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Abstract

Characterizing the conformations of protein in the transition state ensemble (TSE) is important

for studying protein folding. A promising approach pioneered by Vendruscolo et al40 to study TSE

is to generate conformations that satisfy all constraints imposed by the experimentally measured

φ-values that provide information about the native-likeness of the transition states. Faisca et al12

generated conformations of TSE based on the criterion that, starting from a TS conformation,

the probabilities of folding and unfolding are about equal through Metropolis Monte Carlo (MC)

simulations. In this study, we use the technique of constrained sequential Monte Carlo method

(CSMC)26,44 to generate TSE conformations of acylphosphatase (AcP) of 98 residues that satisfy

the φ-value constraints, as well as the criterion that each conformation has a folding probability

of 0.5 by Metropolis MC simulations. We adopt a two stage process and first generate 5,000

contact maps satisfying the φ value constraints. Each contact map is then used to generate 1,000

properly weighted conformations. After clustering similar conformations, we obtain a set of properly

weighted samples of 4,185 candidate clusters. Representative conformation of each of these cluster

is then selected and 50 runs of Markov chain Monte Carlo (MCMC) simulation are carried using

a regrowth move set. We then select a subset of 1,501 conformations that have equal probabilities

to fold and to unfold as the set of TSE. These 1,501 samples characterize well the distribution of

transition state ensemble conformations of acylphosphatase. Compared with previous studies, our

approach can access much wider conformational space and can objectively generate conformations

that satisfy the φ-value constraints and the criterion of 0.5 folding probability without bias. In

contrast to the previous studies, our results show that transition state conformations are very diverse

and are far from native-like when measured in cRMSD (Cartesian Root-Mean-Square Deviation):

the average cRMSD between TS conformations and the native structure is 9.4Å for this short

protein, instead of 6Å reported in previous studies. In addition, we found that the average fraction

of native contacts in the TSE is 0.37, with enrichment in native-like β-sheets and a shortage of long

range contacts, suggesting such contacts form at a later stage of folding. We further calculate the

first passage time of folding of TSE conformations through calculation of physical time associated

with the regrowth moves in MCMC simulation through mapping such moves to a Markovian state

space model with transition time obtained by Langevin dynamics simulations. Our results indicate
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that despite the large structural diversity of the TSE, they are characterized by similar folding

time. Our approach is general and can be used to study TSE in other macromolecules.
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I. INTRODUCTION

While protein native conformation provides the structural basis of its biological function,

it is important to understand how proteins fold to its native state8,29,37. Protein folding is

a complex process that involves many different molecular and cellular machinery. Protein

conformations are inherently heterogeneous and, in many cases, misfolded proteins can cause

diseases such as Alzheimer’s disease, Parkinson’s diseases, and type II diabetes1. Charac-

terizing the conformations of transition state ensemble (TSE) of protein folding has been a

major focus in protein folding studies2,15,17,35,38. Transition state ensemble (TSE) are usually

understood to be those conformations around the saddle point of the landscape of protein

folding35. These conformations have about the same probability to either fold or unfold. Be-

cause the transition states are transient in nature, can contain a wide range of conformations,

and are often dynamic with significant amount of structural fluctuations, it is challenging to

study them with experimental techniques.

An important approach to study TSE is the φ-value analysis16. By measuring the changes

of free energy of activation and free energy of folding upon mutating a residue, this technique

provides a measure of the extent of formation of structure relative to denatured and native

states of the TSE. Experimental φ-value analysis can also provide information on the degree

of formation of secondary and tertiary structures36, backbone-backbone hydrogen-bonding

interactions7, and movement around the transition state in the folding energy landscape19.

Computational studies have also leaded to important insight on how protein folds. Among

these, lattice models and molecular dynamic have been successfully applied to study protein

folding and to characterize partially unfolded structures14. Klimov and Thirumalai used

exhaustive simulations of lattice models with side-chains to study transition state ensemble

of two-state folders22. Day and Daggett ran multiple molecular dynamic simulations at

different temperature and solvent environment to study the folding/unfolding transition

state ensemble of chymotrypsin inhibitor 26. Ding et al reconstructed the TSE of the src-SH3

protein domain from molecular dynamic simulations9. Prompers and Brüschweiler combined

molecular dynamics with NMR relaxation spectroscopy to study the dynamics of folded and

unfolded proteins31. Zagrovic et al found that the mean structure averaged over unfolded
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ensemble of three different folds small proteins are native like42. Experimental information,

such as NMR residual dipolar couplings, can be used as constraints to select unfolded state

structures27. Other information from NMR spectroscopy can also be incorporated to define

partially folded intermediate states23,32. Richter et al provided a solution to solve over-fitting

and under-fitting problems when calculating ensemble of structures with NMR constraints33.

To generate explicit conformations of the TSE, Vendruscolo et al used information from

experimental φ-values28,40. The φ-value at individual residue position is defined as the ratio

of stability change to the transition state upon mutation versus stability change of the

native folded state upon the same mutation24,25. φ-values can be measured experimentally

and provide rich information about the native-likeness of protein structures in the TSE13,41.

Following Li and Daggett’s work25, Vendruscolo et al defined TSE as the conformations that

satisfy

φcalc
i

△
=

NTSE
i

NN
i

≃ φexp
i , (1)

for the i-th residue with experimentally measured φ-value φexp
i . Here the calculated φ-value

φcalc
i of residue-i is defined as the ratio of the number NTSE

i of native contacts formed by

the residue in the transition state, over the number NN
i of contacts formed by the residue in

the native state. Using Markov chain Monte Carlo method (MCMC) with crank-shaft move,

the authors generated a set of TSE conformations based on this model for acylphosphatase

(AcP), a protein with 98 residues.

Faisca et al12 used a different approach to identify conformations in the TSE based on the

idea that the conformations in TSE have equal probability to either fold or unfold10. Start-

ing from a random conformation, independent Monte Carlo (MC) simulations are carried

out. If in half of these independent MC runs, the structure folds before unfolds, the initial

conformation is identified as a member in the TSE.

In this work, we generate TSE conformations of AcP with the combined constraints of ex-

perimental φ value as studied by Vendruscolo et al40 and the pFold criteria10 as implemented

by Faisca et al12. We use constrained Sequential Monte Carlo to generate candidate con-

formations that satisfy all φ-value constraints. Markov chain Monte Carlo simulations are

then carried out to each of the candidate conformations and select only the conformations

with folding probability of 0.5. Our main contribution is that, through further development
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of the technique of constrained Sequential Monte Carlo method first reported in ref26, we

ensure rigorous and efficient sampling of the whole space of TSE under stringent constraints

from both φ-values and the pFold model without bias towards native conformations due to

inadequate sampling in molecular dynamics simulation, or the unsolved difficulty in assessing

adequate mixing when applying Metropolis type of Monte Carlo sampling techniques.

This paper is organized as follows. In Section 2, we described our method to generate

conformations in TSE for the protein AcP. Findings and interpretations of the reproduced

TSE are reported in Section 3, followed by the Conclusion Section.

II. MODEL AND METHOD

A. Generating candidate conformations of TSE

We first generate a set of candidate conformations of the transition state ensemble of AcP

that satisfy the constraints of all experimentally measured φ-values at different positions of

amino acid residues. Here we follow Vendruscolo et al’s model of φ-value constraints40.

Specifically, our goal is to generate a proper set of conformations that are uniformly dis-

tributed in the model constrained space

Ωφ = {xn : |φcalc
i − φexp

i | < 0.15 for all i ∈ I}, (2)

where xn = (x1, · · · , xn) denotes a conformation of the protein, which has n residues. xi is

the location of i-th residue, φexp
i and φcalc

i are the experimentally measured φ-value and the

calculated φ-value of the i-th residue, respectively; I is the set of residues whose φ-values

have been measured experimentally.

We consider a three-dimensional cubic lattice model, in which residues in conformation

xn are located on the lattice sites with a unit length of 1.3 Å and satisfy the self-avoiding,

bond-length, bond-angle, and torsion-angle constraints. It is based on an off-lattice 4-state

model, and on average there are 23 candidate positions for placing an additional residue to a

partial chain26. Two residues are defined to be in contact if the distance between them is less

than 8.5 Å . Details of this lattice model and constraints are described in26,44. In this lattice
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model for protein AcP, the conformation that is closest to the native structure in terms of

cRMSD has 88% native contacts preserved.

We use the sequential Monte Carlo technique to generate AcP structures. It is a growth-

based method that can generate samples {(x(j)
n , w(j)), j = 1, · · · , m} properly weighted with

respect to a given target distribution π(xn). The weights are calculated as w(j) △
= w(x

(j)
n ) =

π(x
(j)
n )/q(x

(j)
n ), where q(x

(j)
n ) is the probability of generating the sample x

(j)
n . If this sampling

distribution satisfying q(xn) > 0 for all xn ∈ {xn | π(xn) > 0}, any function h(xn) under

the target distribution π(xn) can be estimated by

Êπ

(
h(xn)

)
=

∑m
j=1 w(j)h(x

(j)
n )

∑m
j=1 w(j)

. (3)

In addition, the normalizing constant of the target distribution π(xn) in any set Ω, namely,

the partition function in the case when the target distribution is the Boltzmann distribution,

can be estimated using

∑

xn∈Ω

π(xn) ≈ 1

m

m∑

j=1

w(j) · I(x(j)
n ∈ Ω), (4)

where I(·) is the indicator function: I(·) = 1 if the statement represented by (·) is true, 0

otherwise.

Lin et al26 used a two-stage sequential Monte Carlo method to efficiently generate con-

formation samples properly weighted with respect to the uniform distribution in Ωφ, that

is, π(xn) ∝ I(xn ∈ Ωφ). At the first stage, 5,000 contact maps are sampled from the uni-

form distribution of all contact maps satisfying the φ-value constraints. Here each sample

is a realization of a n × n symmetric contact map C = {cij}n×n, where cij = 1 if residue i

and residue j are in contact, and cij = 0 otherwise. At the second stage, for each contact

map sample, 1, 000 properly weighted conformational samples satisfying this contact map

are generated. For protein AcP, Fig. 1 shows the experimentally measured φ-values and the

weighted average of the calculated φ-values of the generated conformation samples.

To reduce the number of candidate conformations, we cluster similar conformations to-

gether. First, we arrange all the conformations in a random order. Starting from an empty

set, we add one conformation at a time to the current system of clusters, from the first

conformation to the last conformation. For each conformation, it is compared with all the
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current cluster representatives. If its cRMSD to any previous clusters is larger than a cutoff-

value, it is regarded as being a member of a new cluster; otherwise, it is grouped with the

nearest cluster. The cutoff value for clustering used in this study is 2 Å . The weight of

each cluster is the summation of the weights of all conformations in that cluster, and the

representative structure of each cluster is chosen as the conformation with the largest weight

in that cluster. For protein AcP, we obtained a total 4,185 clusters. The fraction of native

contacts preserved in these clusters is within a small range of 0.15, namely, from 0.26 to

0.41. This is not surprising because of the strong φ-value constraints imposed.

B. Identifying conformations in TSE using Markov chain Monte Carlo

a. pfold estimated by Markov chain Monte Carlo: In addition to the constraints from

measured φ-values, we further adopt the pfold model introduced in5,11 in which the transition

state conformation will have about equal probability to fold or unfold. According to5,11, in

a system with two stable states (the folded state and the unfolded state), the folding prob-

ability, pfold of any conformation is defined as the probability that it will reach the folded

state before reaching the unfolded state. pfold can be regarded as a measure of the kinetic

distance between the given conformation and the folded state. It is therefore reasonable to

assume that the conformations in the TSE would have pfold = 0.5. Starting from a specific

conformation, Faisca et al calculates pfold of the conformation by recording the ratio of runs

of Markov chain Monte Carlo simulations that reach the folded state before reaching the

unfolded state12. The conformations of TSE are then obtained by selecting those conforma-

tions with pfold = 0.5. We follow this strategy to compute pfold for candidate conformations

that satisfy the φ-value constraints.

Briefly, we construct a Markov chain z
(1)
n , z

(2)
n , · · · , z

(t)
n , · · · for the target equilibrium

distribution π(zn) of Boltzmann distribution by the Gō-potential as follows34: Starting with

z
(1)
n = xn, where xn is one of the candidate conformations; at each step t, a random move

selected from a primitive move set is applied to z
(t−1)
n to obtain a new conformation z

new
n .
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z
new
n is accepted as z

(t)
n with probability

min

{
1,

g(z
(t−1)
n | z

new
n )π(znew

n )

g(znew
n | z

(t−1)
n )π(z

(t−1)
n )

}
,

and let z
(t)
n = z

(t−1)
n otherwise. Here g(znew

n | z
old
n ) is the probability of moving from the

current conformation z
old
n to the new conformation z

new
n .

b. Re-growth move set: We use the primitive move set developed by Zhang et al43 in

this study. The primitive move is to randomly remove a fragment of the current conforma-

tion z
(t−1)
n , and regenerate the removed fragment to obtain a new conformation z

new
n . The

fragment is regenerated using sequential Monte Carlo under the constraint that the two ends

of the fragment are fixed. If the removed fragment is at the tail of the conformation, only one

end is fixed. The starting position of the fragment to be replaced is uniformly distributed

along the full chain, and the fragment length is uniformly distributed between 5 and 12.

c. Folded and unfolded state: We assess whether a Markov chain {z(t)
n } at time t has

reached the folded state or unfolded state by criteria based on the number of native contacts

preserved in the conformation z
(t)
n . We set two thresholds Nfold and Nunfold for the number

of native contacts in a conformation. If the number of native contacts preserved in z
(t)
n is

larger than Nfold, the conformation is considered to be folded. If it is less than Nunfold, the

conformation is considered to be unfolded.

The values of Nfold and Nunfold are determined as follows. For Nfold, we sample uniformly

from the set of near native conformations (NNS) ΩNNS. Here we follow44 and define the set

of NNS as those within 3 Å in cRMSD from the native structure. Nfold is defined as the

threshold value of number of native contacts, such that only 5% of the conformations in

ΩNNS have less than Nfold native contacts. For Nunfold, we sample uniformly from the set of

denatured conformations ΩD, defined as the set of conformations with > 10 Å in cRMSD

from the native structure. Nunfold is defined as the threshold value of number of native

contacts, such that only 5% of the conformations in Ωunfold have more than Nunfold native

contacts. Since the majority of the conformations in the set of all possible conformations

have cRMSD to the native structure > 12 Å , the choice of the value of 10 Å for deriving

Nunfold is not critical.

We use the sequential Monte Carlo method described in44 to generate sets of proper
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weighted conformations in both ΩNNS and ΩD. Fig. 2(a) shows the values of the two thresh-

olds for Nfold and Nunfold for protein AcP. They satisfy Nfold/N = 0.65 and Nunfold/N = 0.15,

where N is the number of contacts in the native structure.

d. The energy function in Markov chain Monte Carlo: In the Markov chain Monte

Carlo runs, the energy function we use is the Gō-potential18

H(xn) =
∑

i>j+3

U(xi, xj),

where U(xi, xj) = −1 only if residue i and j are in contact, namely, |xi − xj | < 8.5 Å, in

both conformation xn and the native structure. The equilibrium distribution of the Markov

chain {z(t)
n } is π(xn) ∝ exp{−H(xn)/τ}, where τ is the temperature parameter. Here we

use s slightly different definitions of the set of NNS and the set of denatured conformations,

based on Nfold and Nunfold:

Ω∗
NNS

△
= {xn | number of native contacts preserved in xn is larger than Nfold},

Ω∗
denature

△
= {xn | number of native contacts preserved in xn is less than Nunfold}.

Following Ref.12, the folding temperature is selected so that the folded structures and the

denatured structures have equal probabilities in the equilibrium distribution. That is,

∑

xn∈Ω∗

NNS

exp{−H(xn)/τ} ≃
∑

xn∈Ω∗

denature

exp{−H(xn)/τ}. (5)

For a specific given temperature τ , We again use the sequential Monte Carlo technique to

estimate the values of both sides of Eq. (5)44. For protein AcP, the temperature is set to

τ = 1.654, which makes both sides of Eq. (5) equal.

We carry out 50 Markov chain Monte Carlo runs for each of the 4,185 conformations

that satisfy the φ-value constraints. We then test the null hypothesis pfold = 0.5. This

null hypothesis is rejected if the statistical p-value of the number of runs that lead to the

folded state is less than 5%. Or equivalently, if the number of runs that fold is less than

17 or larger than 33 among the 50 independent runs starting from xn, we reject the null

hypothesis that pfold = 0.5, and this conformation xn is not included in the TSE. Otherwise,

xn is included in the TSE. Fig. 2(b) shows the number of runs that lead to the folded state

for 4,185 conformations. A total 1,501 conformations are included in the TSE.
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III. RESULTS

In this section, we study the physical properties of conformations that form the TSE

of the protein AcP using the aforementioned procedure. The generated samples repre-

senting the TSE of AcP consist of 1,501 clusters of conformations, each conformation is

associated with a properly calculated weight with respect to the Boltzmann distribution

π(xn) ∝ exp{−H(xn)/τ}. As the weight obtained in Section IIA is with respect to the uni-

form distribution in the constrained space Ωφ, they have been adjusted by a multiplication

factor exp{−H(xn)/τ}.

A. TSE can be far away from the native state

We plot the distribution of cRMSD between TS conformations and the native state and

the distribution of the fraction of native contacts preserved in TS conformations in Fig. 3(a)

and (b), respectively. The un-weighted transition state ensemble has a large variation, with

the cRMSD ranging from 6 Å to 14 Å and the fraction of native contacts preserved varying

from 0.28 to 0.38. In contrast, the transition state ensemble weighted with respect to the

Boltzmann distribution is much more homologous - the majority of conformations have a

cRMSD of 9.4 Å and fraction of native contacts preserved of 0.37. The difference between

un-weighted and weighted TSE demonstrates that TS conformations are structurally diverse.

Although the weighted TSE is much more homologous than the un-weighted one, the average

cRMSD remains to be large, compared with the value of 6 Å reported in a previous work40.

This difference is likely due to the fact that our method can access much wider conforma-

tional space in severely constrained space. As a result, TS conformations that are far away

from the native state are successfully identified, and are represented proportionately with

correct importance weights that adjusts the sampling bias for using a sampling distribution

that is different from the target distribution. The weight ensures that it neither exaggerates

nor underestimates the importance of these conformations in the TSE that are far away from

the native state. In fact, the characterizations of TSE are accurate for conformations of any

nature, including those that are close to the native state.

To compare TS conformations with other conformations satisfying φ-value constraints,
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we divide the 4,185 candidate conformations generated into three groups:

ΩTSE = {xn|xn satisfies the φ-value constraints and with pfold = 0.5},

ΩDS = {xn|xn satisfies the φ-value constraints and with pfold < 0.5},

ΩNS = {xn|xn satisfies the φ-value constraints and with pfold > 0.5}.

That is, if the number of folded runs among the 50 independent Markov chain Monte Carlo

simulations starting from xn is between 17 and 33, the conformation xn is considered to be

in set of transition state ensemble ΩTSE. If the number of folded runs is less than 17, xn is

considered to be in set ΩDS of denatured side (DS). If the number of folded runs is larger

than 33, xn is considered to be in set ΩNS of native side (NS).

We plot the distribution of cRMSDs between the conformations in these three sets and

the native conformation in Fig. 3(a),(c),(e), and the distributions of the fraction of native

contacts preserved in these three sets in Fig. 3(b),(d),(f).

Although it appears that many conformations with lower RMSD have small weights as

the weighted mean cRMSD is larger (Fig 3e), and there are low energy conformations with

large cRMSD that dominate in mean cRMSD calculation, we cannot conclude that in general

conformations with higher cRMSD have lower energy. The conformations generated are from

a strongly constrained region with both φ-value and folding rate constraints imposed. As

a result, energy of conformations in this set are not significantly correlated with cRMSD.

Fig. 4 shows the plot of energy and cRMSD of the TSE conformations to the native state.

There is little correlation between energy and cRMSD of TSE. The estimated correlation

coefficient is −0.035, with a p-value of 0.173 for a two-sided t-test of zero correlation.

It is not surprising to see that the conformations in ΩDS have larger cRMSD to the

native structure and less native contacts preserved compared to the conformations in ΩTSE.

Similarly as expected, we find that conformations in ΩNS have smaller cRMSD to the native

structure and contain more native contacts than ΩTSE.

It is informative to examine possible residual secondary structures in the transition state

ensemble. AcP protein contains the following secondary structures: β1 (residues 7-13), α1

(residues 22-33), β2 (residues 36-42), β3 (residues 46-53), α2 (residues 55-66), β4 (residues

77-85), and β5 (residues 93-97).
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Fig. 5 shows the distribution of cRMSDs between fragments of secondary structures in

the weighted TSE and in the native conformation. We find that although in general that

the native secondary structures are not well-preserved in the TSE, fragments of native β-

sheets are more enriched in the TSE compared to α-helices. This is consistent with previous

study40.

It has been suggested that the topology of the transition state of AcP is defined by the

relative positions of just three “key” residues Y11, P54 and F9440. We have carried out

additional study using only φ-values at these three key residues as constraints. We find that

φ-values of the other residues can be largely recovered from conformations generated using

constraints at the three key residues alone (Fig. 6 (a)). The correlation coefficients between

the calculated φ-values of all residues recovered using constraints at the three residue and

at 24 residues is 0.79. However, the ensemble of conformations generated have overall much

larger cRMSD to the native conformations when only three constraints are used (Fig. 6 (b)).

B. Correlation between point-wise distances and φ-values

We define the point-wise distance of residue i between a conformation and the native

conformation as the Euclidean distance between the locations of residue i after optimal rigid

superposition of these two conformations. The average point-wise distance of each residue

between the weighted TSE and the native state conformations is shown in Fig. 7.

For the 24 residues in AcP with experimentally measured φ-values, the correlation between

the φ-values and the corresponding point-wise distance is -0.574, with a p-value= 0.0017 for

testing zero correlation by a one-sided t-test. The correlation between the calculated φ-

values of all residues and the corresponding point-wise distances is -0.502, with a p-value of

6.93 × 10−8. These observations can be rationalized by the physical models of the φ-values.

If φ-value is large, the structure of TSE around the residue is close to the native state, and

thus the corresponding point-wise distance is small with many physical contact constraints

reflected by the high φ-values. If the φ-value is small, the structure of TSE around the

residue is disrupted, and the corresponding point-wise distance is therefore large.
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C. Contact order of TSE

Contact order has been widely used to study the correlation of protein native structures

and protein folding rate30,45. It is defined as the average residue separation of the contact.

We examine the distribution of all native contacts preserved in the weighted TSE at different

residue separations in Fig. 8(a). For comparison, the distribution of residue separation for

the native conformation in also shown in Fig. 8(b).

We find that the average contact order of native contacts preserved in the weighted TSE

is 33.2, while the contact order for the native state is 37.3. Our result shows that there are

less long range contacts in the TSE. That is, long range native contacts often occur after

protein chains departed from the transition state.

Paci et al. provided a detailed study of contact order of TSE for 10 proteins28. They added

an energy term based on RMSD in φ-value to the energy function of molecular mechanics.

The contact order of TSE reported here is somewhat different. This is likely due to the

difference in the potential function used. Detailed information on how contact order of TSE

is related to protein folding rate can be found in28. A study based on a modified concept

called geometric contact showed that both two-state and multi-state protein folding rate are

well correlated to the native state topology45. A detailed theoretical study we have carried

out on enumerated 2D HP sequences suggests that the folding rate of model proteins of the

same native state can differ by 1,000, and the observed correlation of folding rate and native

state topology in real proteins may be a consequence of evolutionary selection20.

D. The first passage time

We now we estimate the first passage time (FPT), which is defined as the average of time

required for a conformation in the transition state to fold into its native state. Because the

number of Markov moves required for a conformation to fold depends on the specific details

of the move set, it usually does not reflect the true physical time required for folding. To

arrive at some estimations of the time required for a transition state conformation to fold,

we use langevin dynamics simulation to estimate the true physical time that each Markov

move takes.
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Given the number of residues (L = 5, · · · , 12) in the regrown fragment and the end-to-

end distance r of the fragment-ends, we perform MD simulations to estimate the traveling

time between different fragment configurations that have the same number of residues L

and the same end-to-end distance r. Here we discretize r into bins of intervals between

r = 1.5 Å, 2.0 Å, 2.5 Å, · · · , according to the end-to-end distance.

a. Simulation of physical movement of fragment: For a fragment x of length L and end-

to-end distance r, we run Langevin dynamics simulations to sample its conformations and

calculate the transition time between different conformational clusters. That is, we aim to

provide physically relevant time scale for each elementary Monte Carlo move that transform

the conformation of a fragment. Since our goal is to assess the physical time of the movement

or diffusion of a fragment, we fix its two-ends and measure the time required to transform

the conformation of the fragment from xL(t1) to xL(t2). Here we use a simplified model,

in which the residues in the fragment are treated as connected beads, and they are allowed

to move freely in the space subjected to the constraints imposed by other residue beads

in the fragment through several types of interactions, including the bond interaction, angle

interaction, and van der waals interaction. The motion of the system is simulated using

Langevin dynamics, where the equation governing the motion of all residues in the fragment

is21:
d2

x(t)

dt2
= −γ

dx

dt
+ f(x, t) + αǫ(t), (6)

where x(t) is the position vector of the residues at time t, γ is the friction constant, f(x, t)

is the conformational force per unit mass, and α is a constant defined as α = (2γT/m)
1

2 ,

in which T is the temperature, m is the mass, and ǫ(t) is the Gaussian random force at

time t, such that the autocorrelation function < ǫ(t), ǫ(t′) >= δ(t − t′), where δ(t) is the

delta function. Here we have γ = 0.05τ−1, with τ =
√

m · l · l/e being the time unit of the

simulation. m = 1 is the mass unit, l = 3.8Å is the length unit, and e = 1 is the energy unit.

Veitshans et al. provided a discussion on the choice of the value of the friction constant γ39.

For each combination of L and r, we start from a chain in an extended initial conformation

and an initial velocity vector in Gaussian form, in which each of the 3L vector component

is sampled from the Gaussian distribution N (0, 1), which is then scaled by a factor of
√

T .

The simulation is run for 109 time steps, where each time step is set to 0.005
√

ma2/ǫ0, with
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mass m = 1, length scale a = 3.8 Å, and the reference energy scale ǫ0 = 1.

The first 2 × 108 steps is treated as the burning-in period and the generated fragment

conformations are discarded. The fragment conformations beyond the burning period are

clustered as follows. Each time a conformation is sampled, it is compared with all the

cluster representatives generated in previous steps. If its distance is more than a cut-off

threshold from all of the representatives, it is considered as the representative of a new cluster;

otherwise, it is grouped to its nearest cluster. Here the distance between two fragments xL(t1)

at time t1 and xL(t2) at time t2 is calculated as:

d (xL(t1), xL(t2)) =

[
1

L − 2

L∑

l=1

|xl(t1) − xl(t2)|2
]1/2

(7)

in which |xl(t1) − xl(t2)| is the Euclidean distance between the two position vectors xl(t1)

and xl(t2) of the l-th residue. The cutoff used in the clustering is 5 Å.

b. Markovian assumption and the estimation of traveling time: Suppose S clusters are

obtained. We treat each cluster as a state, and use state i to denote the i-th cluster. The

representative structure of state i is denoted as y
i
L. Let I be the total number of time steps

of the trajectory beyond the burning-in period, Ii be the observed number of state i and Iij

be the observed number of times that state i is immediately followed by state j in the next

time step. We define p̂i = Ii/I, which represents the probability of the fragment to be in

state i, and p̂ij = Iij/Ii, which represents the transition probability from state i to j.

The average duration ξi that the state sequence of the simulation trajectory {xL(t)} stays

in state i can be estimated as:

ξi =
∞∑

k=0

kp̂k
ii(1 − p̂ii) = p̂ii/(1 − p̂ii), (8)

where 1 − p̂ii represents the probability of the fragment moves away from state i.

To estimate the average time ξji that the state sequence enters state j (j 6= i), then travels

from state j to state i, we analyze the time trajectory. If the state sequence {xL(t)} leaves

state i at step t0 then re-enters state i at step t1, we record the first time that {xL(t)} enters

state j after t0 but before t1 as t(j). The traveling time ξ̃ji is then recorded as t1 − t(j). As

many ξ̃ji can be recorded from one simulation trajectory, we take its average value as the

travel time ξji. An illustration of counting ξ̃ji is shown in Fig 9(a).
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after clustering is a Markov chain, we can alternatively calculate ξji, j 6= i for each state

i by solving the linear equations

1 +
∑

k 6=i

p̂jkξki = ξji, with j = 1, · · · , i − 1, i + 1, · · · , S.

Fig. 10 shows the frequency of different states in the MD simulation and the comparison be-

tween the transition time calculated through counting the simulated MD sequence, namely,

the counted traveling time, and that through solving the linear equations, namely, the cal-

culated traveling time. ¿From Fig. 10 we observe that the ratio of the counted and the

calculated traveling times is close to one, except for those states with very few observations.

The generally good agreement between these two approaches suggests that a Markovian state

model is reasonable for the majority of state transitions.

c. Physical time for the regrowth moves: After obtaining the traveling time ξij, the time

each Markov move takes is estimated as follows. Suppose the Markov chain moves from the

current fragment x
old
L to a new fragment x

new
L . First, we assign x

old
L to the state i, whose

representative structure y
(i)
L is the closest to x

old
L in terms of cRMSD. If the proposed move

is rejected, this move takes time ξi. If the move is accepted, we assign the new fragment

x
new
L to a new state j, in which y

(j)
L − y

(i)
L is the closest to x

new
L −x

old
L in terms of Euclidean

distance. This successful move takes time ξij − ξi, as we assume that the fragment will stay

in state i on average ξi time before it moves to state j.

d. Conformations in TSE have diverse structures but share similar characteristic folding

time: Fig. 9(b) plots the average FPT for each conformation in the TSE against the fraction

of native contacts in this conformation. The correlation coefficients between the folding time

and the fraction of native contacts preserved for the conformations in TSE is -0.068 (p-

value of testing zero correlation is 0.0041). Hence the folding time and the nativeness of the

conformation are not strongly correlated.

For unweighted TSE, the standard deviation of the average FPT between different con-

formations is 1.26 × 108 unit of time. For comparison, we computed the standard deviation

of FPT for each conformation in different Markov chain Monte Carlo runs, and the average

is 3.77× 108 unit of time. For weighted TSE, these values are 1.98× 108 and 2.59× 108, re-

spectively. We can see that the variation of the average FPT for different TS conformations
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is small. In fact, it is comparable with the variation of FPT in different Monte Carlo runs

starting with the same TS conformation. This result shows that, for the protein AcP, al-

though the conformations in TSE are structurally diverse and far away from the native state,

they have very similar physical folding time. One possible reason is that, as demonstrated by

Fig. 3, all conformations in TSE have relative high energy, therefore these conformations may

quickly fold to conformations that have low energy. As a result, these structurally diverse

conformations demonstrate similar folding time. Fig. 11(a) plots the average first passage

time of TS conformations in different intervals of cRMSD distance to the native structure.

It shows that for TS conformations, the average first passage time does not change much as

the cRMSD distance to the native structure increases.

We compare the first passage time for the conformations in ΩDS and ΩNS with the TS

conformations. Note these groups of conformations are defined by whether they will first

fold or unfold by the pfold criterion, without considerations of their kinetic behavior. The

distributions of the first passage time for the conformations in these three sets are plotted in

Fig. 11(b), (c), and (d). It is not surprising to observe that compared with the conformations

in TSE, the average folding time of the conformations in ΩDS is longer, and the average

folding time of the conformations in ΩNS is shorter.

IV. DISCUSSION AND CONCLUSIONS

In this study, we have further developed the constrained sequential Monte Carlo method

for sampling conformations of transition state ensemble of protein folding. Our approach

can generate rigorously unbiased samples for a specified target distribution satisfying ex-

perimentally measured parameters such as φ values, and can access a much wider space of

conformations compared to other methods, and hence lead to generation of more diverse

conformations. When combined with Markov chain Monte Carlo with physically mapped

transition time, we can generate explicitly conformations of the TSE satisfying both the φ

value measurement and the pfold criterion.

Our method was applied to study the TSE of the protein acylphosphatase, which has

98 residues. We found that the transition state conformations are diverse, and can be far
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away from the native state. Although in general native secondary structures are not well-

conserved, fragments of native beta sheets are more enriched in the TSE than alpha helices.

In addition, we found that long range native contacts are formed only after the formation

of TSE. Despite the significant diversity in structures, all TS conformations have similar

folding time.

As demonstrated by Cavalli et al3, there is a strong tendency that the outcome of pfold

analysis depends on the potential function. It is expected that the Gö potential may intro-

duce a strong bias towards the native state. This would enable structures far away from the

native state to have pfold = 0.5. However, the finding of more heterogeneous nature of TSE

in this study is most likely due to the improved simulation method employed, and possibly

not so much as a consequence of the Gö potential used. The Gö approach is used in the

study of Vendruscolo et al.40, in which the potential is a function of RMSD deviation of

φ-value from the native state. The current results are obtained under comparable settings

with these prior studies. Hence the more heterogeneous nature of the TSE is indeed a novel

finding of this study.

A challenge in constrained sequential Monte Carlo sampling is to identify an efficient

approximating trial distribution q(xn) in a high-dimensional and strongly constrained space.

To reduce the estimate variance, we use carefully designed growth potential described in26

to generate conformations. In addition, a large sample size (5, 000, 000) is used to improve

accuracy in estimation.

Since our goal is to access the wide conformational space that satisfies all φ-value con-

straints, we use the uniform distribution in the constrained space as the target distribution

π(x). The growth potential is also designed for the uniform target distribution, and is well

suited for this purpose. Nevertheless, when we reweight the conformations by Boltzmann

factor under the Gō-potential, weights of generated samples become skewed. As Gō-potential

models themselves are artificial constructs, it is appropriate to study the natural underlying

shapes of the transition state ensemble, which follow the uniform distribution. With this goal

in mind, the TSE conformations are generated uniformly from the space with constrained

φ-values.

In our clustering method, the choices of the representative structures are important be-
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cause the distance of a conformation to the representatives is used for classification. Although

the clustering results may depend on the order in which the conformations are generated,

the representative structures are always chosen as those with the largest weights in clusters,

regardless of the ordering of the conformations. In addition, by carefully choosing the crite-

rion of cluster distance, conformations are all well separated. We therefore expect that our

clustering method is not overly sensitive to differences in the ordering of the conformations.

To confirm it, we carried out the following study. We first order the conformations by their

weights, then perform clustering sequentially from the largest weight conformation to the

smallest weight conformation. This approach resulted in 3,897 clusters, compared to the

4,185 clusters obtained with random ordering. Fig. 12 reports the unweighted distributions

of cRMSD values and fractions of native contacts preserved for clusters obtained under both

ordering. It is seen that the two ordering produces very similar results.
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Figure Captions

Fig 1. φ-values of acylphosphatase (AcP). Experimentally measured φ-values4 and calcu-

lated φ-values obtained from conformation samples properly weighted with respect to the

uniform distribution in Ωφ.

Fig 2. Defining folded and unfolded states and selecting conformations with 0.5 probability

of folding. (a) The thresholds (vertical dashed lines) of the fraction of native contacts pre-

served for the folded and unfolded states. (b) Number counts of Markov chain Monte Carlo

runs that reach the folded state for the set of 4,185 conformations. Each point represents

one conformation. Only the conformations between the two horizontal lines are included in

TSE.

Fig 3. The distributions of cRMSD values of conformations satisfying the φ-value con-

straints. The distributions for (a) the transitions state ensemble ΩTSE of 1,501 clusters of

conformations, (c) the denatured-side ensemble ΩDS, and (e) the native-side ensemble ΩNS to

the native conformation of protein acylphosphatase at different cRMSD distance intervals,

and the distributions of the fraction of native contacts preserved at different intervals for

(b) ΩTSE, (d) ΩDS, and (f) ΩNS. Both unweighted (white bar) and weighted (solid gray)

distributions are shown.

Fig 4. Lack of correlation between energy and cRMSD of conformations in the TSE.

Fig 5. The distributions of cRMSD between the secondary structures in the weighted TS

conformations and in the native state of protein acylphosphatase. (a) Helix α1 (residues

22-33, white bar) and helix α2 (residues 55-66, gray bars ); (b) Strand β3 (residues 46-53,
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white bar), strand β4 (residues 77-85, gray bars).

Fig 6. The recovery of overall φ-values and resulting larger cRMSD of conformations gener-

ated with φ-values constrained only at three key residues of Y11, P54, and F94. (a) Exper-

imentally measured φ-values and calculated φ-values obtained from conformation samples

satisfying the φ-value constraints of three key residues. (b) The distributions of cRMSD

values of conformations satisfying the φ-value constraints of three key residues (white bar)

and 24 residues (solid gray).

Fig 7. The average point-wise distances of residues between the weighted TSE and the

native conformation of protein acylphosphatase. The three circles are the three key residues

identified by Vendruscolo et al40 that have large experimentally measured φ-values. They

have small point-wise cRMSD values.

Fig 8. The fractions of preserved native contacts with different sequence separations of

protein acylphosphatase for (a) the weighted TSE, and (b) the native conformation. Bin

1-11 correspond to sequence separations of 4, 5, 6–10, 11–20, 21–30, 31–40, 41–50, 51–60,

61–70, 71–80, and 81–90, respectively.

Fig 9. Estimating the first passage time (FPT) to folded structure and correlation between

FPT and fraction of native contacts among TSE. (a) An illustration of counting the first

passage time ξ̃ji as t1 − t(j). (b) The average FPT of conformations in TSE of AcP. Each

point represents a transition state conformation.

Fig 10. The agreement of counted and calculated traveling times between states. For the

fixed number of residues L = 11 and the end to end distance r = 5 Å, this figure shows: (a)

The frequency of different states in the trajectory of the MD simulation; and the ratio of

the counted traveling time to the calculated traveling time for fixed destination state (b) 5,

(c) 40, and (d) 75. Except for rarely observed states, counted and calculated traveling times
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agree well with each other.

Fig 11. First passage time to folded structures and distance in cRMSD to the native struc-

ture. (a) The average first passage time of transition state conformations with different

cRMSD distance to the native structure. For comparison, (b), (c), and (d) plot the distri-

butions of the first passage time of the conformations in ΩTSE, ΩDS , and ΩNS, respectively.

Both unweighted (white bar) and weighted (solid gray) distributions are shown.

Fig 12. Effects of different ordering of conformations on clustering. (a) The distributions

of cRMSD values of representative conformations of clusters obtained when conformations

are ordered by weights (white bar) and when they are randomly ordered (solid gray). (b)

The distributions of fractions of native contacts for conformation clustering obtained using

conformations ordered by weights (white bar) and using random ordered conformations (solid

gray). Overall, these distributions are similar.
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