences containing a specific
word at a specific position can also be computed exactly and
hence the expected number of occurrences of this word.
However, while these fomulas are important for the study of
nucleotide sequences that are based on a genetic code of
trinucleotides, in which the third position is often degen-
erate, these results do not directly lead to discovery of
biologically significant sequence motifs in short protein
sequences, as there is no physical reason to adopt a null
model of contiguous di- or tripeptides.

In general, the permutation model remains difficult, as it
requires complex combinatorial analysis [3]. In fact, even
when simulation instead of combinatorial analysis is
employed to evaluate probabilities, it is not known how
to generate permuted random sequences with equal
probability while preserving various properties (e.g., the
composition of dinucleotide words) [3].

In this study, we have obtained useful results beyond
existing literature based on the permutation model for the
discovery of sequence motifs from fragments of very short
length, as well as spatial interaction motifs when these
fragments form interacting pairs. Our results are important
for discovery of biologically significant motifs when only
very limited data is available, as in �-barrel membrane
proteins. Our results show that a number of important
motifs can be successfully uncovered, and the results can be
used to understand the mechanisms of membrane protein
folding and to predict membrane protein structures [6], [14].
Finally, we show that our analytical methods for motif
discovery outperform similar methods based on the
Bernoulli model for a data set of short sequences due to
higher statistical power and lower false discovery rate.

Sequence motif analyses have already been performed
for transmembrane �-helices [1] and �-strands [6], and
spatial motif analysis for transmembrane �-strands [14],
with considerable success. There are still many problems for
which such analysis may generate useful insights. Spatial
motif analysis may reveal important residue interactions in
�-helical membrane proteins, where helices are often
packed closely together and at nearly coincidental axes.
Both sequence and spatial analyses are appropriate for any
data set of �-strands from a family of �-sheets. In addition
to transmembrane �-barrels, motifs in soluble �-barrels
have been studied [14]. Last, sequence analysis may be
useful for motif discovery in short sequences drawn from a
family of proteins with similar structure or function, in an
effort to determine common sites of function or locations
essential to structural integrity.
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I. APPENDIX

This is the appendix toRonald Jackups, Jr and Jie Liang.(2008) Combinatorial analysis for

sequence and spatial motif discovery in short sequence fragments. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, Accepted

A. Positional null model

The other motif analyses we have developed are based on aninternally random null model in

which the residues within each sequence are permuted, and each permutation is equally likely.

This assumption can be problematic in certain cases where there are biases of residue types for

certain positions in a sequence knowna priori. For instance, aromatic residues tend to be favored

at either end of a transmembraneα-helix or β-strand [1–3]. These single-residue biases may

confound two-residue propensities without providing additional information into the preferences

of these patterns. When such biases are known, it may be helpful instead to consider a null

model that accounts for them.

We therefore introduce apositional null model. Instead of permuting residues across all

positions within individual sequences, we permute residues across all sequences in a dataset

a) b)

Sequence 1

Sequence 2

Sequence 3

Sequence 4

1 2 3 4 5 6

t

Fig. 1. Difference between a) aninternally random null model for sequence motif analysis and b) aposition-
dependent null model. In both cases, only residues of the same shade arepermuted with each other. In a), residues
are permuted only within each sequence individually, whilein b), residues are permuted across sequences but only
within their specified positiont.
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Fig. 2. An example of interacting antiparallelβ-strands for use with a positional null model, as described in the
text. The three regions areN-terminal (gray), C-terminal (black), andcore (white). Arrows represent the N-to-C
direction. The two spatial pairing types are N-terminal with C-terminal and core with core. The N-terminal with
C-terminal pairing type is an example of paired residues from different regions (r 6= s), while the core with core
pairing type is an example of paired residues from the same region (r = s). These pairing types do not overlap:
N-terminal residues may only pair with C-terminal residues, and core residues may only pair with other core
residues.

within specific positions (Figure 1). We have adapted this null model for both spatial and sequence

motifs.

1) Positional null model for spatial interaction pairs: When calculating position-dependent

propensities for spatial motifs, we need a meaningful definition of position. Here, we allocate

residues into regions. Although these regions do not have tobe the same length along a sequence,

interacting regions within a sequence pair must have equal length, and regions may not overlap.

In other words, if a residue in regionr interacts with a residue in regions on a spatially adjacent

sequence fragment, all residues in regionr in the dataset must only interact with residues in

regions. It is possible for residues in the same region to interact with each other, as long as no

residue in that region interacts with any other region in thedataset. For example, for interacting

antiparallelβ-strands, we may divide each strand into three regions, the N-terminal, central core,

and C-terminal regions, and all interacting strand pairs into two spatial pair types, N-terminal

with C-terminal and core with core (Figure 2). This would require that no core residue interact

with an N-terminal or C-terminal residue.

The null model for position-dependent spatial motifs differs depending on whether paired

residues are from the same region (r = s) or different regions (r 6= s), and whether the residue

types in the pair are the same (X = Y ) or different (X 6= Y ).

Null model when r = s and X = Y .

Let nr be the number of residues in regionr. Because residues in regionr may only interact

with other residues in regionr, there will be nr

2
residue pairs in regionr. The probability that
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n r

x r

y r

x r

a) b)

X−X
i

X−X’

X’−X’

2

j

k

−i−2k

−i−2j

X−X

Y−Y

X−N

Y−N

N−N

−2i

i X−Y

Fig. 3. Division of residue pair types in the position-dependent spatial motif null model whenr = s and a)X = Y

or b) X 6= Y . Black = X , gray =Y , white = X ′ (not X) or N (neitherX nor Y ).

an arbitrary pair in regionr will be of type X-X is the number of ways to choose 2 of thexr

residues of typeX in region r divided by the number of ways to choose 2 of thenr residues

of all types in regionr. Thus, the expected value ofX-X pairs in regionr is:

E(X, X|rr) =

(

xr

2

)

(

nr

2

) ·
nr

2
=

xr(xr − 1)

2(nr − 1)
.

To determinePXX|rr(i), the probability ofi X-X pairs in regionr in the dataset, from which

p-values may be calculated, we first introduce the 3-element multinomial function:

M(a, b, c) ≡
a!

b!c!(a − b − c)!
,

whereM(a, b, c) = 0 if a − b − c < 0. We visualize regionr in the dataset as two interacting

columns of lengthnr

2
. WhenX = Y , we must assign thexr number ofX residues inr to each

column. There are
(

nr

xr

)

ways to do this. In order to obtain exactlyi X-X pairs, thenr

2
residue

pairs must be divided into 3 distinct groups:i X-X pairs,xr − 2i X-X ′ pairs, andnr

2
− xr + i

X ′-X ′ pairs, whereX ′ is any residue other thanX (Figure 3a). There areM(nr

2
, i, xr−2i) ways

to do this. Finally, there are two ways to place each of thexr − 2i X-X ′ pairs, depending on

which column contains theX residue. Multiplying these factors together, we obtain:

PXX|rr(i) =
M(nr

2
, i, xr − 2i) · 2xr−2i

(

nr

xr

) .

Null model when r = s and X 6= Y .
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The expected value whenX 6= Y is similar to that whenX = Y , except that there arexryr

ways to choose anX-Y pair:

E(XY |rr) =
xryr
(

nr

2

) ·
nr

2
=

xryr

nr − 1
.

However,PXY |rr(i), the probability ofi X-Y pairs in the dataset, is more complicated. We must

first introduce a six-variable multinomial function:

M(a, b, c, d, e, f) ≡
a!

b!c!d!e!f !(a − b − c − d − e − f)!

Again, we visualize regionr as two interacting columns of lengthnr

2
. We must assign thexr

number ofX residues and theyr number ofY residues in regionr to each column. There are

M(nr, xr, yr) ways to do this. In order to obtain exactlyi X-Y pairs, thenr

2
residue pairs must

be divided into 6 distinct groups:i X-Y pairs,j X-X pairs,k Y -Y pairs,xr−i−2j X-N pairs,

yr − i− 2k Y -N pairs, andnr

2
− xr − yr + i + j + k N-N pairs, whereN , “neither,” represents

any residue other thanX or Y (Figure 3b). There are 3 degrees of freedom,i, j, and k, as

long as none of the six quantities is negative. There areM(nr

2
, i, j, k, xr − i − 2j, yr − i − 2k)

ways to distribute the residues into these pairs, and two ways to place each pair of typeX-Y ,

X-N , or Y -N , depending on which column contains which residue type, comprising a total of

xr + yr − i − 2j − 2k pairs. The probability of each combination ofi, j, andk is then:

P(i, j, k) =

M(nr

2
, i, j, k, xr − i − 2j, yr − i − 2k) · 2xr+yr−i−2j−2k

M(nr, xr, yr)

The marginal probability distribution function fori X-Y pairs, then, is the sum over all

possible values ofj andk:

PXY |rr(i) =

xr−i
2

∑

j=0

yr−i

2
∑

k=0

P(i, j, k).

The summation limits ensure that none of frequencies of the six pair types is negative.

Null model when r 6= s.

WhetherX = Y or X 6= Y , the null model whenr 6= s follows the same distribution. A
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distinction must be made betweenXr, a residue of typeX occurring in regionr in one sequence,

and Xs, a residue of typeX occurring in regions in the other sequence. Thus, anX-Y pair,

which we define as anXr-Ys pair, is different from aY -X pair, which isYr-Xs. Because there

is a one-to-one correspondence between residues in regionr and regions, nr = ns is the total

number ofr-s pairs.

In order for exactlyi X-Y pairs to occur,i Xr residues must be drawn from a possiblexr

residues of typeX to matchi Ys residues drawn from a possibleys residues of typeY . This

situation can be modeled with a simple hypergeometric distribution:

PXY |rs(i) =

(

xr

i

)(

nr−xr

ys−i

)

(

nr

ys

) .

The expected value can be calculated from this distribution:

E(XY |rs) =
xrys

nr

.

2) Positional null model for sequence pairs: We first define thepositional residue frequency

xt as the number of residues of typeX occupying thet-th position of all sequences in the

dataset. If all sequences in a dataset are the same length, then all positionst will have the same

total number of residues of all types, which is also the number of sequences in the dataset. If

different lengths are represented in the dataset, it is necessary to normalizet to be within an

appropriate range[1, l], to approximate an average or predetermined sequence length of l:

t = ⌈
l(tobs − 0.5)

lobs

⌉,

where tobs ∈ {1, 2, 3, · · · , lobs} is the actual position of the residue within its sequence,lobs is

the actual length of the sequence,⌈x⌉ represents the ceiling function, equal to the lowest integer

greater than or equal tox, and the 0.5 factor is a correction for continuity to round tothe next

integer. This ensures that1 ≤ t ≤ l, no residues are removed from the model by truncation, and

each positiont will be represented by nearly the same number of residues.

In order to calculate position-dependent sequence propensities, we use permutation within

each position in a sequencewith replacement across all sequences. Although all of the other
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null models in this study rely on permutation without replacement, such permutation would

be complex for this null model. Since this model is based on datasets of multiple sequences

instead of individual sequences, the approximation of sampling without replacement will not be

problematic as long as a large enough sample of sequences is used.

The probability that anXY k pattern appears at positiont is 0 if t > l − k, because anXY k

pattern at that position would span across the end of a sequence of lengthl. Otherwise, the

probability of anXY k pattern at positiont is the probability of a residue of typeX being

placed at positiont multiplied by the probability of a residue of typeY being placed at position

t + k:

P(X, Y |k, t) =
xt

nt

·
yt+k

nt+k

,

wherext is the number of residues of typeX in position t on all sequences,yt is the number

of residues of typeY in positiont, andnt is the number of all residues of all types in position

t. This null model can be represented as a binomial distribution, such that the probability ofi

XY k patterns at positiont in the dataset is:

PXY k|t(i) =

(

nt

i

)

P(X, Y |k, t)i[1 − P(X, Y |k, t)]nt−i,

and the expected value is:

E[f(X, Y |k, t)] = nt · P(X, Y |k, t).

If instead we are interested in the dataset-wide probability of anXY k pattern at any arbitrary

position of the sequence, we must calculate the average ofP(X, Y |k, t) over all l − k possible

positions:

P(X, Y |k) =
1

l − k

l−k
∑

t=1

P(X, Y |k, t).

This null model can similarly be represented as a binomial distribution with probability

distribution function:

PXY k(i) =

(

nk

i

)

P(X, Y |k)i[1 − P(X, Y |k)]nk−i,
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where nk is the number of all pairs of all residue typesk residues apart in the dataset. The

expected value is then:

E[f(X, Y |k)] = nk · P(X, Y |k).

Unlike the situation where only one positiont is concerned, this distribution represents the sum

of dependent Bernoulli variables. Methods of accounting for this dependence can be found in

Robin et al. [4].
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