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Abstract

The assessment of chemical similarity between molecules is a basic operation in chemoinformatics, a computa-
tional area concerning with the manipulation of chemical structural information. Comparing molecules is the basis for
a wide range of applications such as searching in chemical databases, training prediction models for virtual screening
or aggregating clusters of similar compounds. However, currently available multimillion databases represent a chal-
lenge for conventional chemoinformatics algorithms raising the necessity for faster similarity methods. In this paper,
we extensively analyze the advantages of using many-core architectures for calculating some commonly-used chem-
ical similarity coefficients such as Tanimoto, Dice or Cosine. Our aim is to provide a wide-breath proof-of-concept
regarding the usefulness of GPU architectures to chemoinformatics, a class of computing problems still uncovered.
In our work, we present a general GPU algorithm for all-to-all chemical comparisons considering both binary fin-
gerprints and floating point descriptors as molecule representation. Subsequently, we adopt optimization techniques
to minimize global memory accesses and to further improve efficiency. We test the proposed algorithm on different
experimental setups, a laptop with a low-end GPU and a desktop with a more performant GPU. In the former case,
we obtain a 4-to-6-fold speed-up over a single-core implementation for fingerprints and a 4-to-7-fold speed-up for
descriptors. In the latter case, we respectively obtain a 195-to-206-fold speed-up and a 100-to-328-fold speed-up.
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1. Introduction

As a result of decades of research, chemoinformatics is considered a well-established field concerned with the
application of computational methods to tackle chemical problems, with particular emphasis on the manipulation of
chemical structural information [1]. Some of its applications are strictly related with the capability of assessing chem-
ical similarity between compounds. For example, searching in chemical databases requires thousands of comparisons
in order to return the most similar compounds to a query molecule [2]. Another example is a process known as virtual
screening [3]. After a learning phase based on data mining algorithms, a model can predict if an arbitrary molecule
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has the desired biological/chemical activity, reducing the number and the cost of in-vitro experiments. Considering
Support Vector Machines [4], the model learning is based on a kernel function between molecules which roughly cor-
responds to chemical similarity. In addition, it is useful to apply unsupervised learning in order to aggregate molecules
which shares similar activity [5]. Thus, the assessment of compound similarity has a central role in chemoinformatics.

Currently-available multimillion databases such as PubChem [6] (31 million molecules) represent a challenge for
conventional chemoinformatics algorithms. The situation is even worst considering virtual libraries constructed using
combinatorial chemistry (nearly 1 billion molecules in [7]). Scalability problems arise not only from the database
size but also from the complexity of the considered algorithms. While a single database search has linear complexity
O(n), more sophisticated algorithms such as agglomerative hierarchical clustering may need quadratic run time O(n2)
or worse. Consequently, chemoinformatics analyses can be practical only if we are able to increase the execution
throughput of such a large number of compound comparisons beneath the algorithms.

Nowadays computer architectures are designed to offer an increasing level of parallelism directly available for
improving the computation throughput. In accordance with this perspective, GPUs have imposed themselves as a
pervasive scientific parallel architectures [8]. GPUs are pervasive since they are integral part of almost any modern
computer system. GPUs are scientific since they provide high-throughput for floating point operations (up to 1.03
TFLOP/s), a desirable feature for scientific computing applications. Finally, current GPUs are parallel since they
are designed according to the many-core design philosophy. Large cache memories and complex control units are
replaced by a large number of simple processing cores (up to 512 in a single chip) relying in a highly parallel workload
with a very regular execution pattern. Important scientific computing areas such as sequence alignment [9] and
molecular dynamics simulation [10, 11] have seen an increasing popularity for GPU computing. In fact, GPUs make
available to scientists and researchers around the world a supercomputing architecture at a small fraction of the cost
and power consumption compared to large supercomputers or clusters. This trend has not yet been observed for
chemoinformatics applications. To the best of our knowledge, very few works combine chemoinformatics problems
with parallel architectures, in particular with GPUs [12, 13].

The idea of implementing similarity calculations onto a GPU is not completely new. In [12], the author con-
sider molecules represented as canonical strings known as SMILES. Consequently, chemical similarity is based on
text comparison. Despite the compelling advantage of simplicity and accuracy comparable to binary fingerprints,
SMILES cannot embed structural or chemical information as for floating point descriptors. The work presented in
[13] considers instead binary fingerprints and Tanimoto coefficients for learning a SVM model. However, chemoin-
formatics algorithms use a wide range of molecule representation and similarity coefficient so the presented analysis
does not appear comprehensive. Finally, in [14], the evaluation of Tanimoto coefficient of binary fingerprints on
three different architectures (a quad-core Intel architecture, a Cell architecture and a GPU architecture) have been
presented. The underlying idea of comparison between different design philosophies is interesting but the proposed
GPU implementation is not fairly optimized, making the entire results biased toward the quad-core and the Cell archi-
tectures.Focusing on the proposed results, it looks unusual that a single CPU thread may run three times faster than a
GPU for calculating a large number of floating point Tanimoto coefficients.

The main contribution of this work is a detailed analysis of the advantages of using many-core architectures
for calculating five different commonly-used similarity coefficients (Tanimoto, Dice, Cosine, Euclidean and Ham-
ming/Manhattan) considering both binary fingerprints and floating point descriptors as molecule representation. The
practical goal is to achieve an higher execution throughput in order to cope with the aforementioned scalability issues.
We propose a general GPU algorithm which outperforms the single-core CPU execution up to two orders of magni-
tude. Our intellectual aim is to provide a wide-breath proof-of-concept regarding the usefulness of GPU architectures
in chemoinformatics, a class of computing problems still uncovered.

The rest of the paper is organized in the following way. Section 2 briefly presents two common techniques used
for producing a binary fingerprint and a vector of real descriptors given a molecule. Moreover, it introduces several
commonly-used chemical similarity coefficients. Section 3 is then dedicated to redesign the algorithm in order to be
adapted to a many-core architecture. Moreover, we present further optimizations in order to minimize accesses to
global memory and increase the achieved speed-up. Section 4 is dedicated to performance benchmarks considering
different experimental setups, a laptop with a low-end GPU and a desktop with a more performant GPU. In the former
case, we obtained a 4-to-6-fold speed-up over a single-core implementation for fingerprints and a 4-to-7-fold speed-
up for descriptors. In the latter case, we respectively obtained a 195-to-206-fold speed-up and a 100-to-328-fold
speed-up. Finally, Section 5 concludes with some final statements and suggestions for future work.
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2. Chemical similarity

The rationale for similarity assessment lies in the similar property principle [1] for which structurally similar
molecules tend to have similar properties and likely to exhibit the same activity. This principle permits to identify
sets of potentially active compounds or drugs in-silico reducing the number and the cost of in-vitro experiments. In
general, it is necessary an appropriate representation of the molecules in order to cope with the presented scalability
issues while maintaining a sufficient amount of information regarding the real-world compound. Techniques based on
3D graphs and 3D superimposition methods [15] have a too high computational complexity for being applied to large
molecule databases. In our work, we focus on more efficient and compact representations such as binary fingerprints
and floating point descriptors. From the many-core architecture perspective, it may be argued that this choice is
beneficial since GPUs can efficiently provide high-throughput calculations, especially for floating point numbers [16].
Moreover, fingerprints and descriptors preserve underlying topological and structural information necessary for having
a meaningful chemical similarity assessment.

2.1. Binary fingerprints

Figure 1: Each bit in the fingerprint corresponds to a frag-
ment dictionary.

Fingerprints represent molecules as fixed-length binary vec-
tors where each bit corresponds to the presence of a specific dic-
tionary fragment as depitced by Figure 1. Given an arbitrary
molecule, its fingerprint can be calculated using a subgraph iso-
morphism algorithm [17]. This operation may be computation-
ally expensive but it is done only once so its cost is negligi-
ble during similarity assessment. The underlying advantage of
fingerprints is that topological information regarding the atomic
structure can be captured. Consequently, there is a correlation
between fingerprints similarity and chemical/biological similarity. On the other hand, the selection of the fragment
dictionary is crucial for obtaining good results in the target chemoinformatics application. Fragments should not be
too common or too rare otherwise information encoded in the fingerprint bits becomes not very discriminating or
relevant for only few molecules. A dictionary can be selected by domain experts or using data mining techniques.
In more detail, fingerprints based on a dictionary derived by acyclic fragment mining has been shown to be more
effective for compound retrieval and classification [18].

2.2. Floating point descriptors

Figure 2: A numerical distribution can be created measur-
ing the distance of each atom from a point (i.e. a centroid).

Vectors of floating point descriptors are more suitable than
fingerprints for characterizing physicochemical properties such
as shape or charge. Not surprisingly, the embedding of this in-
formation produces better results for the underlying chemoinfor-
matics application as shown in [19]. Descriptor values are usu-
ally obtained by applying algorithmic techniques to the molec-
ular structures. The technique presented in [19] provides an
highly accurate description of molecule 3D shapes by capturing
the inter-atom distances as a 12-dimensional real vector. In more
detail, the technique defines four precise points in the 3D space
and calculates the distance from each atom, identifying four dis-
tinct distance distributions (one for each fixed point) as depicted
in Figure 2. From statistical theory, a distribution is completely determined by its moments. For this reason, the
technique is able to approximate the molecular 3D shape by taking the first three moments uk =

∑n
i=1 dk

i /n of each
distance distribution, producing a total of 12 real descriptors. The technique has been successively enriched with three
additional descriptors in order to incorporate chirality and electrostatic considerations [20]. It may be argued that the
similar property principle still holds. In fact, molecules with similar descriptors will have a similar 3D shape and then
will likely exhibit the same activity. Last but not least, the descriptors are real-valued so any implemented operation
will benefit of the floating point capabilities of GPU architectures.
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2.3. Chemical similarity coefficients

We just described how to represent a molecule as a binary fingerprint or a floating point vector. Given two
molecules, their similarity can be evaluated by many different similarity coefficients that have been developed during
years. The most commonly-used in chemoinformatics are reported in Table 1. All the coefficients (included euclidean
and manhattan/hamming) are formulated in order to directly measure similarity. Given a molecule A, xiA represents
the i-component of the associated vector of floating point descriptors whereas a represents the numbers of bits sets
to one in the correspondent fingerprint. Component xiB and b have an analogous meaning for molecule B. Finally, c
represents the number of bits that are one for both the fingerprints. It may be argued that Tanimoto, Dice and Cosine
coefficients focus on common bits as evidence of similarity whereas euclidean and manhattan coefficient consider a
common absence (zero bit) as a point of similarity.

Name Real Vectors Binary Fingerprints

Tanimoto S AB =

∑n
i=1 xiA xiB∑n

i=1(xiA)2 +
∑n

i=1(xiB)2 −
∑n

i=1 xiA xiB
S AB =

c
a + b − c

Dice S AB =
2
∑n

i=1 xiA xiB∑n
i=1(xiA)2 +

∑n
i=1(xiB)2 S AB =

2c
a + b

Cosine S AB =

∑n
i=1 xiA xiB√∑n

i=1(xiA)2∑n
i=1(xiB)2

S AB =
c
√

ab

Euclidean S AB =
1

1 +
√∑n

i=1(xiA − xiB)2
S AB =

1

1 +
√

a + b − 2c

Manhattan/Hamming S AB =
1

1 +
∑n

i=1 |xiA − xiB|
S AB =

1
1 + a + b − 2c

Table 1: Chemoinformatics similarity coefficients adapted from [1].

3. GPU algorithm and optimizations

The assessment of chemical similarity corresponds to calculating a coefficient using floating point values (which
are directly available as real descriptors) or integer values (which are derived from fingerprint bit counting). A wide
range of chemoinformatics applications such as molecule clustering needs a quadratic number O(n2) of chemical
similarity comparisons. Consequently, it seems reasonable to evaluate the efficiency of the GPU architecture by
performing exactly n2 comparisons (all-to-all similarity coefficient calculations). In our discussion we specifically
refer to the NVIDIA’s Compute Unified Device Architecture (CUDA) [8]. Due to space constraints, we introduce
architectural details only when it is necessary for explaining the algorithm and the introduced optimizations. A more
complete description of the considered many-core architecture and its programming model can be found in [8, 16].
For similar reasons, we focus our explanation effort on graphical representations of the proposed GPU algorithmic
techniques, avoiding long sections with CUDA-like pseudocode.

3.1. Basic algorithm

The overall computation can be intuitively seen as a square matrix of independent similarity computations between
column molecules and row molecules that can be executed simultaneously. This algorithmic structure represents a
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case of embarrassingly parallel workload, thus is perfect for being executed on a many-core architecture. In more
detail, each similarity comparison is associated with a GPU execution thread as shown by Figure 3. According to the
underlying architecture, threads are logically organized in blocks. Analogously, GPU cores (also known as Stream
Processors) are organized in groups of fixed size (also known as Stream Multiprocessor). At runtime, thread blocks
are assigned to SMs which simultaneously execute threads on the correspondent SPs according to a warped Single
Instruction Multiple Thread (SIMT) paradigm [8].

Figure 3: Chemical similarity computation decomposed
into GPU threads.

As mentioned, we cannot directly compute fingerprint co-
efficients as a floating point operation since we need to derive
bit counting from binary vectors. Some computer architectures
natively offer this operation as part of the instruction set. The
GPU algorithm presented in [14] uses an approach based on re-
peated right-shifts for implementing the counting. We prefer an
approach based on a 8-bit lookup table. Moreover, we keep this
data structure in the constant memory, a special GPU memory
which is equivalent to a fast read-only cache shared between
all the threads. Given a fingerprint, we accumulate the total bit
counting by scanning each byte and by adding the correspondent
count value read from the lookup table. A simple consideration
about the coefficients can speed up both CPU and GPU execu-
tions. It may be argued that given a molecule A it is necessary
to compute

∑n
i=1(xiA)2 and a just once even if molecule A is in-

volved in multiple chemical comparisons. Thus, it is reasonable to add a precomputing phase after which the inter-
mediate values

∑n
i=1(xiA)2 and a are stored in memory for being reused later to calculate actual similarity coefficients.

Since each molecule precomputing is independent, the procedure can be easily implemented on a GPU architecture
as well, assigning a GPU execution thread for each computation.

3.2. Tiling technique

The presented GPU algorithm can benefit the large number computational units available on a many-core archi-
tecture. However, in most of the available GPU architectures threads are forced to directly access a large global
memory without taking advantage of any transparent caching mechanism for exploiting data locality. As seen from
the unimpressive GPU results obtained in [14], this drawback may represent a severe bottleneck which slows down
the computation up to a disadvantageous speed up compared to single-core CPU execution. On the other hand, GPU
architectures make available for each SM a fast cache memory known as shared memory which can be used for re-
solving the highlighted problem. We can also argue that the explicit caching technique presented in this section is
beneficial for GPUs based on the recent Fermi architecture [8] (the first GPU with a transparent cache memory).

Figure 4: A 2x2 thread tile preloads row and column
molecules in shared memory.

A general optimization technique known as tiling is available
in literature [16, 21]. The underlying idea takes advantage of the
CUDA programming model for which threads in the same block
can utilize shared memory for caching data and synchronizing
themselves. Thus, it is possible to decompose the original com-
putation n × n matrix into b × b tiles (or blocks). Within a tile,
threads need to access b row molecules and b column molecules
for performing chemical similarity comparisons. Instead of hav-
ing two accesses to global memory for each threads, molecules
are collaboratively preloaded in shared memory as shown by Fig-
ure 4. The subsequent memory accesses will be made locally re-
ducing the number of global memory accesses by a b factor. In
more detail, we have 2b2 accesses without tiling. Considering a
total of 2b accesses for preloading the molecules, the reduction
factor can be easily calculated as 2b2/2b = b. In other words, larger tiles permit a better cache sharing leading to a
reduction in the number of accesses to global memory. Practically speaking, we should maintain blocks as large as
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possible keeping in mind that there exist architectural constraints regarding the shared memory available for a SM and
the maximum number of threads that a SM scheduler can deal with.

3.3. Sliding-tile technique

The GPU algorithm can be further improved by considering sliding tiles. Until now we have considered a biunivo-
cal relation between GPU threads and similarity comparisons. However, it may be argued that a thread can calculate
more than a similarity coefficients (i.e. a thread can calculate an entire row of coefficients). This consideration leads to
sliding tiles which iteratively move along a row for calculating all the coefficients in the matrix. In other words, each
thread will compute coefficient with offset [0, b, 2b, 3b, ..., n − b] from its initial position (in the original approach we
had instead n/b distinct threads corresponding to different blocks). Sliding tiles can reduce the number of accesses to
global memory by reusing row molecules in shared memory. As depicted by Figure 5, rows are loaded once whereas
column molecules are updated according to the tile position.

Figure 5: Row molecules are fixed whereas column molecules depend by the tile position.

The presented technique almost halves the number of accesses to global memory. Considering (n/b) blocks on a rows,
the tiling technique requires 2b · (n/b) = 2n accesses. Considering sliding tiles, we need b accesses for loading row
molecules and b · (n/b) = n accesses for loading column molecules. The reduction factor is then 2n/(n + b) ≈ 2
assuming b � n. It may be also noted that sliding tiles require the same amount of shared memory needed by the
tiling technique since column molecules are always loaded in the same memory location.

3.4. Wide sliding-tile technique

We mentioned that choosing a large b positively affects the memory performance despite its applicability is con-
strained by two architectural constraints. However, it is possible to partially overcome the problem related with the
maximum number of threads contained in a tile. The shortcut still relies on the fact that a thread can calculate more
than a single similarity coefficient. Consequently, a single block can covers a tile k-times wider (row-wise direction).
In more detail, each thread will be responsible of calculating coefficients located at row-offset [0, b, 2b, ..., (k − 1)b]
depicting a wider tile. The memory access optimization will be obtained by increasing the constant memory dedi-
cated to row molecules of a factor b and by keeping the iterative sliding mechanism for covering the entire calculation
matrix. In the example shown by Figure 6, a single thread block covers a double tile since each thread computes two
coefficients at different row offsets [0, b]. Again, we can quantify the reduction regarding the number of accesses to
global memory. Considering k as width factor of the new tile, the previous sliding tile technique requires k(n + b)
accesses. Considering instead wider tiles, we need k · b accesses for loading row molecules and still n accesses for
loading column molecules. The reduction factor is then k(n + b)/(n + kb) ≈ k assuming b � n as well as kb � n.
It may be argued that the presented technique increases the amount of shared memory required for a block while
keeps unchanged the number of threads within a block. Consequently, the tile size will be dependent by only the
former architectural constraint. The optimization principles introduced in [21] also focus on loop unrolling in order
to reduce the impact related with loop overhead (i.e. condition testing or index variable incrementing). However, this
optimization may reduce the number of active thread blocks when too many additional thread registers are required.
Moreover, loop unrolling is not flexible to diverse descriptor/fingerprint length since it is an hard-coded technique.
For these reasons, we prefer to not consider loop unrolling in our optimized GPU implementation.
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Figure 6: A wider sliding tile corresponding to the same thread block.

4. Results

We develop a CUDA implementation of our general GPU algorithm for each chemical similarity coefficient pre-
sented in Table 1. The main goal is to assess the advantages related with many-core architectures and the adopted
optimization principles. The baseline performance is measured in terms of execution time necessary for a single-core
CPU to compute an all-to-all chemical similarity matrix. The GPU speed-up is then related to this time measurement.
We should recall that chemical similarity computation is a common and relatively simple operation used within vari-
ous chemoinformatics algorithms. Therefore, it does not exist a stand-alone optimized code to compare with. In any
case, we compile our experimental implementation always activating the available optimization flags (i.e. -O4 in gcc
compiler) in order to assess performance against a reasonably optimized code. Within this section, we also provide
a multithreaded execution of the algorithm on a dual-core CPU in order to present a fair comparison between the
different computing architectures.

4.1. CUDA parameters and molecule dataset

According to the CUDA programming model [22], the number of active thread blocks is limited by the maximum
number of thread in a SM. Consequently, we fixed b = 16 in order to have 256 threads for block and a good amount of
memory sharing within the block. Depending by the computing capability actually implemented in the GPU device,
the number of active block ranges from 3 to 6. We also fixed k = 4 in order to provide sufficiently large tiles without
exceeding the available shared memory for SM.

We test our GPU algorithm on a set of randomly generated molecule fingerprints and a set of randomly generated
molecule descriptors. As mentioned, our work is focused on measuring the performance speed-up so we conveniently
generate random data. It may be argued that this simplification does not affect the obtained speed-up since algorithm
runtime only depends by the number of molecules. The fingerprints are 256-bits long in order to propose a result
comparison with Tanimoto calculations performed in [14]. The descriptor vectors are composed by 15 single-precision
floating point values accordingly with the method described by [20]. We considered exponentially larger datasets from
1600 molecules to 51200 molecules. The corresponding chemical similarity matrix has quadratic size and may not
always fit in the GPU memory. For this reason, when the matrix is too large we decompose it in 128MBytes chunks
which are computed one after another by the GPU.

4.2. Results on an integrated laptop GPU

For our experimental result, we considered two different platforms corresponding to common computer systems
easily available to scientists and researchers around the world. This choice is in agreement with the thought that
GPU architectures represent the supercomputing for the masses [16]. The first computer system is a laptop equipped
with an Intel Core 2Duo@2.53Ghz , with an integrated NVIDIA GeForce 9400M@450MHz (16 CUDA cores and
256MBytes of DDR3 memory shared with CPU) and with MacOSX as operating system. We compiled our CUDA
kernel using NVIDIA nvcc compiler based on GNU gcc compiler. Table 2 shows the results regarding chemical
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similarity coefficients calculated for both binary fingerprints (upper table) and floating point descriptors (lower ta-
ble). Each row corresponds to an increasingly large dataset. For each possible coefficient, we report the performance
speed-ups from the baseline single-core CPU execution, respectively for the basic GPU algorithm and for the wide
sliding-tile GPU algorithm. Looking at the results, it is easy to note that we obtain a 4-to-6-fold speed-up. This result
can be consider satisfactory considering the underlying computer system where a fairly powerful CPU is coupled with
a low-end integrated GPU. We can also note how the introduced algorithmic optimizations assure an additional 2-to-
3-fold speed-up compared with the basic GPU algorithm. The best average performance speed-up is obtained with
Tanimoto coefficient since it has the simplest formulation. Recalling again Table 1, it may be argued that Tanimoto
coefficient contains an unique floating point division whereas the other coefficients also contain multiplications by
two or roots.

Tanimoto Dice Cosine Euclidean Hamming
# Molecule Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU
Fingerprints (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up)

1600 2.30x 5.75x 2.26x 4.25x 2.29x 4.31x 2.29x 4.31x 2.19x 4.31x
3200 2.30x 6.01x 2.25x 4.43x 2.27x 4.48x 2.28x 4.49x 2.17x 4.48x
6400 2.40x 5.89x 2.29x 4.46x 2.26x 4.41x 2.28x 4.47x 2.15x 4.33x
12800 2.79x 6.09x 2.28x 4.51x 2.28x 4.54x 2.28x 4.51x 2.21x 4.44x
25600 3.01x 6.34x 2.39x 4.74x 2.40x 4.78x 2.41x 4.79x 2.98x 6.32x
51200 2.94x 5.87x 2.93x 5.84x 2.98x 5.98x 2.97x 5.91x 2.95x 5.90x

Average 2.62x 5.99x 2.40x 4.71x 2.41x 4.75x 2.42x 4.75x 2.44x 4.96x
Tanimoto Dice Cosine Euclidean Manhattan

# Molecule Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU
Descriptors (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up)

1600 2.91x 4.87x 2.81x 4.68x 3.09x 4.97x 2.77x 4.43x 2.13x 3.69x
3200 2.90x 5.10x 2.87x 5.09x 3.17x 5.47x 2.63x 4.61x 2.11x 3.87x
6400 2.86x 4.83x 2.83x 5.89x 3.07x 6.26x 2.99x 4.20x 2.44x 3.59x
12800 3.08x 5.61x 3.06x 7.10x 3.23x 7.43x 3.19x 4.73x 2.62x 4.01x
25600 3.81x 7.35x 3.78x 9.27x 3.84x 9.34x 4.33x 6.50x 3.79x 5.83x
51200 4.01x 9.92x 4.00x 9.89x 3.96x 7.68x 4.48x 6.79x 3.90x 6.03x

Average 3.26x 6.28x 3.22x 6.99x 3.39x 6.86x 3.40x 5.21x 2.83x 4.50x

Table 2: GPU speed-ups over single-core CPU laptop execution.

The lower part of Table 2 refers instead to coefficients calculated on molecule descriptors. Looking at the results,
we have again a satisfactory 4-to-7-fold speed-up influenced by a 2-fold speed-up associated with the optimizations
only. Similarly to what done for fingerprint bit counting, we can precompute

∑n
i=1(xiA)2 and

∑n
i=1(xiB)2 for Tanimoto,

Dice and Cosine coefficients. This optimization is visible in the obtained results (Euclidean and Manhattan coefficients
have lower speed-ups). We can also observe a correlation between speed-up and molecule dataset size. In general, a
GPU algorithm can reach an high FLOP/s rate when it is not memory bounded (in other words, it has many floating
point operations and few memory accesses). This is not the case of fingerprint coefficients where few floating point
operations are performed. Consequently, the speed-up seems to be bounded. We should also point out that the GPU
scheduler takes advantage from an high workload, hiding thread memory latency with execution of other threads. This
may reasonably explain the trend of better speed-ups with larger molecule workloads.

4.3. Results on a modern desktop GPU
The second computer system that we considered in our experiments is a desktop equipped with an AMD Athlon 64

X2@2GHz, with a recent NVIDIA GeForce GTX460@780Mhz (336 CUDA core and 1GByte of dedicated GDDR5
memory) and with Windows XP as operating system. The NVIDIA nvcc compiler is now based on Visual Studio
compiler. Considering the hardware configuration unbalanced toward GPU computing, we expect to obtain a speed-
up around two orders of magnitude. We can estimate an approximate 21-fold improvement over the laptop system
since the number of CUDA core is increased from 16 to 336. The above part of Table 3 shows the results regarding
chemical similarity coefficients calculated on binary fingerprints. As we can see, we obtain a 195-to-206-fold speed-
up compared to the baseline single-threaded CPU time. Not surprisingly, this result is even better of the theoretical
126-fold improvement (obtainable as the average laptop GPU speed-up 6 multiplied by 21). Moreover, the introduced
algorithmic optimizations approximatively account for a 2-fold improvement. Analogously to the laptop platform, the
best speed-up is obtained with the simpler coefficient (Tanimoto). It might be argued that calculations are not memory
bounded anymore since the speed-up is correlated with the molecule dataset size. In fact, the faster GDDR5 memory
offers enough bandwidth in order to not represent a bottleneck.
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Tanimoto Dice Cosine Euclidean Hamming
# Molecule Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU
Fingerprints (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up)

1600 108.45x 174.53x 102.01x 163.68x 111.82x 179.68x 109.13x 174.89x 96.61x 171.42x
3200 110.41x 180.11x 103.30x 168.44x 112.57x 183.98x 110.01x 177.99x 97.07x 176.61x
6400 121.59x 199.87x 117.43x 188.69x 116.87x 186.61x 117.32x 191.05x 112.67x 196.85x
12800 132.77x 219.63x 126.40x 208.94x 121.16x 189.24x 124.62x 204.11x 128.27x 217.08x
25600 138.15x 229.18x 132.21x 219.26x 141.32x 234.30x 139.22x 230.22x 136.06x 226.43x
51200 139.17x 236.54x 136.47x 225.00x 147.12x 243.40x 145.21x 239.32x 145.92x 240.18x

Average 125.19x 206.68x 119,64x 195,67x 125.14x 202.87x 124.25x 202.93x 119,43x 204.76x
Tanimoto Dice Cosine Euclidean Manhattan

# Molecule Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU Base GPU Opt. GPU
Descriptors (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up) (speed-up)

1600 106.11x 109.69x 104.45x 108.85x 111.92x 115.80x 71.10x 87.00x 240.64x 296.13x
3200 107.16x 111.32x 107.42x 111.48x 107.82x 119.02x 71.10x 87.60x 243.90x 306.76x
6400 111.44x 115.94x 112.36x 117.12x 115.68x 124.05x 86.73x 96.37x 282.43x 320.98x
12800 115.71x 120.56x 117.30x 122.76x 123.54x 129.08x 102.36x 105.13x 320.95x 335.20x
25600 117.43x 122.39x 117.58x 124.23x 125.05x 130.96x 102.93x 105.80x 327.32x 341.44x
51200 145.59x 152.29x 148.21x 155.68x 151.82x 159.08x 116.91x 120.12x 354.58x 368.86x

Average 117.54x 121.53x 117.89x 123.35x 122.64x 129.67x 91.86x 100.34x 294.97x 328.23x

Table 3: GPU speed-ups over single-core CPU desktop execution.

The lower part of Table 3 completes the experimental results with the coefficient calculated on molecule descrip-
tors. The achieved performance is improved by a 100-to-328-fold speed-up. As we can see, the introduced algorithmic
optimizations have a small role in this improvement. It is also easy to note how Manhattan coefficient has the best
speed-up by far. This result is probably related with the simplicity of the Manhattan coefficient and with the opti-
mizations natively implemented by the NVIDIA Fermi GPU architecture [8]. Tanimoto, Dice and Cosine coefficient
calculations are still optimized by precomputing

∑n
i=1(xiA)2 and

∑n
i=1(xiB)2 leading to approximatively a 25% per-

formance advantage respect to Euclidean coefficient. Moreover, the computation is not memory bounded since the
speed-up is still correlated with the number of molecule descriptors considered.

4.4. Comparison with dual-core CPU architecture

Tanimoto on 51200 Fingerprints
GPU Precomp. Dual Core Base GPU Opt. GPU
model (speed-up) (speed-up) (speed-up) (speed-up)
9400M 1.75x 4.15x 2.94x 5.87x

GTX460 1.44x 3.02x 139.17x 236.54x
Manhattan on 51200 Descriptors

GPU Precomp. Dual Core Base GPU Opt. GPU
model (speed-up) (speed-up) (speed-up) (speed-up)
9400M - 1.76x 3.90x 6.03x
GTX460 - 1.82 354.58x 368.86x

Table 4: Dual-core CPU speed-ups versus GPU speed-ups.

We implemented a multi-core version of our code using
Pthreads libraries [23]. Since the proposed workload is a
case of embarrassingly parallelism, it is straightforward to
distribute the computation among the threads. In more de-
tail, we use four threads in order to keep busy the dual-core
CPU architectures available. The obtained results are re-
ported in Table 4. As expected, the dual-core implementa-
tion linearly increases the performance by a factor of about
2x. When there is possibility of precomputing (i.e. Tani-
moto coefficient), this increase is even bigger. However, we can observe that GPUs still have a considerable advantage,
especially taking account of performance relative to cost and power consumption. We can also argue that a similar
performance scalability can be observed using multiple GPUs.

4.5. Comparison with previous work

Tanimoto
# Molecule Base. CPU Optimized GPU
Fingerprints (ms) (ms) (speed-up)

1600 2173 12 174.53x
3200 8730 48 180.11x
6400 40745 203 199.87x
12800 168137 765 219.63x
25600 701303 3060 229.18x
51200 2907592 12292 236.54x

Table 5: Tanimoto coefficient performance for comparison with
the work proposed by [14].

Last but not least, we try to make a comparison be-
tween our work and the all-to-all fingerprint Tanimoto cal-
culation proposed by [14]. Details about our Tanimoto
coefficient calculation are reported in Table 5. We have
adopted the 256-bits long fingerprint format as well as
the lookup table approach for counting bits proposed in
[14]. Despite these similarities, we obtain discrepant re-
sults even in the baseline single-core CPU time. In more
detail, in [14] it has been claimed that 2048 fingerprints
are processed by a single thread in 49.76 seconds whereas our single-core implementation can process a slightly
larger amount in just a fraction of the time (3200 fingerprints in 8.73 seconds). In this scenario, the only meaningful
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comparison can be assessed from relative GPU speed-ups. Assuming 8192 fingerprints, the single-core and GPU im-
plementations proposed by [14] have runtimes of 832.21s and 2385.14s. This result corresponds to a slow down factor
of 832.21s/2385.14s = 0.34x. For same task, we have clearly shown how our optimized GPU algorithm achieves an
average performance speed-up of 206.68x, three orders of magnitude better than [14].

5. Conclusions

In this paper, we have shown how chemical similarity assessment in large scale database can take advantage of
GPU computing. We provide details about some methods for efficiently representing molecules and about similarity
coefficients commonly used in chemoinformatics. We presented a general GPU algorithm for all-to-all chemical com-
parisons between molecule fingerprints and between molecule descriptors, introducing the necessary optimizations in
order to minimize accesses to global memory. Previous works found in literature [12, 13] combine chemoinformat-
ics with GPU computing but none of them contains a comprehensive covering of the chemical similarity topic. We
tested the proposed algorithm on different experimental setups, obtaining up to a 206-fold speed-up for fingerprints
and up to a 328-fold speed-up for descriptors. We also compared our Tanimoto coefficient calculation with [14],
outperforming the previous result by three order of magnitute. Finally, our aim was to provide a wide-breath proof-of-
concept regarding the usefulness of GPU architectures in chemoinformatics, a class of computing problems still un-
covered. Consequently, we plan to investigate about other chemoinformatics techniques that may take advantage of
GPU computing. Acknowledgments: this work was supported by National Institute of Health grants GM086145 and
GM079804.
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