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Three-dimensional chromosome structures from
energy landscape
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The human genome contains about 2-m length of
DNA and is packed into a small cell nucleus of
approximately cubic-micrometer size. A central
question in genome biology is to understand how
chromatins are organized in such a compact vol-
ume, while biological functions such as gene ex-
pression, DNA replication, and DNA repair are
robustly orchestrated. Over the past two decades,
experimental studies based on chromatin fragmen-
tation and proximity cross-linking have given us
quantitative information on the frequencies of
long-range interactions among genomic elements
(1). With recent development of the Hi-C method-
ology (2), frequencies of such interactions are now
known at 1-kB resolution (3). These studies lead to
discoveries of finer organizational structures of
compartments, subcompartments, and topologi-
cally associated domains (TADs) (3, 4). Although these
structures have been inferred from analysis of heat
maps of frequencies of genomic interactions (3, 5,
6), a grand challenge in studying the 3D genome is
to gain mechanistic understanding of the general prin-
ciples governing chromatin folding and their spatial
organization. In PNAS, Di Pierro et al. (7) introduce
an energy landscape theory and a predictive model
of chromosome architecture.

Di Pierro et al. start by considering the roles of
specific biochemical interactions. Although generic
polymer models of chromatin have generated im-
portant insight into the overall behavior of chroma-
tin, growing evidence suggests that biochemical
interactions are critical for 3D genome organization
(8). Di Pierro et al. assume that chromosomes fold
under the influence of a cloud of proteins, which bind
to different sections of chromatin with different affin-
ities and specificities. To recapture the energy land-
scape governed by these interactions, Di Pierro et al.
develop the minimal chromatin model.

The first ingredient of Di Pierro et al.’s model is
the partitioning of the genome into intervals of a
handful of types. Each interval type is character-
ized by its histone modifications and a characteristic
combination of nuclear proteins it interacts with. As

demonstrated by a number of biochemical and struc-
tural studies on Drosophila and human genome, dis-
tinct chromatin subcompartments corresponding to
different interval types can be clearly identified, with
exhibitions of characteristic histone marks and pat-
terns of long-range interactions (3, 9). Di Pierro et al.
model the effects of binding between two chromatin
segments by approximating the free energy changes
as a value that depends only on the types of the two
contacting intervals. A similar approach has been
successfully applied to study the formation of TADs
(10). The second ingredient of Di Pierro et al. is that
loops have high propensities to form between pairs
of anchor loci, and the effects of loop formation can
be modeled by changes in effective free energy in-
curred at the pair of loci where loops form. Di Pierro
et al. assume that the anchor loci are mostly associ-
ated with CCCTC factors (CTCF) binding motifs. The
important role of CTCF in loop formation has been

Fig. 1. Energy landscapes of protein and chromosome
folding. (A) A protein sequence of amino acid residues
and disulfide bonds between cysteine residues dictates
the energy landscape of protein folding, which
describes interactions between residues and solvent.
The structure of the protein can be predicted from this
energy landscape. (B) A sequence of genomic interval
types and looping interactions between anchor loci of
CTCF motifs dictates the energy landscape of
chromosome folding, which describes interactions
between genomic intervals and nuclear proteins. The
structural ensemble of chromosome can be predicted
from this energy landscape.
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well documented (8), and this assumption is also supported by
experimental evidence that loops anchored at CTCF sites are
readily recognizable from frequency heat maps of Hi-C studies
(3). The third ingredient is the consideration of generic gain or
loss of effective free energy when a pair of loci come into con-
tact. This free energy change is independent of interval types
and loop formations, and is only determined by genomic dis-
tance between the contacting loci. It models changes in local
structures of an ideal chromatin. Di Pierro et al. summarize
these considerations into an information-theoretic energy
function, with one term and an associated coefficient repre-
senting each factor, along with an additional term representing
properties of a generic homopolymer such as excluded volume
effects. With this model formulation, Di Pierro et al. follow the
principle of maximum entropy and generate ensembles of struc-
tures of a 2,712-bead model of chromosome 10 and iteratively
adjust the model parameters. The ensemble generated from
the final set of parameters can simulate Hi-C frequencies of the
136-Mbp chromosome (3) at 50-kb resolution, exhibiting an ex-
cellent agreement with Hi-C measurements (Pearson’s r = 0.95).

A previous study of populations of chromatin structures based
on Hi-C data also succeeded in reproducing interaction frequen-
cies with similar correlation for the whole genome, albeit at lower
resolution (11). The energy landscape of the minimum chromatin
model differs as it is formulated to capture general principles at
play in chromatin folding. Indeed, Di Pierro et al. generated an
ensemble of chromatins of all other chromosomes using the
minimum chromatin model, with parameters trained only on
chromosome 10. With just 27 parameters, the heat maps of Hi-C–
measured frequencies (3) of the rest of chromosomes unseen
during parameter training can all be simulated with excellent
agreement (r = 0.95) using annotations of chromatin types and
CTCF looping locations from Rao et al. (3) as input.

The chromatin ensembles predicted with the minimum
chromatin model of Di Pierro et al. reveal a number of interesting
observations that have been reported in previous Hi-C and
3D-FISH studies (3, 12). Each chromosome is found to form a
compact chromosome territory, with phase separations among
different chromatin types observed within the territory. Similar
phase separation was also observed when two interacting
chromosomes were simulated simultaneously, suggesting that
the formation of chromosome territories can be inferred from
the same energy landscape that was used to simulate single
chromosomes independently. In addition, subvolumes com-
prising a single type of chromatin interval are frequently found
within a chromosome territory. Furthermore, highly expressed
genes are often colocalized and predominantly lie in the less
densely packed periphery of the chromosome territory. Di Pierro
et al. also demonstrate the importance of biochemical interactions
encoded in the model, as none of these observations appears in a
control study when simple homopolymer chains with all biochem-
ical information removed are used.

Di Pierro et al. further examine nonlocal properties of chro-
mosome structures that cannot be directly inferred from Hi-C
frequency data. Confined long polymer chains in equilibrium form
knots with high probability. However, knotted chromatin struc-
tures would occlude access of cis-regulatory elements and
transcription factors to genes, potentially hindering cellular
functions. When Di Pierro et al. calculated knot invariants, a
mathematical tool for knot detection, of sampled ensemble of
chromatin conformations, modeled chromatin chains are found
largely devoid of knots. Unknotted chromatin was a property

that was used to justify the nonequilibrium fractal globule
model (2, 13). Results of Di Pierro et al. show that an equilib-
rium mechanistic model based on minimalistic assumptions
can generate ensembles of unknotted chromatin chains. Along
with the presence of topoisomerases, enzymes that cut the
double-stranded DNA to untangle knots, the formation of
knots is unlikely to occur with significant frequency in cell.
Furthermore, the power-law scaling relationship between the
probability of contact formation and genomic distances, an-
other justification of the nonequilibrium fractal globule model
(2, 13), is also reproduced with great accuracy from the simu-
lated equilibrium ensembles.

The energy landscape specified by the minimum chromatin

Energy landscape theory and the minimal
chromatin model of chromatin folding by
Di Pierro et al. provide a general framework
for developing transferable, predictive, and
physical models that can help to understand the
mechanism of 3D genome organization.

model is reminiscent of the energy landscape theory developed
in protein folding studies (Fig. 1). In place of a sequence of
amino acid residues, we have a sequence of chromatin beads of
different types. Loop formation between CTCF sites is analo-
gous to the formation of disulfide bonds between cysteine res-
idues. Admittedly, folded chromatins are quite different from
folded proteins: contact interactions are likely to be transient,
subpopulations of cells may have different chromatin confor-
mations, and chromosomes are likely only partially structured.
Nevertheless, the energy landscape theory for chromatin archi-
tecture may provide a general framework for answering impor-
tant questions on 3D genome organization. As pointed out by
Di Pierro et al., it is conceivable that, with a well-constructed
energy landscape, 3D ensemble structures of whole genomes
can be predicted computationally using 1D genomic data of
epigenetic modifications, which can be cost-effectively assayed
using ChIP-Seq, RNA-Seq, DNA-seq, and other epigenetic profiling
techniques. The energy landscape theory of chromatin folding also
helps to raise new questions. For example, one can ask how the
“sequence” of genomic intervals change their labels or “mutate”
during development and disease, how these mutations would lead
to different 3D structural ensembles of chromatins, and how these
changes would affect cellular phenotypes.

Looking ahead, there are a number of technical issues that
need to be resolved. It is still challenging to distinguish artifacts,
generic polymer effects, and biologically specific effects in
interaction frequencies measured in Hi-C data, so energy land-
scape of chromosome folding can be further improved and
refined. The practice of aggregating Hi-C interactions into bins
helps to identify domains and other finer structures from fre-
quency maps but may introduce unwanted artifacts (14). Much of
the measured genome-wide chromatin interactions in budding
yeast (15) is due to generic polymer effects under the constraints
of a few landmarks (nucleolus, spindle pole body, and centromere
attachments) (16, 17), and identifying biologically important inter-
actions is a nontrivial task (18). Furthermore, the abundance of
CTCF motifs complicates the determination of loci parings for
loop formations from 1D epigenomic data. In addition, inferring
structural units of gene regulatory machineries that span just a few
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kilobases requires chromatin models of finer resolution. These
roadblocks, however, will likely be removed as the advancement
in theory, model, and experimental measurements marches on.
Energy landscape theory and the minimal chromatin model of
chromatin folding by Di Pierro et al. provide a general frame-
work for developing transferable, predictive, and physical mod-
els that can help to understand the mechanism of 3D genome
organization. It is envisioned that computational models of 3D
chromatin structures will help to decipher complex mechanisms
involving higher-order genomic interactions that control cellular

phenotypes. Successes in constructing predictive energy land-
scapes hold the promise of enabling biological discoveries such
as identifications of novel enhancer–gene interactions through
folding of 1D genome and epigenome into an ensemble of
3D chromatins.
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