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Sequence Order Independent Comparison
of Protein Global Backbone Structures

and Local Binding Surfaces for Evolutionary
and Functional Inference

Joe Dundas, Bhaskar DasGupta, and Jie Liang

Abstract Alignment of protein structures can help to infer protein functions and
can reveal ancient evolutionary relationship. We discuss computational methods we
developed for structural alignment of both global backbones and local surfaces of
proteins that do not depend on the ordering of residues in the primary sequences.
The algorithm for global structural alignment is based on fragment assembly, and
takes advantage of an approximation algorithm for solving the maximum weight
independent set problem. We show how this algorithm can be applied to discover
proteins related by complex topological rearrangement, including circularly per-
muted proteins as well as proteins related by complex higher order permutations.
The algorithm for local surface alignment is based on solving the bi-partite graph
matching problem through comparison of surface pockets and voids, such as those
computed from the underlying alpha complex of the protein structure. We also
describe how multiple matched surfaces can be used to automatically generate sig-
nature pockets and basis set that represents the ensemble of conformations of protein
binding surfaces with a specific biological function of binding activity. This is fol-
lowed by illustrative examples of signature pockets and basis set computed for NAD
binding proteins, along with a discussion on how they can be used for discriminating
NAD-binding enzymes from other enzymes.

Introduction

To understand the molecular basis of cellular processes, it is important to gain
a comprehensive understanding of the biological functions of protein molecules.
Although an increasing number of sequences and structures of proteins become
available, there are many proteins whose biological functions are not known, or
knowledge of their biological roles is incomplete. This is evidenced by the existence
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of a large number of partially annotated proteins, as well as the accumulation of a
large number of protein structures from structural genomics whose biological func-
tions are not well characterized [1, 2]. Researchers have turned to in silico methods
to gain biological insight into the functional roles of these uncharacterized proteins,
and there has been a number of studies addressing the problem of computationally
predicting the biological function of proteins [3—8].

A relatively straightforward method for inferring protein function is to transfer
annotation based on homology analysis of shared characteristics between proteins.
If a protein shares a high level of sequence similarity to a well characterized family
of proteins, frequently the biological functions of the family can be accurately trans-
ferred onto that protein [9-11]. At lower levels of sequence similarity, probabilistic
models such as profiles can be constructed using local regions of high sequence sim-
ilarity [11-13]. The large amount of information of protein such as those deposited
in the SWISS-PROT database [14] provides rich information for constructing such
probabilistic models.

However, limitations to sequence-based homology transfer for function predic-
tion arise when sequence identity between a pair of proteins is less than 60% [16].
An alternative to sequence analysis is to infer protein based on structural similar-
ity. It is now well known that protein structures are much more conserved than
protein sequences, as proteins with little sequence identity often fold into similar
three-dimensional structures [17].

Protein structure and protein function are strongly correlated [18]. Conceptually,
knowledge of three-dimensional structures of proteins should enable inference of
protein function. Computational tools and databases for structural analysis are indis-
pensable for establishing the relationship between protein function and structure.
Among databases of protein structures, the SCOP [19] and CATH [20] databases
organizes protein structures hierarchically into different classes and folds based on
their overall similarity in topology and fold. Such classification of protein structures
based on structure generally depends on a reliable structural comparison method.
Although there are several widely used methods, including Dali [21] and CE
[22], current structural alignment methods cannot guarantee to give optimal results
and structural alignment methods do not have the reliability and interpretability
comparable to that of sequence alignment methods.

Comparing protein structures is challenging. First, it is difficult to obtain a quan-
titative measure of structural similarity that is generally applicable to different types
of problems. Similar to sequence alignment methods, one can search for global
structural similarity between overall folds or focus on local similarity between
surface regions of interest. Defining a quantitative measure of similarity is not
straightforward as illustrated by the variety of proposed structural alignment scoring
methods [23]. Unlike sequence alignment, in which the scoring systems are largely
based on evolutionary models of how protein sequence evolve [24, 25], scoring
systems of structural alignment must take into account both the three-dimensional
positional deviations between the aligned residues or atoms, as well as other charac-
teristics that are biologically important. Second, many alignment methods assume
the ordering of the residues follows that of the primary sequence when seeking
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to optimize structure similarity [22, 26]. This assumption can be problematic, as
similar three-dimensional placement of residues may arise from residues with dif-
ferent sequential ordering. This problem is frequently encountered when comparing
local regions on proteins structures. When comparing global structures of proteins,
the existence of circular and higher ordered permutations [27, 28] also poses sig-
nificant problems. Third, proteins may undergo minor residue side chain structural
fluctuations as well as large backbone conformational changes in vivo. These struc-
tural fluctuations are not represented in a static snapshot of a crystallized structures
in the Protein Data Bank (PDB) [29]. Many structural alignment methods assume
rigid bodies and cannot account for structural changes that may occur.

In this chapter, we will first discuss several overall issues important for protein
structural alignment. We then discuss a method we have developed for sequence
order independent structural alignment at both the global and local level of pro-
tein structure. This is followed by discussion on how this method can be used to
detect protein pairs that appear to be related by simple and complex backbone
permutations. We will then describe the use of local structural alignment in auto-
matic construction of signature pockets of binding surfaces, which can be used to
construct basis set for a specific biological function. These constructs can detect
structurally conserved surface regions and can be used to improve the accuracy of
protein function prediction.

Structural Alignment

Protein structural alignment is an important problem [23]. It is particularly use-
ful when comparing two proteins with low sequence identity between them. A
widely used measure of protein structural similarity is the root mean squared dis-
tance (RMSD) between the equivalent atoms or residues of the two proteins. When
the equivalence relationship between structural elements are known, a superposition
described by a rotation matrix R and a translation vector T that minimizes the root
mean squared distances (RMSD) between the two proteins can be found by solving
the minimization problem:

Np Ny

minZZIT—FRBi—Aﬂz, (1)

i=1 j=1

where Ny is the number of points in structure A and Np is the number of points
in structure B and it is assumed that N4 = Np. The least-squares estimation of the
transformation parameters R and 7 in Eq. (1) can be found using the technique of
singular value decomposition [30].

However, it is often the case that the equivalences between the structural elements
are not known a priori. For example, when two proteins have diverged significantly.
In this case, one must use heuristics to determine the equivalence relationship, and
the problem of protein structural alignment becomes a multi-objective problem.
That is, we are interested in finding the maximum number of equivalent elements as
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well as in minimizing the RMSD upon superposition of the equivalent elements of
the two proteins.

A number of methods that are heuristic in nature have been developed for align-
ing protein structures [31-38]. These methods can be divided into two categories.
Global structural alignment methods are suited for detecting similarities between
the overall backbones of two proteins, while local structural alignment methods are
suited for detecting similarities between local regions or sub-structures within the
two proteins. As discussed earlier, many structural alignment algorithms are con-
strained to find only structural similarities where the order of the structural elements
follows their order in the primary sequence. Sequence order independent methods
ignore the sequential ordering of the structural elements and are better suited to find
more complex global structural similarities. They are also very effective for all atom
comparison of protein sub-structures, as in the case of binding surface alignment.
Below we discuss methods for both global and local structural alignment.

Global Sequence Order Independent Structural Alignment

Global sequence order independent structural alignment is a powerful tool that can
be used to detect similarities between two proteins that have complex topological
rearrangements, including permuted structures. Permuted proteins can be described
as two proteins with similar three-dimensional spatial arrangement of secondary
structures, but with a different backbone connection topology. An example of per-
muted proteins are proteins with circular permutations. It can be thought of as
ligation of the N- and C-termini of a protein, and cleavage somewhere else on the
protein. Circular permutations are interesting not only because they tend to have
similar three-dimensional structure but also because they often maintain the same
biological function [27]. Circularly permuted proteins may provide a generic mech-
anism for introducing protein diversity that is widely used in evolution. Detecting
circular permutations is also important for homology modeling, for studying protein
folding, and for designing protein.

A Fragment Assembly Based Approach to Sequence Order
Independent Structural Alignment

We have developed a sequence order independent structural alignment method
that is well-suited for detecting circular permutation and more complex topolog-
ical rearrangement relationship among proteins [28]. Our algorithm is capable of
aligning two protein backbone structures independent of the secondary structure
element connectivity. Briefly, the two proteins to be aligned are first separately
and exhaustively fragmented. Each fragment Aék from protein structure Sy4 is then
pair-wise superimposed onto each fragment Afk from protein structure Sp, form-
ing a set of fragment pairs x;;x, where i € S4 and j € Sp are the indices in
the primary sequence of the first residue of the two fragment, respectively. Here
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k € {5,6,7} is the length of the fragment. For each fragment, we assign a similarity
score,

cRMSD

= } + SCS, 2)

o(xijk) =« [C — S(Xi,jk) -

where cRMSD is the measured RMSD value after optimal superposition, « and C
are two constants, s(x; j«) is a scaling factor to the measured RMSD values that
depends on the secondary structure of this fragment, and SCS is a BLOSSUM-like
measure of similarity in sequence of the matched fragments [25]. Details of the
similarity score and the parameters « and C can be found in [28].

The goal of structural alignment for the moment seeks to find a consistent set of
fragment pairs A = { )i, j k> Xirjokas - - - » Xiryjrsk, ) that minimize the global RMSD.
Finding the optimal combination of fragment pairs is a special case of the well
known maximum weight independent set problem in graph theory. This problem
is MAX-SNP-hard. We employ an approximation algorithm that was originally
described for scheduling split-interval graphs [39] and is itself based on a fractional
version of the local-ratio approach.

Our method begins by creating a conflict graph G = (V, E), where a vertex is
defined for each aligned fragment pair. Two vertices are connected by an edge if any

of the fragments (Afk, A? k,) or (Afk, )\f /k/) from the aligned pair is not disjoint,
that is, if both fragments’from the same protein share one or more residues. For
each vertex representing aligned fragment pair, we assign three indicator variables
Xys Vit and yy, =~ € {0, 1} and a closed neighborhood Nbr{x ]. x, indicates whether
the fragment pair should be used (x, = 1) or not (x,, = 0) in the final alignment.
Yoy » and Vi, Are artificial indicator values for A4 and g, which allow us to encode
consistency in the selected fragments. The closed neighborhood of a vertex x of G
is {x'{x, x'} € E}U{x}, which is simply x and all vertices that are connected to x
by and edge.

Our algorithm for sequence order independent structural alignment can now be
described as follows. To begin, we initialize the structural alignment A equal to the
entire set of aligned fragment pairs. We then:

1. Solve a linear programming (LP) formulation of the problem:
maximize

Do) xy 3)
XEA
subject to
> vu, =1 VaeSy 4)
a,e)f‘
> vu, =1 Vb esSp o)

bierB
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Yiga ~X 20 Vxea (6)
Yo —%x 20 VxeA (N
X VoY =0 YxeA 8)

2. For every vertex x € Va of Ga, compute its local conflict number oy =
Zx’errA[x] x)g/. .Let. X min be.the vertex with the minimum local conflict number.
Define a new similarity function o pew from o as follows:

o(x), it x ¢ Nbra[Xminl
Onew(X) =

0(x) — 0(Xmin), otherwise

3. Create Apew S A by removing from A every substructure pair x such that
onew(x) < 0. Push each removed substructure on to a stack in arbitrary order.

4. If Apew # ) then repeat from step 1, setting A = Apew and ¢ = Opew-
Otherwise, continue to step 5.

5. Repeatedly pop the stack, adding the substructure pair to the alignment as long
as the following conditions are met:

a. The substructure pair is consistent with all other substructure pairs that
already exist in the selection.

b. The cRMSD of the alignment does not change beyond a threshold. This
condition bridges the gap between optimizing a local similarity between
substructures and optimizing the tertiary similarity of the alignment. It guar-
antes that each substructure from a substructure pair is in the same spatial
arrangement in the global alignment.

Detecting Permuted Proteins

This algorithm is used in a large scale study, where a subset with 3,336 protein struc-
tures taken from the PDBSELECT 90 data set % [40] are structurally aligned in a
pair-wise fashion. Our goal is to determine if we could detect structural similarities
with complex topological rearrangements such as circular permutations. From this
subset of 3,336 proteins, we aligned two proteins if they met the following condi-
tions: the difference in their lengths was no more than 75 residues, and they had
approximately the same secondary structure content (see [28] for details). Within
the approximately 200,000 alignments, we found many known circular permuta-
tions, and three novel circular permutations previously unknown, as well as a pair
of non-cyclic complex permuted proteins. Below we describe in some details the cir-
cular permutations we found between a neucleoplasmin-core and an auxin binding
protein, as well as details of the more complex non-cyclic permutation.
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Nucleoplasmin-Core and Auxin Binding Protein

A novel circular permutation was detected between the nucleoplasmin-core protein
in Xenopu laevis (PDB ID 1k57, chain E) [41] and the auxin binding protein in
maize (PDB ID 11rh, chain A, residues 37 through 127) [42]. The structural align-
ment between 1k5JE (Fig. 1a, top) and 11rhA (Fig. la, bottom) consisted of 68
equivalent residues superimposed with an RMSD of 1.36 A. This alignment is sta-
tistically significant with a p-value of 2.7 x 107 after Bonferroni correction. Details
of p-value calculation can be found in reference [28]. The short loop connecting two
antiparallel strands in nucleoplasmin-core protein (in circle, top of Fig. 1b) becomes
disconnected in auxin binding protein 1 (in circle, bottom of Fig. 1b), and the N-
and C- termini of the nucleoplasmin-core protein (in square, top of Fig. 1b) are
connected in auxin binding protein 1 (square, bottom of Fig. 1b). For details of
other circular permutations we discovered, including permutations between aspar-
tate racemase and type II 3-dehydrogenase and between microphage migration
inhibition factor and the C-terminal domain of arginine repressor, please see [28].

Fig. 1 A newly discovered circular permutation between nucleoplasmin-core (1k537, chain E,
top panel), and a fragment of auxin binding protein 1 (residues 37-127) (11rh, chain A, bottom
panel). a These two proteins align well with a RMSD value of 1.36 A over 68 residues, with
a significant p-value of 2.7 x 107 after Bonferroni correction. b The loop connecting strand 4
and strand 5 of nucleoplasmin-core (in rectangle, top) becomes disconnected in auxin binding
protein 1. The N- and C- termini of nucleoplasmin-core (in rectangle, top) become connected in
auxin binding protein 1 (in rectangle, bottom). To aide in visualization of the circular permutation,
residues in the N-to-C direction before the cut in the nucleoplasmin-core protein are colored red,
and residues after the cut are colored blue. ¢ The topology diagram of these two proteins. In the
original structure of nucleoplasmin-core, the electron density of the loop connecting strand 4 and
strand 5 is missing in the PDB structure file. This figure is modified from [28]
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Beyond Circular Permutation

Because of its relevance in understanding the functional and folding mechanism
of proteins, circular permutations have received much attention [27, 43]. A more
challenging class of permuted proteins is that of the non-cyclic permutation with
more complex topological changes. Very little is known about this class of per-
muted proteins, and the detection of non-cyclic permutations is challenging task
[44-47].

Non-cyclic permutations of the Arc repressor were created artificially were found
to be thermodynamically stable. It can refold on the sub-millisecond time scale,
and can bind operator DNA with nanomolar affinity [48], indicating that naturally
occurring non-cyclic permutations may be as rich as the cyclic permutations. Our
database search uncovered a naturally occurring non-cyclic permutation between
chain F of AML1/Core Binding Factor (AML1/CBF, PDB ID 1e50, Fig. 2a, top)
and chain A of riboflavin synthase (PDB ID 1pkv, Fig. 2a, bottom) [49, 50]. The

Fig. 2 A non-cyclic permutation discovered between AML1/Core Binding Factor (AML1/CBF,
PDB ID 1e50, Chain F, top) and riboflavin synthase (PDBID 1pkv, chain A, bottom) a These
two proteins structurally align with an RMSD of 1.23 A over 42 residues , and has a significant p-
value of 2.8 x 10~ after Bonferroni correction. The residues that were assigned equivalences from
the structural alignment are colored blue. b These proteins are related by a complex permutation.
The steps to transform the topology of AMLI1/CBF (top) to riboflavin (bottom) are as follows: ¢
Remove the loops connecting strand 1 to helix 2, strand 4 to strand 5, and strand 5 to helix 6; d
Connect the C-terminal end of strand 4 to the original N-termini; e Connect the C-terminal end of
strand 5 to the N-terminal end of helix 2; f Connect the original C-termini to the N-terminal end
of strand 5. The N-terminal end of strand 6 becomes the new N-termini and the C-terminal end of
strand 1 becomes the new C-termini. We now have the topology diagram of riboflavin synthase.
This figure was modified from [28]



SPB-183939

361
362
363
364
365
366
367
368
369
370
371
372
373

374

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

405

Chapter ID 7 February 21, 2011 Time: 08:05pm Proof 1

Comparison of Protein Global Backbone Structures and Local Binding Surfaces

two structures align well with an RMSD of 1.23 A, at an alignment length of 42
residues, with a significant p-value of 2.8 x 10~* after Bonferroni correction.

The topology diagram of AMLI1/CBF (Fig. 2b) can be transformed into that of
riboflavin synthase (Fig. 2f) by the following steps: Remove the loops connecting
strand 1 to helix 2, strand 4 to strand 5, and strand 5 to strand 6 (Fig. 2c). Connect
the C-terminal end of strand 4 to the original N-termini (Fig. 2d). Connect the C-
terminal end of strand 5 to the N-terminal end of helix 2 (Fig. 2e). Connect the
original C-termini to the N-terminal end of strand 5. The N-terminal end of strand
6 becomes the new N-termini and the C-terminal end of strand 1 becomes the new
C-termini (Fig. 2f).

Local Sequence Order Independent Structural Alignment

The comparison of overall structural folds regardless of topological reconnections
can lead to insight into distant evolutionary relationship. However, similarity in
overall fold is not a reliable indicator of similar function [51-53]. Several studies
suggest that structural similarities between local surface regions where biological
function occurs, such as substrate binding sites, are a better predictor of shared
biological function [8, 54-58].

Substrate binding usually occurs at concave surface regions, commonly referred
to as surface pockets [56, 59-61]. A typical protein has many surface pockets, but
only a few of them present a specific three-dimensional arrangement of chemical
properties conducive to the binding of a substrate. This protein must maintain this
physiochemical environment throughout evolution in order to maintain its biological
function. For this reason, shared structural similarities between functional surfaces
among proteins may be a strong indicator of shared biological function. This has
lead to a number of promising studies, in which protein functions can be inferred by
similarity comparison of local binding surfaces [56, 62—65].

A challenging problem with the structural comparison of protein pockets lies in
the inherent flexibility of the protein structure. A protein is not a static structure
represented by a Protein Data Bank entry. The whole protein as well as the local
functional surface may undergo large structural fluctuations. The use of a single
surface pocket structure as a representative template for a specific protein function
will often result in many false negatives. This is due to the inability of a single
representative to capture the full functional characteristics across all conformations
of the protein.

To address this problem, we have developed a method that can automatically
identify the structurally preserved atoms across a family of protein structures that
are functionally related. Based on sequence-order independent surface alignments
across the functional pockets of a family of protein structure, our method creates
signature pockets with structurally conserved atoms identified and their fluctuation
measured. As more than one signature pocket may result for a single functional
class, the signature pockets can be organized into a basis set of pockets for that
functional family. These signature pockets of the binding surfaces then can be used
for scanning a protein structure database for function inference.
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Bi-partite Graph Matching Approach to Structural Alignment

Our method for surface alignment is sequence order independent. It is based on a
maximum weight bi-partite graph matching formulation of [66] with further mod-
ifications. This alignment method is a two step iterative process. First, an optimal
set of equivalent atoms under the current superposition are found using a bi-partite
graph representation. Second, a new superposition of the two proteins is determined
using the new equivalent atoms from the previous step. The two steps are repeated
until a stopping condition has been met.

To establish the equivalence relationship, two protein functional pocket surfaces
Sa and Sp are represented as a graph, in which a node on the graph represent an atom
from one of the two functional pockets. The graph is bi-partite if edges only connect
nodes from protein Sy to nodes from protein Sp. In our implementation, directed
edges are only drawn from nodes of S4 to nodes of Sp if a similarity threshold is
met. The similarity threshold used in our implementation is a function of spatial
distances and chemical differences between the corresponding atoms (see [67] for
details). Each edge e;; connecting node i to node j is assigned a weight w(i, j) equal
to the similarity score between the two corresponding atoms. A set of equivalence
relations between atoms of S4 and atoms of Sp can be found by selecting a sub-
set of the edges connecting nodes of S4 to Sp, with maximized total edge weight,
where at most one edge can be selected for each atom [68]. A solution to the max-
imum weight bi-partite graph matching problem can be found using the Hungarian
algorithm [69].

The Hungarian method works as follows. To begin, an overall score Fa; = 0
is initialized, and an artificial source node s and an artificial destination node d are
added to the bi-partite graph. Directed edges with 0-weight from the source node
s to each node of S4 and from each node of Sp to the destination node d are also
added. The algorithm then proceeds as follows:

1. Find the shortest distance F'(i) from the source node s to every other node i using
the Bellman-Ford [71] algorithm.

2. Assign a new weight w/(i, ) to each edge that does not originate from the source
node s as follows,

w(i,)) = w(,j) + [F(i) — F()]. )

3. Update Fyj as Fa' = Fa — F(d)
. Reverse the direction of the edges along the shortest path from s to d.
5. If Fyy > F(d) and a path exists between s and d then start again at step 1.

N

The Hungarian algorithm terminates when either there is no path from s to d
or when the shortest distance from the source node to the destination node F(d) is
greater than the current overall score Fyj. The bi-partite graph will now consist of
directed edges that have been reversed (point from nodes of Sp to nodes of Sy).
These flipped edges represent the current equivalence relationships between atoms
of S4 and atoms of Sp.
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The equivalence relations can then be used to superimpose the two proteins. After
superposition, a new bi-partite graph is created and the maximum weight bi-partite
matching algorithm is called again. This process is repeated iteratively until the
change in RMSD upon superposition falls below a threshold.

Signature Pockets and Basis Set of Binding Surface
Jor a Functional Family of Proteins

Based on the pocket surface alignment algorithm, we have developed a method that
automatically generate structural templates of local surfaces, called signature pock-
ets, which can be used to represent an enzyme function or a binding activity. These
signature pockets contain broad structural information as well as discriminating
ability.

A signature pocket is derived from an optimal alignment of precomputed surface
pockets in a sequence-order-independent fashion, in which atoms and residues are
aligned based on their spatial correspondence when maximal similarity is obtained,
regardless how they are ordered in the underlying primary sequences. Our method
does not require the atoms of the signature pocket to be present in all member
structures. Instead, signature pockets can be created at varying degrees of partial
structural similarity, and can be organized hierarchically at different level of binding
surface similarity.

The input to the signature pocket algorithm is a set of functional pockets from a
pre-calculated database of surface pockets and voids on proteins, such as those con-
tained in the CASTp database [61]. The algorithms begins by performing all vs all
pair-wise sequence order independent structural alignment on the input functional
surface pockets. A distance score, which is a function of the RMSD and the chem-
istry of the paired atoms from the structural alignment, is recorded for each aligned
pair of functional pockets (see [67] for details). The resulting distance matrix is
then used by an agglomerative clustering method, which generates a hierarchical
tree. The signature of the functional pockets can then be computed using a recursive
process following the hierarchical tree.

The process begins by finding the two closest siblings (pockets S4 and Sg), and
combining them into a single surface pocket structure Syp. Because of the recursive
nature of this algorithm, either of the two structures being combined may themselves
already be a combination of several structures. When combining the two structures,
we follow the criteria listed below:

1. If two atoms were considered equivalent in a structural alignment, a single
coordinate is created in the new structure to represent both atoms. The new coor-
dinate is calculated by averaging the coordinates of all underlying atoms that are
currently represented by the two coordinates to be averaged.

2. If no equivalence was found for an atom during the structural alignment,
the coordinates of that atom are transferred directly into the new pocket
structure.
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During each step in combining two surface pockets, a count of the number of
times that an atom at the position i was present in the underlying set of pockets
is recorded, which is then divided by the number of the constituent pockets. This
is the preservation ratio p(i). In addition, the mean distance of the coordinates of
the aligned atoms to their geometric center is recorded as the location variation v.
At the end of each step, the new structure Sqp replaces the two structures S4 and
Sp in the hierarchical tree, and the process is repeated on the updated hierarchical
tree. At a specific height of the hierarchical tree, different signature pockets can be
created with different extents of structural preservation by selecting a p threshold
value.

The signature pocket algorithm can be terminated at any point during its traversal
of the hierarchical tree. Figure 3 illustrates this point by showing three differ-
ent stopping thresholds (horizontal dashed lines). Depending on the choice of the
threshold, one or multiple signature pockets may result. Figure 3a shows a low
threshold which results in a set of 3 signature pockets. Raising the threshold can
produce fewer signature pockets (Fig. 3b). A single signature pocket that repre-
sents all surface pockets in the data set can be generated by raising the threshold
even further (Fig. 3c). Since clusters from the hierarchical tree represent a set of
surface pockets that are similar within certain threshold, if a stopping threshold is
chosen such that there exist multiple clusters in the hierarchical tree, a signature
pocket will be created for each cluster. The set of signature pockets from differ-
ent clusters collectively form a basis set of signature pockets, which represent the
ensemble of differently sampled conformations for a functional family of proteins.
As a basis set of signatures can represent many possible variations in shapes and
chemical textures, it can represent structural features of an enzyme function with
complex binding activities, and can also be used to accurately predict enzymes
function.

Tl el

Fig. 3 Different basis sets of signature pockets can be produced at different levels of structural
similarity by raising or lowering the similarity threshold (vertical dashed line). a A low threshold
will produce more signature pockets. b As the threshold is raised, fewer signature pockets will be
created. ¢ A single signature pocket can in principle be created to represent the full surface pocket
data set by raising the threshold
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Signature Pockets of NAD Binding Proteins

To illustrate how signature pockets and basis set help to identify key structural ele-
ments important for binding and how they can facilitate function inference, we
discuss a study of the nicotinamide adenine dinucucleotide (NAD) binding pro-
teins. NAD consists of two nucleotides, nicotinamide and adenine, which are joined
by two phosphate groups. NAD plays essential roles in metabolism where it acts as
a coenzyme in redox reactions, including glycolysis and the citric acid cycle.

Using a set of 457 NAD binding proteins of diverse fold structures and diverse
evolutionary origin, we first extracted the NAD binding surfaces from precomputed
CASTp database of protein pockets and voids [61]. Based on similarity values from
a comprehensive all-against-all sequence order independent surface alignment, we
obtain a hierarchical tree of NAD binding surfaces. The resulting 9 signature pockets
of the NAD binding pocket form a basis set, which are shown in Fig. 4.

These signature pockets contain rich biological information. Among the NAD-
binding oxioreductase, three signature pockets (Fig. 4e, h, and i) are for clusters of
oxioreductases that act on the CH-OH group of donors (alcohol oxioreductases), one
signature pocket (Fig. 4j) is for a cluster that act on the aldehyde group of donors,
and the remaining two signature pockets (Fig. 4f and g) are for oxioreductases that
act on the CH-CH group of donors. For NAD-binding lyase, one of the two signature
pockets (Fig. 4d) represent lyase that cleave both C-O and P-O bonds. The other
signature pocket (Fig. 4b) represent lyases that cleave both C—O and C—C bonds.
These two signatures come from two clusters of lyase conformations, each with a
very different class of conformations of the bound NAD cofactor.

We found that the structural fold and the conformation of the bound NAD co-
factor are the two major determinants of the formation of the clusters of the NAD
binding pockets (Fig. 4a). It can be seen in Fig. 4b—j that there are two general con-
formations of the NAD coenzyme. The NAD coenzymes labeled C (Fig. 4b, c, f, g,
h, and j) have a closed conformation, while the coenzymes labeled X (Fig. 4d, e, and
i) have an extended conformation. This indicates that the binding pocket may take
multiple conformations yet bind the same substrate in the same general structure.
For example, the two structurally distinct signature pockets shown in Fig. 4f, g are
derived from proteins that have the same biological function and SCOP fold. All of
these proteins bind to the same NAD conformation.

We have further evaluated the effectiveness of the NAD binding site basis set by
determining its accuracy in correctly classifying enzymes as either NAD-binding or
non-NAD-binding. We constructed a test data set of 576 surface pockets from the
CASTp database [61] independent of the training set of 457 NAD binding proteins.
These 576 surface pockets were selected by taking the top 3 largest pockets in vol-
ume from 142 randomly chosen proteins and 50 proteins that have NAD bound in
the PDB structure, with the further constraint that they were not in our training data
set. We then structurally aligned all 576 pockets in our test data set against each of
the nine NAD signature pockets in the resulting basis set. The testing pocket was
assigned to be an NAD binding pocket if it structurally aligned to one of the nine
NAD signature pockets, with its distance under a predefined threshold. Otherwise it
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Description

Lyase

E.C. #:4.2.1.46 & 4.1.1.35

SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

Isomerase

E.C.#:5.1.3.2

SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

Lyase

E.C.#:4234&46.1.3

SCOP ID: e.22.1.1

SCOP Fold: Dehydroquinate synthase-like
Note: Rossman fold topology binds NAD

CH-OH oxioreductase

EC. #:1.11.37&1.1.1.27

SCOP ID: d.162.1.1

SCOP Fold: LDH C-terminal domain-like
Note: Rossman fold domain

CH-CH oxioreductase

E.C. #:1.3.1.9

SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

CH-CH oxioreductase

E.C.#:1.3.19

SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

CH-OH oxioreductase
EC.#:1.1.1.35&1.1.1.141 & 1.1.1.178
SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

CH-OH oxioreductase

EC.#:1.1.11

SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

Aldehyde oxioreductase

E.C. #:1.2.1.12

SCOP ID: d.81.1.1

SCOP Fold: FwdE/GAPDH domain-like
Note: Rossman fold domain

Fig. 4 The topology of the hierarchical tree and signature pockets of the NAD binding pockets.
a The resulting hierarchical tree topology. b—j The resulting signature pockets of the NAD bind-
ing proteins, along with the superimposed NAD molecules that were bound in the pockets of the
member proteins of the respective clusters. The NAD coenzymes have two distinct conformations.
Those in an extended conformation are marked with an X and those in a compact conformation are

marked with a C
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was classified as non-NAD binding. The results show that the basis set of 9 signature
pockets can classify the correct NAD binding pocket with sensitivity and specificity
of 0.91 and 0.89, respectively. We performed further testing to determine whether a
single representative NAD binding pocket, as opposed to a basis set, is sufficient for
identifying NAD-binding enzymes. We chose a pocket representative pocket from
one of the 9 clusters that were used to construct the 9 signature pockets. Here, a
testing pockets was classified as NAD-binding if its structural similarity to the sin-
gle representative pocket was above the same pre-defined threshold used in the basis
set study. We repeat this exercise nine times, each time using a different representa-
tive from a different cluster. We found that the results deteriorated significantly, with
an average sensitivity and specificity of only 0.36 and 0.23, respectively. This study
strongly indicates that the construction of a basis set of signatures as a structural
template provides significant improvement for a set of proteins binding the same
co-factor but with diverse evolutionary origin. Further details of the NAD-binding
protein study can be found in [67], along with an in-depth study of the metalloen-
dopeptidase, including the construction of its signatures and basis set, as well as
their utility in function prediction.

Conclusion

In this chapter, we have discussed methods that provide solutions to the problem of
aligning protein global structures as well as aligning protein local surface pockets.
Both methods disregard the ordering of residues in the protein primary sequences.
For global alignment of protein structures, such a method can be used to address
the challenging problem of identifying proteins that are topologically permuted but
are spatially similar. The approach of fragment assembly based on the formulation
of a relaxed integer programming problem and an algorithm based on scheduling
split-interval graphs works well, and is characterized by a guaranteed approximation
ratio. In a scaled up study, we showed that this method works well in discovery
of circularly permuted proteins, including several previously unrecognized protein
pairs. It also uncovered a case of two proteins related by higher order permutations.

We also described a method for order-independent alignment of local spatial sur-
faces that is based on bi-partite graph matching. By assessing surface similarity
for a group of protein structures of the same function, this method can be used to
automatically construct signatures and basis set of binding surfaces characteristic
of a specific biological function. We showed that such signatures can reveal use-
ful mechanistic insight on enzyme function, and can correlate well with substrate
binding specificity.

In this chapter, we neglect an important issue in our discussion of comparing
protein local surfaces for inferring biochemical functions, namely, how to detect
evolutionary signals and how to employ such information for protein function pre-
diction. Instead of going into details, we first point readers to the general approach of
constructing continuous time Markovian models to study protein evolution [72, 73].
In addition, a Bayesian Monte Carlo method that can separate selection pressure due
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to biological function from selection pressure due to the constraints of protein fold-
ing stability and folding dynamics can be found in [58] and in [74]. The Bayesian
Monte Carlo approach can be used to construct customized scoring matrices that are
specific to a particular class of proteins of the same function. Details of how such
method works and how it can be used to accurately predict enzyme functions from
structure with good sensitivity and specificity for 100 enzyme families can be found
in a recent review [74] and original publications [8, 58]. The task of computing
surface pockets and voids using alpha shape is discussed in a recent review [75].
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