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ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING
MULTI-FINITE BUFFERS∗

YOUFANG CAO† , ANNA TEREBUS‡ , AND JIE LIANG§

Abstract. The discrete chemical master equation (dCME) provides a fundamental framework
for studying stochasticity in mesoscopic networks. Because of the multiscale nature of many networks
where reaction rates have a large disparity, directly solving dCMEs is intractable due to the exploding
size of the state space. It is important to truncate the state space effectively with quantified errors,
so accurate solutions can be computed. It is also important to know if all major probabilistic peaks
have been computed. Here we introduce the accurate CME (ACME) algorithm for obtaining direct
solutions to dCMEs. With multifinite buffers for reducing the state space by O(n!), exact steady-state
and time-evolving network probability landscapes can be computed. We further describe a theoretical
framework of aggregating microstates into a smaller number of macrostates by decomposing a network
into independent aggregated birth and death processes and give an a priori method for rapidly
determining steady-state truncation errors. The maximal sizes of the finite buffers for a given
error tolerance can also be precomputed without costly trial solutions of dCMEs. We show exactly
computed probability landscapes of three multiscale networks, namely, a 6-node toggle switch, 11-
node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no
known solutions. We also show how probabilities of rare events can be computed from first-passage
times, another class of unsolved problems challenging for simulation-based techniques due to large
separations in time scales. Overall, the ACME method enables accurate and efficient solutions of
the dCME for a large class of networks.

Key words. chemical master equation, stochastic biological networks, state space truncation,
steady state probability landscape, time-evolving probability landscapes, first passage time distribu-
tion
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1. Introduction. Biochemical reaction networks are intrinsically stochastic [3,
59, 71] and often multiscale when there exists a large disparity in reaction rates.
When genes, transcription factors, signaling molecules, and regulatory proteins are
in small quantities (10 ∼ 100 nM), stochasticity plays important roles [5, 11, 19,
72]. Deterministic models based on chemical mass action kinetics cannot capture the
stochastic nature of these networks [11, 52, 81]. Instead, the discrete chemical master
equations (dCME) that describe the probabilistic jumps between discrete states due
to the firing of reactions can fully describe these mesoscopic stochastic processes in a
well mixed system [8, 23, 24, 27, 76].

However, studying the stochastic behavior of a multiscale network is challenging.
The rate constants of different reactions often have large separations in time scale by a

∗Received by the editors August 6, 2015; accepted for publication (in revised form) April 4, 2016;
published electronically June 29, 2016. This work was supported by NIH grant GM079804, NSF
grant MCB1415589, and the Chicago Biomedical Consortium with support from the Searle Funds at
The Chicago Community Trust.

http://www.siam.org/journals/mms/14-2/M103418.html
†Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607. Current

address: Center for Nonlinear Studies (CNLS) and Theoretical Biology and Biophysics (T-6), Los
Alamos National Laboratory, Los Alamos, NM 87545 (ycao@lanl.gov). This author gratefully ac-
knowledges the support of the U.S. Department of Energy through the LANL/LDRD Program for
this work.

‡Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
(anna.terebus@gmail.com).

§Corresponding author. Department of Bioengineering, University of Illinois at Chicago, Chicago,
IL 60607 (jliang@uic.edu).

923

D
ow

nl
oa

de
d 

11
/2

9/
16

 to
 1

31
.1

93
.1

71
.9

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/mms/14-2/M103418.html
mailto:ycao@lanl.gov
mailto:anna.terebus@gmail.com
mailto:jliang@uic.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

924 YOUFANG CAO, ANNA TEREBUS, AND JIE LIANG

few orders of magnitude. Copy numbers of molecular species can also span a number
of orders of magnitude, further exacerbating the problem of time separations between
slow and fast reactions. Even with a correctly constructed model of a stochastic
network, it is generally unknown if an accurate solution has been found. One does not
know if a computed probabilistic landscape is overall erroneous and how such errors
can be quantified. For example, it is difficult to know if all major probabilistic peaks
have been identified or important peaks in the usually high dimensional space with
significant probability mass are undetected. Furthermore, the best possible accuracy
one can hope to achieve with given finite computing resources is generally unknown.
In addition, one does not know what is required so accurate solutions with errors
smaller than a predefined tolerance can be obtained.

While the time-evolving probability landscape over discrete states governed by the
dCME provides detailed information of the underlying dynamic stochastic processes,
the dCME cannot be solved analytically, except for a few very simple cases [16, 46,
53, 78]. Approximations to the dCME such as the chemical Fokker–Planck equa-
tion (FPE) and the chemical Langevin equation (CLE) are widely used to study
stochastic reactions [4, 21, 25, 26, 32, 66, 77]. However, these approximations assume
relatively large copy numbers of molecules, so the states can be regarded as contin-
uous, and higher order terms of the Kramers–Moyal expansion of the dCME can be
truncated [76]. These approximations do not provide a full account of the stochas-
ticity of the system and are not valid when copy numbers of molecular species are
small [25]. Although errors of these approximations have been assessed for simple
reactions [29, 74] and a recent study showed that CLE failed to converge to the cor-
rect steady state probability landscape (see the appendix of [11]), the consequences
of such approximations for realistic problems involving many molecular species and
with complex reactions across multiple temporal scales are largely unknown.

The stochastic simulation algorithm (SSA) is widely used to study stochasticity
in biological networks. It generates reaction trajectories dictated by the underlying
dCME of the network [23]. The stochastic properties of the network can then be
inferred through analysis of a large number of simulation trajectories. However, as
the SSA follows high-probability reaction paths, it is therefore inefficient for sampling
biologically critical rare events that often occur in stiff multiscale reaction networks,
in which slow and fast reactions are well-separated in time scale [1, 10, 15, 38, 45, 79].
In addition, assessment of its convergence of simulation trajectories is also difficult.
Recent development in biased sampling aims to address this problem [1, 10, 15, 45].

An attractive approach to study stochastic networks is to directly solve the dCME
numerically. By computing the exact probability landscape of a stochastic network, its
properties, including those involving rare events, can be studied accurately in detail.
The finite state projection (FSP) method and the sliding window method are among
several methods that have been developed to solve the dCME directly [9, 11, 37, 55,
82].

The FSP method is based on a truncated projection of the state space and uses
numerical techniques to compute a direct solution to the dCME [55, 67]. Although the
error due to state space truncation can be captured by the absorption state, to which
all truncated states are projected [55], there is no systematic guidance as to which
states and how many of them should be incorporated so the error can be minimized
to remain within an acceptable tolerance [55, 56]. Furthermore, the introduction of
the absorption state leads to an accumulation of errors as time proceeds, as this state
would eventually absorb all probability mass. Designed to study transient behavior of
stochastic networks, the FSP method therefore is challenged to compute the steady
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ACCURATE SOLUTION TO THE CHEMICAL MASTER EQUATION 925

state probability landscape and the first passage time distribution of rare events in a
multiscale network.

The sliding window method for solving the dCME is also based on truncation of
the state space. In this case, the state space is adaptively restricted to those that
are likely relevant within a small time-window, with the assumption that most of
the probability mass is contained within a set of preselected states [82]. However,
to ensure that the truncation error is small, a large number of states need to be
included, as the size of the state space takes the form of a d-dimensional hypercube,
with the upper and lower bounds of copy numbers of each of the d molecular species
predetermined by a Poisson model [82].

The main difficulty of all these methods is to have an adequate and accurate
account of the discrete state space. As the copy number of each of the d molecular
species takes an integer value, conventional hypercube-based methods incorporate all
vertices in a d-dimensional hypercubic integer lattice, which has an overall size of
O(

∏d
i=1 mi), where mi is the maximally allowed copy number of molecular species

i. State enumeration rapidly becomes intractable, both in storage and in computing
time. For example, assuming a system has 16 molecular species, each with maximally
9 copies of molecules, a state space of size (9 + 1)16 = 1016 would be required. This
makes the direct solution of the dCME impossible for many realistic problems.

To address the issue of prohibitive size of the discrete state space, the finite buffer
discrete CME (fb-dCME) method was developed for efficient state enumeration [9].
This algorithm is provably optimal in both memory usage and in the time required
for enumeration when a single buffer queue is used. Instead of including every states
in a hypercube, it examines only states that can be reached from a given initial state.
It can be used to compute the exact probability landscape of a closed network or an
open network when the net gain in newly synthesized molecules does not exceed a pre-
defined finite capacity. However, as the available memory is limited, state truncation
will eventually occur for open systems when synthesis reactions outpace degradation
reactions and for closed system whose full enumeration requires memory that exceeds
available capacity. In these cases, it is unclear whether the error associated with a
truncated state space is within a tolerance threshold. Furthermore, similar to other
methods aimed to solve the dCME directly, it is unclear how to minimize the error of
a truncated state space, thus limiting the scope of applications of this method.

In this study, we introduce the accurate chemical master equation (ACME) method
for solving the dCME. Our method is based on the decomposition of the multiscale
stochastic reaction network into multiple independent components; each is governed
by its own birth-death process, and each has a unique pattern of generation and
degradation of molecules. In the ACME method, each independent component is
equipped with its own finite state subspace controlled by a separate buffer queue.
Similar to the original fb-dCME method, it is optimal in space and in time required
for state enumeration but has the advantage of more effective usage of the overall
finite state space and allows detailed analysis. This approach improves computing
efficiency significantly and can generate state spaces of much larger effective sizes.

We also provide a method for rapid estimation of the errors in the computed
steady state probability landscape upon truncation of the state space when using a
buffer bank with a finite capacity. An estimation of the required buffer sizes can
also be computed so the truncation error is within a predefined tolerance. These es-
timations are derived conservatively, so that the actual errors will not be larger than
the estimated errors. A strategy for optimized buffer allocation is also given. Fur-
thermore, the error bounds and required buffer sizes for each individual independent
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926 YOUFANG CAO, ANNA TEREBUS, AND JIE LIANG

component can all be rapidly computed a priori without costly computation of trial
solutions to the dCME. These are based on results of theoretical analysis of the upper
bound of the truncation error of the probability landscape at the steady state, which
will be discussed in detail. The ACME algorithm along with the error estimation
are implemented in the ACME package. Overall, the ACME method allows accurate
solutions to the dCME with small and controlled errors for a much larger class of
biological problems than previously feasible.

Our paper is organized as follows. We first review basic concepts of the dCME
and issues associated with the finite discrete state space. We then describe the concept
of reaction graph, its decomposition, and how independent birth-death components
can be identified. We further introduce the ACME algorithm in which multifinite
buffers are used for state enumeration. This is followed by a discussion of results of
theoretical analysis of errors in the steady state probability landscape due to state
truncation and how probability of boundary states can be used to construct upper
bounds of the truncation errors. We then give detailed examples of three biological
networks, namely, the toggle switch, the epigenetic circuit of lysis-lysogeny decision
of phage lambda, and a model of MAPK cascade. We discuss the computed time-
evolving and the steady state probability landscapes, along with the significant state
space reduction achieved for these networks. Results on the challenging problem of
estimating rare event probability through the computation of the first-passage times
of these networks are also reported. We conclude with summaries and discussions.

2. Methods and theory.

2.1. Background.

2.1.1. Reaction network, state space, and probability landscape. In a
well-mixed biochemical system with constant volume and temperature, we assume
there are n molecular species, denoted as X = {X1, X2, . . . , Xn}, and m reactions,
denoted as R = {R1, R2, . . . , Rm}. Each reaction Rk has an intrinsic reaction rate
constant rk. The microstate of the system at time t is given by the nonnegative
integer column vector x(t) ∈ Z

n
≥0 of copy numbers of each molecular species: x(t) =

(x1(t), x2(t), . . . , xn(t))
T , where xi(t) is the copy number of molecular species Xi at

time t. An arbitrary reaction Rk with intrinsic rate rk takes the general form of

c1kX1 + c2kX2 + · · ·+ cnkXn
rk→ c′1kX1 + c′2kX2 + · · ·+ c′nkXn,

which brings the system from a microstate xj to xi. The difference between xi and xj

is the stoichiometry vector sk of reaction Rk: sk = xi − xj = (s1k, s2k, . . . , snk)
T =

(c′1k− c1k, c
′
2k− c2k, . . . , c

′
nk− cnk)

T ∈ Z
n. The stoichiometry matrix S of the network

is defined as S = (s1, s2, . . . , sm) ∈ Z
n×m, where each column correspond to one

reaction. The rate Ak(xi,xj) of reaction Rk that brings the microstate from xj to xi

is determined by rk and the combination number of relevant reactants in the current
microstate xj ,

Ak(xi,xj) = Ak(xj) = rk

n∏
l=1

(
xl

clk

)
,

assuming the convention
(
0
0

)
= 1.

All possible microstates that a system can visit from a given initial condition
form the state space Ω = {x(t)|x(0), t ∈ (0, ∞)}. We denote the probability of each
microstate at time t as p(x(t)), and the probability distribution at time t over the full
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ACCURATE SOLUTION TO THE CHEMICAL MASTER EQUATION 927

state space as p(t) = {(p(x(t))|x(t) ∈ Ω)}. We also call p(t) the probability landscape
of the network [11].

2.1.2. Discrete chemical master equation. The dCME can be written as a
set of linear ordinary differential equations describing the change in probability of
each discrete state over time:

(2.1)
dp(x, t)

dt
=

∑
x′, x′ �= x

[A(x,x′)p(x′, t)−A(x′,x)p(x, t)].

Note that p(x, t) is continuous in time but is over states that are discrete. In matrix
form, the dCME can be written as

(2.2)
dp(t)

dt
= Ap(t),

where A ∈ R
|Ω|×|Ω| is the transition rate matrix formed by the collection of all

A(xi,xj):

(2.3) A(xi,xj) =

⎧⎪⎪⎨
⎪⎪⎩

−∑
x′∈Ω,
x′ �= xj

Ak(x
′,xj) if xi = xj ,

Ak(xi,xj) if xi �= xj and xj
Rk−→ xi,

0 otherwise.

2.2. Finite buffer for state space enumeration. Enumeration of the state
space is a prerequisite for directly solving the dCME. The method of fb-dCME pro-
vides an efficient algorithm for state enumeration [9, 11]. By treating states as nodes
and reactions as edges, the problem of state enumeration is transformed into that of
a graph traversal problem [14]. The fb-dCME algorithm uses the depth-first search
(DFS) to enumerate states that can be reached from an initial state [9]. For closed
networks with no synthesis reactions, the finite state space can be fully enumerated,
assuming the capacity of available computer memory is adequate.

For open networks with synthesis and degradation reactions found in a biological
system, the size of the state space is also finite, as the total mass of molecules in a
reaction system is conserved and the duration of reactions is bounded by the lifetime
of a cell. Therefore, the net number of synthesized molecules that need to be modeled
is finite. However, errors due to state space truncation will occur when the compute
capacity is insufficient to fully account for the finite state space, as synthesis reaction
can no longer proceed after memory exhaustion. Similarly, truncation error will occur
when the size of the full state space of a closed network cannot be contained in the
available memory.

The fb-dCME algorithm uses a buffer of a predefined capacity as a counter to
keep track of the total number of molecules in the reaction system. Once the buffer
capacity is determined, the maximum number of molecules in the system is given,
which is the number of molecules that can be synthesized in the model. The buffer
capacity is dictated by the available computer memory. When a synthesis reaction oc-
curs, one buffer token is spent. When a degradation reaction occurs, one buffer token
is deposited back. Multiple buffer tokens are taken or deposited when synthesis and
degradation involve higher order reactions such as homo- or hetero-oligomers, with

D
ow

nl
oa

de
d 

11
/2

9/
16

 to
 1

31
.1

93
.1

71
.9

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

928 YOUFANG CAO, ANNA TEREBUS, AND JIE LIANG

the number of tokens equivalent to that of the monomers. The fb-dCME algorithm
has been successfully applied in studying the stability and efficiency problem of phage
lambda lysogeny-lysis epigenetic switch [11], as well as in direct computation of prob-
abilities of critical rare events in the birth and death process, the Schlögl model, and
the enzymatic futile cycle [10].

2.3. Multifinite buffers for state space enumeration. Reaction rates in a
network can vary greatly: many steps of fast reactions can occur within a given time
period, while only a few steps of slow reactions can occur in the same time period.
The efficiency of state enumeration can be greatly improved if memory allocation is
optimized based on different behavior of these reactions.

Independent birth-death (iBD) processes. It is useful to examine the reaction net-
work in terms of birth and death processes, as birth (synthesis) and death (degrada-
tion) are the only reactions that can change the total mass of an open network by
adding or removing molecules. These processes correspond to spending or depositing
buffer tokens, respectively. Below we first introduce the concept of reaction graph and
its partition into disjoint components. We then examine those components equipped
with their own birth-death processes.

Reaction graph and independent reaction components. We first construct an undi-
rected graph GR, with reactions form the set of vertices V . A pair of reactions Ri and
Rj are then connected by an edge eij if they share either reactant(s) or product(s). To
correctly discover related reactions through the stoichiometry matrix, all molecular
species in the network are represented using the combination of their most elemen-
tary form. For example, if a molecular species C is a complex formed by A bounded
with B, we use the original form A + B to represent C. Collectively, these reaction
pairs sharing reactants or products form the edge set of the graph: E = {eij}. The
reaction graph GR can be decomposed into u number of disjoint independent reaction
components {Hi}: GR =

⋃u
i=1 Hi with E(H i) ∩E(Hj) = ∅ for i �= j.

We are interested in those independent reaction components Hjs that contain

at least one synthesis reaction. These are called iBD components {HiBD
j }. The

number w of iBD components necessarily does not exceed the number u of connected
components in GR: w ≤ u.

A number of methods can be used to decompose GR into independent reaction
components. For example, the standard disjoint-set data structure and the Union-

Find algorithm can be used for this purpose [14]. Another method is to represent
GR by an m ×m adjacency matrix C or a Laplacian matrix L. According to spec-
tral graph theory, the connectedness of GR is encoded in the eigenvalue spectrum
of its Laplacian L [13]: the number of connected components of GR is the multi-
plicity u of the 0 eigenvalue of L, and the corresponding u orthogonal eigenvectors
(v1, . . . ,vu) gives memberships for reaction to be in each connected independent com-
ponent. Specifically, the nonzero elements of the vector vi correspond to the member
reactions of an independent reaction component Hi of GR. Algorithm 1 can be used
to decompose GR. Additional information on calculating GR can be found in the
appendix.

Relationship between states and iBDs. The iBDs are components of partitioned
reactions according to how they share reactants/products, or equivalently, how they
contribute to the change of the total mass of the network. The iBDs can be viewed
as aggregated reactions and are dictated only by the topology of the network that
connects reactions through shared reactants/products. Once the stoichiometry matrix
of a reaction network is defined, its iBDs are also determined.
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Algorithm 1 Determination of Independent Birth-Death Processes (X ,R).
Network model: O ← {X ,R};
Initialization of number of iBDs w = 0;
Obtain the stoichiometry matrix S of network O;
Construct adjacency matrix C of reaction-centered graph GR following equa-
tion (A.1) in the appendix;
Construct degree matrix D of GR following (A.2) in the appendix;
Construct the Laplacian matrix L following equation (A.3) in the appendix;
Calculate the eigenvalue spectrum of L and obtain the multiplicity u of eigenvalue
0;
Calculate all u orthogonal eigenvectors vi, i = 1, . . . , u of the eigenvalue 0;
for i = 1 to u do

Construct connected reaction sets Hi = {Rj | if vi, j �= 0};
end for
for i = 1 to u do

if there exists a synthesis or degradation reaction in Hi then
w ← w + 1
HiBD

w = Hi

end if
end for
Output the number of iBDs and buffers w and iBDs: HiBD

i , i = 1, . . . , w.

In contrast, a state is a physical realization of the network at a particular time
instance. It describes the number of molecules in the system, regardless of which
iBD(s) each may participate. For a mesoscopic system, the state of the system changes
with time. It is possible a state can participate in transitions in multiple iBDs. There
are many ways states can be aggregated; the aggregations we study in later sections
are by the total net number of synthesized molecules in an individual iBD.

ACME multibuffer algorithm for state enumeration. To enumerate the state space
more effectively, we introduce the multibuffer state enumeration algorithm for solving
the discrete chemical master equation (mb-dCME). We assign a separate buffer queue
Bi of size bi ∈ Z≥0 to each of the ith iBD component. Collectively, they form a buffer
bank B = (B1, . . . , Bw). The current sizes of the buffer queues, or the numbers of the
remaining buffer tokens, form a vector b = (b1, b2, . . . , bw) ∈ Z

w
≥0. The ith synthesis

reaction cannot proceed if the ith buffer queue is exhausted, i.e., bi = 0, resulting in
state truncation.

When all iBDs have infinite buffer capacities, we have the infinite buffer bank
I = (∞,∞, . . . ,∞). The infinite state space Ω(I) associated with buffer bank I gives
the full state space, which will give the exact solution of the dCME: Ω(I) ≡ Ω =
{x(t)|x(0), t ∈ (0,∞)}. We further use Ij = (∞, . . . ,∞, Bj ,∞, . . . ,∞) to denote
a buffer bank when only the jth iBD is finite with capacity Bj . We can define a
partial order B′ ≤ B′′ for buffer banks if B′

j ≤ B′′
j for all j = 1, . . . , w. We then have

B ≤ Ij ≤ I. We also have Ω(B) ⊆ Ω(Ij) ⊆ Ω(I).
With the total amount of available computer memory fixed, each enumerated state

x ∈ Z
n
≥0 is associated with a vector of buffer sizes b(x) = (b1(x), b2(x), . . . , bw(x)),

which records the remaining number of unspent tokens in each buffer queue. We can
augment the state vector x by concatenating b(x) after x to obtain the expanded
state vector x̂ = (x, b) ∈ Z

n+w
≥0 . With the buffer queues in B defined, we list the
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930 YOUFANG CAO, ANNA TEREBUS, AND JIE LIANG

mb-dCME algorithm in Algorithm 2. The associated transition rate matrix A can
also be calculated using Algorithm 2.

Algorithm 2 Multifinite Buffer Optimal State Space Enumeration and Transition
Rate Matrix Generation (X ,R, {HiBD

i }, buffer capacities: b = (b1, b2, . . . , bw)).

Network model: O ← {X ,R};
Initialization of w iBD processes: H iBD

1 ,HiBD
2 , . . . ,HiBD

w ;
Buffer capacities: b = (b1, b2, . . . , bw);
Initial state: xt=0 ← {x0

1, x
0
2, . . . , x

0
n};

Initialize the state space and the set of transitions: Ω← ∅; T ← ∅;
Ω← Ω ∪ (xt=0, b); Stack ST ← ∅; Push(ST, xt=0);
while ST �= ∅ do

StateGenerated←FALSE; xi ← Pop (ST );
for k = 1 to m do � There are m reactions.

for j = 1 to w do � Look up which iBD reaction Rk belongs to.
if Rk ∈H iBD

j then
Break;

end if
end for
if Reaction Rk can occur in state xi then

if Rk is a synthesis reaction generating gk new copies of Xi then
if bj ≥ gk then � Check if buffer tokens are sufficient for synthesis

� reaction.
Generate state xj that is reached via reaction Rk from xi;
bj ← bj − gk; StateGenerated←TRUE;

end if
else

if Rk is a degradation and breaks down dk copies of Xi then
bj ← bj + dk;

end if
Generate state xj that is reached via reaction Rk from xi;
StateGenerated←TRUE;

end if
if (StateGenerated = TRUE) then

Combined state x̂j = (xj , b);
if (x̂j /∈ Ω) then

Ω← Ω ∪ x̂j ; Push(ST, xj); T ← T ∪ txi, xj ; � txi, xj

records this transition.
A(xi, xj)← ReactionRate(xi, xj , Rk)

end if
end if

end if
end for

end while
Output Ω, T and A = {A(xi, xj)}.

Instead of truncating the state space by specifying a maximum allowed copy
number B for each individual molecular species as in the conventional hypercube
approach, the multibuffer method specifies a maximum allowed copy number B for
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ACCURATE SOLUTION TO THE CHEMICAL MASTER EQUATION 931

each buffer. Assume the jth buffer contains nj distinct molecular species, and the
number of all possible states for the jth buffer is then that of the number of integer
lattice nodes in an nj-dimensional orthogonal corner simplex, with equal length B
for all edges starting from the origin. The total number of integer lattice nodes
in this nj-dimensional simplex gives the precise number of states of the jth buffer,

which is the multiset number
(
B+nj

nj

)
. The size of the state space is therefore much

smaller than the size of the state space Bnj that would be generated by the hypercube
method, with a dramatic reduction factor of roughly nj ! factorial. Note that under
the constraint of mass conservation, each molecular species in this buffer can still
have a maximum of B copies of molecules. With a conservative assumption that
different buffers are independent, the size of the overall truncated state space is then
O(

∏
j

(
B+nj

nj

)
). This is much smaller than the n-dimensional hypercube, which has

an overall size of O(
∏

j B
nj ) = O(Bn) with n total number of molecular species in

the network. Overall, the state spaces generated using the multibuffer algorithm are
dramatically smaller than those generated using the conventional hypercube method
without loss of resolutions.

2.4. Controlling truncation errors. When one or more buffer queues are
exhausted, no new states can be enumerated and synthesis reaction(s) cannot proceed,
resulting in errors due to state truncation. Below we describe a theoretical framework
for analyzing effects of truncating state space. We give an error estimate such that the
truncation error is bounded from above, namely, the actual error will be smaller than
the estimated error bound. Furthermore, we give an estimate on the minimal size of
buffer required so the truncation error is within a specified tolerance. It is important
to note that this error estimate is obtained a priori without computing costly trial
solutions. Detailed proofs for all statements of facts can be found in [12].

2.4.1. Overall description. We briefly outline our approach to construct error
bounds. We first define truncation error Err(B) when a finite state space Ω(B) instead
of a full infinite state space Ω(I) is used to solve the dCME. We then introduce the
concept of boundary states ∂Ω(B) of the state space Ω(B) and boundary states ∂Ω(Bj)

of the individual jth iBD, as well as the corresponding steady state probabilities
π
(B)
∂,B and π

(B)
∂, Bj

. We show that the steady state probability π
(B)
∂,B provides an upper-

bound for the truncation error Err(B). This is established by first examining the
truncation error Err(Bj) when only one iBD is truncated. The techniques used include
(1) permuting the transition rate matrix A and lumping microstates into groups with
the same number of net synthesized molecules or buffer usage of the iBD; and (2)
constructing a quotient matrix B on the lumped groups from the permuted matrix
A and its associated steady state probability distribution. We then show that the

truncation error Err(Bj) can be asymptotically bounded by π
(B)
∂,Bj

computed from the
quotient matrix B. We further analyze the asymptotic behavior of the boundary

probability π
(B)
∂,Bj

and show that this probability increases when additional iBDs are
truncated. The upper and lower bounds for truncation error are then obtained based
on known facts of stochastic ordering. We then generalize our results on error bounds
to truncation errors when two, three, and all buffer queues are of finite capacity.

It is useful to also examine an intuitive picture of the probability landscape gov-
erned by a dCME. Starting from an initial condition, the probability mass flows
following a diffusion process dictated by the dynamics of the reaction network. At
any given time t, the front of the probability flow traces out a boundary ∂t, which
expands to a new boundary ∂t+Δt at a subsequent time. Given long enough time, the
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932 YOUFANG CAO, ANNA TEREBUS, AND JIE LIANG

probability distribution will reach a steady state. Since the probability flows across
the boundaries, we can compare the difference in the probability mass between the
boundary surfaces of ∂t and ∂t+Δt to infer how much total probability mass has fluxed
out of the finite volume of the state space through its boundary. Our asymptotic anal-
ysis is aided by decomposing the overall probability flow into several different fluxes,
each governed by a different iBD component.

2.4.2. Truncation error decreases with increasing buffer capacity. De-
note the true probability landscape governed by a dCME over Ω(I) without truncation
as p(I)(t). When the state space is truncated to Ω(B) ⊂ Ω(I) using a buffer bank B,
the deviation of the summed probability mass of p(I)(t) over Ω(B) from 1 gives the
truncation error:

(2.4) Err(B)(t) = 1−
∑

x∈Ω(B)

p(I)(x, t) =
∑

x∈Ω(I),x/∈Ω(B)

p(I)(x, t).

As the overall buffer size of B increases, Err(B)(t) decreases. Using Err(B) to denote
the steady state error, we have

Err(B) ≡ Err(B)(t =∞) = 1−
∑

x∈Ω(B)

π(I)(x, t).

In addition, we consider error resulting from truncating only the jth buffer queue
to the state space Ω(Ij) ⊂ Ω(I) using buffer bank Ij = (∞, . . . ,∞, Bj,∞, . . . ,∞).
Similarly, we have

Err(Ij) = 1−
∑

x∈Ω(Ij )

π(I)(x, t).

Fact 1. For any two truncated state spaces Ω(B′) and Ω(B′′), we have Err(B
′)(t) ≥

Err(B
′′)(t) if B′ ≤ B′′ componentwise.

Note that if B′ ≤ B′′ ≤ I, then Err(B
′) ≥ Err(B

′′) ≥ Err(I) ≡ 0.

2.4.3. Probabilities of boundary states of finite state space and incre-
ments of truncation error. It is difficult to compute the exact truncation error
Err(B)(t), as it requires p(I)(t) to be known. However, only the computed probability
landscape p(B)(t) using a finite state space Ω(B) is known.

We now consider the steady state probabilities π(I) ≡ p(I)(∞), π(Ij) ≡ p(Ij)(∞),
and π(B) ≡ p(B)(∞). We further consider the boundary states ∂Ω(B) of Ω(B) and show

that π(B)(∂Ω(B)) can be used as a surrogate for estimating the steady state error Err(B)

and for assessing the convergence behavior of Err(B).
Boundary of state space Ω(B) and boundary states of the jth iBD. The boundary

states ∂Ω(B) of Ω(B) are those states with at least one depleted buffer queue:

(2.5) ∂Ω(B) = {x|bi of b(x) = 0, i ∈ (1, . . . , w)},
i.e., there are exactly Bi net synthesized molecules for at least one of the iBDs. The
time-evolving and steady state probability mass of p(I)(t) over ∂Ω(B) is denoted as

p
(I)
∂,B(t) and π

(I)
∂,B, respectively.

In addition to boundary states of the full buffer bank, we also consider bound-
ary states of individual buffer queues. We consider a subset of the boundary states

∂Ω
(B)
(Bj)
∈ ∂Ω(B) that are associated with the jth iBD component:

(2.6) ∂Ω
(B)
(Bj)
≡ {x|bj of b(x) = 0}.
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ACCURATE SOLUTION TO THE CHEMICAL MASTER EQUATION 933

Probabilities of boundary states of ∂Ω(B) and ∂Ω
(B)
(Bj)

. We name the summation

of the true steady state probability π(I)(x) over all boundary states ∂Ω(B) the true

total boundary probability π
(I)
∂,B:

π
(I)
∂,B ≡

∑
x∈∂Ω(B)

π(I)(x).

The summation of the computed probability π(B)(x) using the truncated state space
Ω(B) over the same boundary states ∂Ω(B) is the computed total boundary probability
π
(B)
∂,B:

π
(B)
∂,B ≡

∑
x∈∂Ω(B)

π(B)(x).

Similarly, we call the summation of the true probability π(I)(x) associated with

the boundary states of the jth iBD the true boundary probability of jth iBD π
(I)
∂, Bj

:

π
(I)
∂, Bj

≡
∑

x∈∂Ω
(B)

(Bj)

π(I)(x).

The summation of the computed probability π(B)(x) using the truncated state space

Ω(B) over the same boundary states associated with the jth iBD in ∂Ω
(B)
(Bj)

is the

computed boundary probability of the jth iBD π
(B)
∂, Bj

:

π
(B)
∂, Bj

≡
∑

x∈∂Ω
(B)

(Bj)

π(B)(x).

It is also useful to examine the total boundary probability π
(Ij)
∂, Bj

of the jth iBD

on the state space Ω(Ij):

π
(Ij)
∂,Bj

≡
∑

x∈∂Ω
(Ij)

Bj

π(Ij)(x).

Note that when Bj goes to infinity, the probability π
(Ij)
∂,Bj

approaches π
(I)
∂,Bj

.

Incremental truncation errors. The state space Ω(B) is obtained from enumeration
by adding 1 to the capacity of every buffer queue used to obtain the state space
Ω(B−�). Let � = (1, 1, . . . , 1) ∈ Z

w. The boundary of Ω(B) can then be written as

∂Ω(B) = Ω(B) − Ω(B−�). It is obvious that the true total boundary probability π
(I)
∂,B

is the increment of the truncation error between Ω(B−�) and Ω(B):

(2.7) π
(I)
∂,B = ΔErr(B) = Err(B−�)−Err(B) .

Figure 1 gives an illustration.
Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Z

w
≥0 be an elementary vector with only the

jth element as 1 and all others 0. The boundary states of the jth iBD is given by

∂Ω
(B)
(Bj)

= Ω(B) − Ω(B−ej). Analogous to (2.7), the boundary probability π
(I)
∂,Bj

is

therefore the increment of the truncation error between Ω(B−ej) and Ω(B),

(2.8) π
(I)
∂,Bj

= ΔErr(Bj) = Err(B−ej)−Err(B),

as the only difference between Ω(B−ej) and Ω(B) are those states containing exactly
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934 YOUFANG CAO, ANNA TEREBUS, AND JIE LIANG

Fig. 1. Probability of boundary states and truncation errors. The gray states in the center box
of dashed lines form the state space Ω(B−�), with the rest as states truncated from Ω(B−�). The
stripe-filled states are the newly added states when the buffer capacity is increased from B − � to B.
These new states and those gray states, both enclosed in the box in solid lines, form the state space
Ω(B). The summed true probability mass over the white states outside the solid-lined box is the error
Err(B) of the truncated state space Ω(B). The summed true probability mass over all states outside
of the dashed line box is the error Err(B−�). The summed true probability over stripe-filled states

π
(I)
∂,B is the incremental error ΔErr(B)(t) when the buffer capacity of all buffer queues is increased

by 1 from B − �. We have π
(I)
∂,B = ΔErr(B)(t) = |Err(B)(t) − Err(B−�)(t)|.

Bj net synthesized molecules in the jth iBD, namely, the states with the jth buffer
queue depleted.

Total true error is no greater than summed errors over all iBDs. Overall, we have

∂Ω(B) =
⋃w

j=1 ∂Ω
(B)
(Bj)

. As some boundary states may have multiple depleted buffer

queues, it is possible that ∂Ω
(B)
(Bi)
∩ ∂Ω

(B)
(Bj)
�= ∅, . . . ,⋂w

i=1 ∂Ω
(B)
(Bi)
�= ∅. Therefore, the

actual total boundary probability π
(I)
∂,B is smaller than or equal to the summation of

individual π
(I)
∂,Bj

:

(2.9) π
(I)
∂,B ≤

w∑
j=1

π(I)(∂Ω(B)
(Bj)

) ≡
w∑

j=1

π
(I)
∂,Bj

.

As the state space Ω(B) =
⋂w

i=1 Ω
(Ij) and the buffer capacity of the jth iBD in

Ω(Ij) is the same as that in Ω(B), we have that the total true error of the state space
Ω(B) is bounded by the summation of true errors from individually truncated state
spaces Ω(Ij):

(2.10) Err(B) ≤
w∑

j=1

Err(Ij) .

An example. Figure 2 shows an example of the enumerated state space using
Algorithm 2 for a simple network with reversible reactions ∅ � X and ∅ � Y . The
network is partitioned into two iBD components, one for ∅ � X and another for
∅ � Y . A buffer bank B = (B1, B2) with two buffer queues is assigned to the
network, with the size vector (B1, B2) = (7, 5). A synthesis reaction is halted once
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ACCURATE SOLUTION TO THE CHEMICAL MASTER EQUATION 935

Fig. 2. An illustration of the enumerated state space and the boundary states of a simple
network with two reactions ∅ � X and ∅ � Y . There are two iBDs in this network, with two buffer
queues B1 and B2 of size 5 and 7 assigned to the first and second iBD, respectively. Each circle
represents an enumerated state. Filled circles are boundary states, in which at least one of the two
buffer queues is depleted. There are four integers inside each circle. The two at the top are copy
numbers x and y of molecular species X and Y , namely, x = (x, y). The two at the bottom are the
remaining numbers b1 and b2 of tokens in the buffer queues B1 and B2, namely, b = (b1, b2).

its buffer queue is depleted, resulting in truncation error. Boundary states, in which
at least one of the two buffer queues is depleted, are shown as filled black circles,
with states of the buffer queues shown in red numbers. The union of all black filled
circles in Figure 2 form the boundary ∂Ω(B) of the state space. The boundary states
associated with the buffer queue corresponding to the iBD of reaction ∅� X are

∂Ω
(B)
(B1)

= {(x = 7, y = 5), (x = 7, y = 4), (x = 7, y = 3),

(x = 7, y = 2), (x = 7, y = 1), (x = 7, y = 0)}
in which the buffer queue B1 is depleted. The boundary states associated with the
iBD of reaction ∅� Y are

∂Ω
(B)
(B2)

= {(x = 7, y = 5), (x = 6, y = 5), (x = 5, y = 5), (x = 4, y = 5),

(x = 3, y = 5), (x = 2, y = 5), (x = 1, y = 5), (x = 0, y = 5)},

in which the buffer queue B2 is depleted (Figure 2). We have ∂Ω(B) = ∂Ω
(B)
(B1)
∪∂Ω(B)

(B2)
.

We also observe that ∂Ω
(B)
(B1)
∩ ∂Ω

(B)
(B2)

= (x = 7, y = 5) is nonempty. Those states

that are not on the boundary are shown as unfilled circles.

2.4.4. Bounding errors due to a truncated buffer queue. We show how
to construct an error bound after truncating an individual buffer queue. We first

examine the steady state boundary probability π
(Ij)
∂,Bj

. For ease of discussion, we use

N instead of Bj to denote the buffer capacity of the jth iBD and use π
(Ij)
N ≡ π

(Ij)
∂, Bj

to denote the boundary probability of Ω(Ij). The true error Err(Ij) associated with
buffer bank Ij = (∞, . . . ,∞, Bj = N,∞, . . . ,∞) for the steady state is unknown, as

it requires knowledge of π(I)(x) for all x ∈ Ω(I). Here, we show that Err(Ij) converges

to the true boundary probability π
(Ij)
N asymptotically as the size of the buffer queue
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936 YOUFANG CAO, ANNA TEREBUS, AND JIE LIANG

N increases. Specifically, if the size of the buffer queue is sufficiently large, Err(Ij) is

bounded by π
(Ij)
N up to a constant factor. As N further increases, Err(Ij) converges

to π
(Ij)
N .

Aggregating states by buffer queue usage. To show how boundary probability π
(Ij)
N

can be used to construct a truncation error bound, we first aggregate states in the
original state space Ω(Ij) into N + 1 nonintersecting subsets according to the net
number of tokens in use from buffer Bj : Ω

(Ij) ≡ {G0,G1, . . . ,GN}. Here states in each
aggregated subset Gs ⊆ Ω(Ij), s = 1, . . . , N , all have the same s number of buffer
tokens spent from buffer queue Bj , or equivalently, (N − s) tokens unused in buffer
Bj . Note that each Gs can be of infinite size if the capacity of any other buffer queues
are infinite. Conceptually disregarding the practical issue of time complexity for now,
the states in the state space Ω can be sorted according to the buffer token from buffer
queue Bj in use. This can be done using any sorting algorithm, such as the bucket
sort algorithm with N + 1 buckets, with each bucket Gs containing only states with
exactly s buffer tokens spent.

With this partition, we can construct a transition rate matrix Ã from the sorted
state space Ω(Ij). The new transition rate matrix Ã is a permutation of the original
dCME matrix A equation (2.2):

(2.11) Ã =

⎛
⎜⎜⎝

A0,0 A0,1 · · · A0,N

A1,0 A1,1 · · · A1,N

· · · · · · · · · · · ·
AN,0 AN,1 · · · AN,N

⎞
⎟⎟⎠ ,

where each block submatrix Ai, j includes all transitions from states in group Gj to
states in group Gi and can be defined as Ai,j = {am,n}||Gi||×||Gj||, and each entry
am,n in Ai,j is the transition rate from a state xn ∈ Gj to a state xm ∈ Gi.

Although in principle one can obtain the sorted state space partition Ω(Ij) ≡
{G0,G1, . . . ,GN} and the permuted transition rate matrix Ã, there is no need to do
so in practice. The construction of Ω(Ij) and Ã only serves the purpose for proving
lemmas and theorems. Specifically, we only need to know that conceptually the
original state space can be sorted and partitioned, and a permuted transition rate
matrix Ã can be constructed from the sorted state space according to the aggregation.

Assuming the partition and the steady state probability distribution over the state

space Ω(Ij) are known, we can construct an aggregated synthesis rate α
(N)
i for the

group Gi and an aggregated degradation rate β
(N)
i+1 for the group Gi+1 at the steady

state as two constants (Figure 3):

(2.12) α
(N)
i ≡ (

�
TAi+1,i

) · π(Ij)(Gi)
�Tπ(Ij)(Gi) and β

(N)
i+1 ≡

(
�
TAi,i+1

) · π(Ij)(Gi+1)

�Tπ(Ij)(Gi+1)
,

where vector π(Ij)(Gi) and π(Ij)(Gi+1) are steady state probability vectors over the
permuted microstates in the lumped group Gi and Gi+1, respectively. Row vectors
�
TAi+1,i and �

TAi,i+1 are summed columns of block submatrices Ai+1,i and Ai,i+1,
respectively.

Similarly, if the buffer queue Bj has infinite capacity, we have

(2.13) α
(∞)
i ≡ (

�
TAi+1,i

) · π(I)(Gi)
�Tπ(I)(Gi) and β

(∞)
i+1 ≡

(
�
TAi,i+1

) · π(I)(Gi+1)

�Tπ(I)(Gi+1)
.

We can then construct an aggregated transition rate matrix B from the permuted
matrix Ã based on Fact 2.
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ACCURATE SOLUTION TO THE CHEMICAL MASTER EQUATION 937

Fig. 3. The birth-death system associated with the aggregated rate matrix B. Each box repre-
sents an aggregated state consisting of all microstates with the same number of buffer tokens in use.
The top half of each box lists the number of buffer tokens in use, and the bottom half lists the number
of remaining free buffer tokens in the buffer queue. The gray box contains the boundary states. The
total number of spent and free tokens sums to the buffer capacity N . These aggregated states are
connected by aggregated birth and death reactions, with apparent synthesis rates αi and degradation
rates βi+1 (see Fact 2).

Fact 2. Consider a homogeneous continuous-time Markov process with the in-
finitesimal generator rate matrix A on the infinite state space Ω(Ij) equipped with
buffer queues Ij = (∞, . . . , Bj , . . . ,∞) with a finite buffer capacity Bj = N for the
jth iBD and infinite capacities for all other iBDs. Denote its steady state proba-
bility distribution as π(Ij) ≡ π(Ω(Ij)). An aggregated continuous-time Markov pro-
cess with a finite size rate matrix B(N+1)×(N+1) can be constructed on the partition

Ω̃
(Ij)
Bj

= {G0, G1, . . . ,GN} with respect to the buffer queue Bj. Denote π̃
(N)
s ≡ π̃(Gs) =∑

x∈Gs
π(Ij)(x). The steady state probability vector π̃(Ω̃

(Ij)
Bj

) = (π̃
(N)
0 , . . . , π̃

(N)
N ) =

(π̃(G0), . . . , π̃(GN )) of the aggregated Markov process gives the same steady state prob-
ability distribution for the partitioned groups {Gs} as that given by the original matrix
A for all s = 0, 1, . . . , N . Furthermore, the (N + 1)× (N + 1) transition rate matrix
B can be constructed as

(2.14) B(N) =
(

α(N),γ(N),β(N)
)

with the lower off-diagonal vector

α(N) = (α
(N)
i ), i = 0, . . . , N − 1,

the upper off-diagonal vector

β(N) = (β
(N)
i ), i = 1, . . . , N,

and the diagonal vector

γ(N) = (γ
(N)
i ) = (−α(N)

i − β
(N)
i ), i = 0, . . . , N.

It is equivalent to transforming the transition rate matrix Ã in (2.11) to B by sub-
stituting each block submatrix Ai+1, i of synthesis reactions with the corresponding

aggregated synthesis rate α
(N)
i and each block Ai, i+1 of degradation reactions with the

aggregated degradation rate β
(N)
i+1 in (2.12), respectively.

A detailed proof for Fact 2 can be found in Lemma 1 in [12].
Computing steady state boundary probabilities. Following [73, 78] on birth-death

processes (Figure 3), the analytic solution for the steady state π̃
(N)
i and π̃

(N)
0 can be

written as

(2.15) π̃
(N)
i =

i−1∏
k=0

α
(N)
k

β
(N)
k+1

π̃
(N)
0
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and

(2.16) π̃
(N)
0 =

1

1 +
N∑
j=1

j−1∏
k=0

α
(N)
k

β
(N)
k+1

.

The boundary probability π̃
(N)
N is then

(2.17) π̃
(N)
N ≡ π

(Ij)
∂,Bj

=

N−1∏
k=0

α
(N)
k

β
(N)
k+1

1 +
N∑
j=1

j−1∏
k=0

α
(N)
k

β
(N)
k+1

.

If we have infinite buffer capacity for the jth iBD, we will have the true probability
mass over the same fixed set of states in GN as

(2.18) π̃
(∞)
N ≡ π̃

(I)
N ≡ π̃

(I)
∂,Bj

=

N−1∏
k=0

α
(∞)
k

β
(∞)
k+1

1 +
∞∑
j=1

j−1∏
k=0

α
(∞)
k

β
(∞)
k+1

.

Boundary probability as error bound of state truncation. According to Fact 1,
the error Err(Ij) converges to 0 as the buffer capacity Bj = N increases to infinity.

For a truncated state space, the series of the true boundary probabilities {π̃(I)
N |N =

1, 2, . . . , } (equation (2.18)) also converges to 0, as the sequence of its partial sums

converges to 1. That is, the Nth member π̃
(I)
N of this series converges to 0 while the

residual sum of this series Err(Ij) ≡∑∞
i=N+1 π̃

(∞)
i also converges to 0.

We now examine the convergence behavior of the truncation error Err
(Ij)

(N) and the

true boundary probability π̃
(∞)
N .

Fact 3. For a truncated state space associated with a buffer bank Ij, if the buffer
capacity N for queue Bj increases to infinity, the truncation error of Bj obeys the
following inequality:

(2.19) Err
(Ij)

(N) ≤
α
(∞)
N /β

(∞)
N+1

1− α
(∞)
N /β

(∞)
N+1

· π̃(I)
∂,Bj

.

A detailed proof for Fact 3 can be found in Theorem 1 in [12].

That is, the true error Err
(Ij)

(N) is bounded by a simple function of α
(∞)
N and β

(∞)
N+1

multiplied by the boundary probability π̃
(I)
∂, Bj

. We can use this inequality to construct

an upper-bound for Err
(Ij)

(N) . We take advantage of the following fact.

Fact 4. For any biological system in which the total amount of mass is finite, e.g.,

cells with finite mass and growth, the aggregated synthesis rate α
(∞)
N becomes smaller

than the aggregated degradation rate β
(∞)
N+1 when the buffer capacity N is sufficiently

large:

lim
N→∞

α
(∞)
N

β
(∞)
N+1

< 1.

A detailed proof for Fact 4 can be found in Lemma 2 in [12].
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Let C ≡ α
(∞)
N /β

(∞)
N+1

1−α
(∞)
N /β

(∞)
N+1

. If α
(∞)
N /β

(∞)
N+1 < 0.5, we have C < 1, and the true error

Err
(Ij)

(N) is always less than the true boundary probability π̃
(I)
∂,Bj

. If α
(∞)
N /β

(∞)
N+1 =

0.5, then C = 1, and the true error converges asymptotically to the true boundary

probability π̃
(I)
∂,Bj

. If 0.5 <
α

(∞)
N

β
(∞)
N+1

< 1.0, then C > 1, and the error is larger than π̃
(I)
∂, Bj

but is bounded by π̃
(I)
∂,Bj

up to the constant factor C ≡ α
(∞)
N /β

(∞)
N+1

1−α
(∞)
N /β

(∞)
N+1

. Therefore, we

can conclude that the true boundary probability π̃
(I)
∂, Bj

provides an error bound to
the state space truncation.

Note that in real biological reaction networks, the inequality α
(∞)
N /β

(∞)
N+1 < 0.5

usually holds when buffer capacity N is sufficiently large. This is because synthesis
reactions usually have constant rates, while rates of degradation reactions depend on
the copy number of net molecules in the network. As a result, the ratio between
aggregated synthesis and degradation rates decreases monotonically when the total
number of molecules in the system increases.

2.4.5. True boundary probability and computed boundary probability
on truncated space. However, it is not possible to calculate the true boundary

probability π̃
(I)
∂,Bj

on the infinite state space. We have the following fact.

Fact 5. The total probability π̃
(Ij)
N of the boundary states ∂Ω

(Ij)
Bj

of the jth iBD

with buffer capacity Bj ≡ N obtained from the truncated state space Ω(Ij) is greater

than or equal to the true probability π̃
(I)
N over the same boundary states, i.e., π̃

(I)
N ≤

π̃
(Ij)
N .

A detailed proof for Fact 5 can be found in Theorem 2 in [12].
We can therefore conclude that the true boundary probability is no greater than

the truncated boundary probability given in (2.17) in the general case when α
(N)
i �= 0

and β
(N)
i+1 �= 0. We further consider two additional cases. When reactions associated

with the jth iBD have zero synthesis and nonzero degradation constants, namely,

α
(N)
i = 0 and β

(N)
i+1 �= 0, the aggregated system with respect to jth iBD is a death

process and there is no synthesis reactions. The associated iBD is closed and a
finite buffer works once all states of the closed iBD are enumerated. When reactions
associated with the jth iBD have nonzero synthesis but zero degradation constants,

we have α
(N)
i �= 0 but β

(N)
i+1 = 0. The aggregated system with respect to the jth iBD

is a birth process without degradation reactions. In this case, the error for the time-
evolving probability can be estimated using a Poisson distribution with parameter

α
(N)
i · t, where α

(N)
i is the maximum aggregated rate, and t is the elapsed time used

for computing the time evolution of the probability landscape [20, 82]. We dispense
with details here.

2.4.6. Bounding errors when truncating multiple buffer queues. We now
consider truncating one additional buffer queue at the ith iBD. We denote the buffer
bank as Ii,j = (∞, . . . , Bi, . . . , Bj , . . . ,∞) with Bi and Bj as the buffer capacities
of the ith and jth iBDs, respectively. The rest of the buffer queues all have infinite
capacities. We denote the corresponding state space as ΩIi,j , the transition rate
matrix as AIi,j , and the steady state probability distribution as πIi,j . We have the
fact that the probability of each state in the state space ΩIi,j is no less than the
corresponding probability on ΩIj , i.e., πIi,j (x) ≥ πIj (x) for all x ∈ ΩIi,j .
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Fact 6. At steady state, πIi,j ≥ πIj and πIi,j → πIj componentwise over state
space ΩIi,j when buffer capacity Bi →∞.

A detailed proof for Fact 6 can be found in Theorem 3 in [12].
That is, the computed boundary probability of the jth iBD after introducing an

additional truncation at the ith iBD will be no smaller than when the buffer capacity
is sufficiently large. Therefore, the boundary probability from double truncated state
space ΩIi,j can be conservatively and safely used to bound the truncation error. We
can further show by induction that boundary probability computed from state space
truncated at multiple iBDs Ω(B) will not be smaller and therefore can be used to
bound the true boundary probabilities.

Error bound inequality. According to (2.10) and Facts 1–6, we have the following
inequality to bound the true error of state space truncation using the finite buffer
bank B = (B1, . . . , Bw):

(2.20) Err(B) ≤
w∑

j=1

Err(Ij) ≤
w∑

j=1

Cj π̃
(I)
∂,Bj

≤
w∑

j=1

Cj π̃
(Ij)
∂,Bj

≤
w∑

j=1

Cj π̃
(B)
∂,Bj

,

where Cj ≡
α

(∞)
Bj−1/β

(∞)
Bj

1−α
(∞)
Bj−1/β

(∞)
Bj

, j = 1, . . . , w, are finite constants for each individual buffer

queue.

2.4.7. Upper and lower bounds for steady state boundary probability.

However, the boundary probability π̃
(B)
∂,Bj

cannot be calculated a priori without solving
the dCME. To efficiently estimate if the size of the truncated state space is adequate to
compute the steady state probability landscape with errors smaller than a predefined
tolerance, we now introduce an easy-to-compute method to obtain the upper- and

lower-bounds of the boundary probabilities π̃
(N)
N a priori without solving the dCME.

Denote the maximum and minimum aggregated synthesis rates from the block

submatrix Ai+1, i as α
(N)
i and α

(N)
i , respectively. They can be computed as the

maximum and minimum element of the row vector obtained from the column sums:

(2.21) α
(N)
i = max{�TAi+1,i} and α

(N)
i = min{�TAi+1,i},

respectively. The maximum and minimum aggregated degradation rates can be com-
puted similarly from the block submatrix Ai, i+1 as

(2.22) β
(N)

i+1 = max{�TAi,i+1} and β(N)

i+1
= min{�TAi,i+1},

respectively. Note that α
(N)
i , α

(N)
i , β

(N)

i+1 , and β(N)

i+1
can be easily calculated a priori

without the need for explicit state enumeration and generation of the partitioned tran-
sition rate matrix Ã. The block submatrix Ai+1,i only contains synthesis reactions,
and Ai,i+1 only contains degradation reactions. The maximum total copy numbers
of reactants are fixed at each aggregated state group when the maximum buffer ca-

pacity is specified, and therefore α
(N)
i , α

(N)
i , β

(N)

i+1 , and β(N)

i+1
can be easily calculated

by examining the maximum and minimum synthesis and degradation reaction rates.

As the original α
(N)
i and β

(N)
i+1 given in (2.12) are weighted sums of vector �TAi+1,i

and �
TAi,i+1 with regard to the steady state probability distribution π̃(N)(Gi), re-

spectively, we have

α
(N)
i ≤ α

(N)
i ≤ α

(N)
i and β(N)

i+1
≤ β

(N)
i+1 ≤ β

(N)

i+1 .
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We use results from the theory of stochastic ordering for comparing Markov pro-

cesses to bound π̃
(N)
N . Stochastic ordering “≤st” between two infinitesimal generator

matrices P n×n and Qn×n of Markov processes is defined as [36, 75]

P ≤st Q if and only if

n∑
k=j

Pi,k ≤
n∑

k=j

Qi,k for all i, j.

Stochastic ordering between two vectors are similarly defined as

p ≤st q if and only if

n∑
k=j

pk ≤
n∑

k=j

qk for all j.

To derive an upper bound for π̃
(N)
N in (2.17), we construct a new matrixB by replacing

α
(N)
k with the corresponding α

(N)
k and β

(N)
k+1 with the corresponding β(N)

k+1
in the matrix

B. Similarly, to derive an lower bound for π̃
(N)
N , we construct the matrix B by

replacing α
(N)
k with the corresponding α

(N)
k and replace β

(N)
k+1 with β

(N)

k+1 in B. We
then have the following stochastic ordering:

B ≤st B ≤st B.

All three matrices B, B, and B are “≤st −monotone” according to the definitions
in Truffet [75]. The steady state probability distributions of matrices B, B, and B
are denoted as πB, πB, and πB, respectively. They maintain the same stochastic
ordering (Theorem 4.1 of Truffet [75]):

πB ≤st πB ≤st πB .

Therefore, we have the inequality for the jth buffer queue with capacity N :

π̃
(N)
N ≤ π̃

(N)
N ≤ π̃

(N)
N .

Here the upper bound π̃
(N)
N is the boundary probability computed from π̃B, the lower

bound π̃
(N)
N is the boundary probability computed from π̃B , and π̃

(N)
N is the boundary

probability from π̃B. From (2.17), the upper bound π̃
(N)
N can be calculated a priori

from reaction rates:

(2.23) π̃
(N)
N =

N−1∏
k=0

α
(N)
k

β
(N)
k+1

1 +
N∑
j=1

j−1∏
k=0

α
(N)
k

β
(N)
k+1

,

and the lower bound π̃
(N)
N can be calculated as

(2.24) π̃
(N)
N =

N−1∏
k=0

α
(N)
k

β
(N)
k+1

1 +
N∑
j=1

j−1∏
k=0

α
(N)
k

β
(N)
k+1
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These are general upper and lower bounds of truncation error valid for any iBD in
a reaction network. The upper and lower bounds for the total error of a reaction
network with multiple iBDs can be obtained straightforwardly by taking summations
of bounds for each individual iBDs:

(2.25)

w∑
i=1

π̃
(B)
Bi
≤

w∑
i=1

π̃
(B)
Bi
≤

w∑
i=1

π̃
(B)
Bi

.

In summary, we have shown from (2.10), Facts 1–6, (2.20), and (2.25) that the
truncation error of the steady state probability landscape from each individual iBD
Err(Bj) using finite buffer bank B = (B1, . . . , Bw) can be bounded using the inequality

Err(Ij) ≤ Cj π̃
(I)
∂,Bj

≤ Cj π̃
(Ij)
∂,Bj

≤ Cj π̃
(B)
∂,Bj

≤ Cj π̃
(B)
Bj
≤ Cj π̃

(B)
Bj

=

α
(Bj )

Bj−1

β
(Bj )

Bj

1− α
(Bj)

Bj−1

β
(Bj )

Bj

·

Bj−1∏
k=0

α
(Bj )

k

β
(Bj)

k+1

1 +
Bj∑
j=1

j−1∏
k=0

α
(Bj )

k

β
(Bj )

k+1

,
(2.26)

and the overall truncation error Err(B) using the finite buffer bank B = (B1, . . . , Bw)
can therefore be bounded by the following inequality:

Err(B) ≤
w∑

j=1

Err(Ij) ≤
w∑

j=1

Cj π̃
(B)
Bj

=

w∑
j=1

α
(Bj)

Bj−1

β
(Bj)

Bj

1− α
(Bj )

Bj−1

β
(Bj )

Bj

·

Bj−1∏
k=0

α
(Bj)

k

β
(Bj )

k+1

1 +
Bj∑
j=1

j−1∏
k=0

α
(Bj)

k

β
(Bj)

k+1

,(2.27)

where Cj ≡
α

(∞)
Bj−1/β

(∞)
Bj

1−α
(∞)
Bj−1/β

(∞)
Bj

and Cj ≡
α

(Bj)

Bj−1/β
(Bj)

Bj

1−α
(Bj )

Bj−1/β
(Bj )

Bj

, j = 1, . . . , w, are finite constants

for each individual buffer queue, and we have Cj ≤ Cj as
α

(∞)
Bj−1

β
(∞)
Bj

≤ α
(Bj)

Bj−1

β
(Bj )

Bj

.

2.5. Optimizing buffer allocation.

2.5.1. Determining minimal buffer sizes satisfying predefined error tol-
erance. To determine the minimal buffer sizes for the w iBDs so a predefined error
tolerance ε is satisfied, we first calculate a priori the upper bound from the boundary

probability π̃
(N)
N of each iBD using (2.23) for different buffer sizes. The minimal N

for each iBD with π̃
(N)
N < ε/w is then chosen as the size of that buffer queue. Another

weighted scheme is also possible. We then proceed to enumerate the state space using
a buffer bank whose sizes have been thus determined a priori to numerically solve the
dCME .

It is possible that this a priori upper bound is overly conservative, and buffer sizes
can be further decreased based on numerical results. Specifically, if the boundary
probability computed from numerical solution for an iBD with an a priori determined
buffer size is much smaller than the predefined error tolerance ε, it is possible to
further decrease the buffer size of that iBD to gain in memory space and improve
computing efficiency.
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2.5.2. Optimized memory allocation based on error bounds. Our method
can also be used to optimize the allocation of memory space to improve the accuracy
or computing efficiency of the solution to the dCME. When the total size of the state
space is fixed, we can allocate buffer capacities for buffer queues differently, so that the
total error of the dCME solution is minimized. A simple strategy is to distribute the
errors equally to all buffer queues or according to some weight scheme, for example,
based on the error bounds of individual iBDs, the complexity of computing the rates
of individual iBDs, or the effects on numerical efficiency. We then determine the
buffer size of each iBD. The relative ratio of buffer sizes of different iBDs can be
used to allocate memory. When the state space to be enumerated is too large to
fit into the computer memory, we can further decrease buffer capacities for all iBDs
simultaneously according to the allocation ratio. Such optimization can be done a
priori without trial computations.

2.6. Numerical solutions of dCME.
Time-evolving probability landscape. The time-evolving probability landscape de-

rived from a dCME of (2.2) can be expressed in the form of a matrix exponential:
p(t) = eAtp(0), where p(0) is the initial probability landscape and A is the transition
rate matrix over the enumerated state space Ω(B). Once p(0) is given, p(t) can be
calculated using numerical methods such as the Krylov subspace projection method,
e.g., as implemented in the Expokit package of Sidjie [67]. Other numerical tech-
niques can also be applied [40]. All results of the time-evolving probability landscape
in this study are computed using the Expokit package.

Steady state probability landscape. The steady state probability landscape π is
of great general interest. It is governed by the equation Aπ = 0 and corresponds
to the right eigenvector of the 0 eigenvalue. With the states enumerated by the
mb-dCME method, π can be computed using numerical techniques such as iterative
solvers [9, 47, 62, 70]. In this study, we use the Gauss–Seidel solver to compute all of
the steady state probability landscape. To our knowledge, the ACME method and its
predecessor are the only known methods for computing the steady state probability
landscape for an arbitrary biological reaction network.

First passage time distribution. The first passage time from a specific initial state
to a given end state is of great importance in studying rare events. The probability
that a network transits from the starting state xs to the end state xe within time t
is the first passage time probability p(t,xe|xs).

The distribution of p(t,xe|xs) at all possible time intervals and the corresponding
cumulative probability distribution F (t,xe|xs), namely, the probability distribution
that the system transits from xs to xe within time t, can be computed using the
ACME method. To obtain F (t,xe|xs), we use the absorbing matrix Aabs instead of
the original rate matrix A by simply replacing the end state xe with an absorbing
state [30]. In addition, we assign the initial state xi with a probability of 1. The
time-evolving probability landscape of this absorbing system then can be computed
as described earlier. The cumulative first passage probabilities F (t,xe|xs) at time t
is the marginal probability of the end state xe at time t [30]. The probability of a
rare event can be easily found from the cumulative distribution of first passage time
between the appropriate states.

3. Biological examples. Below we describe applications using the ACME
method in computing the time-evolving and the steady state probability landscapes
of several biological reaction networks. We study the genetic toggle switch, the phage
lambda lysogenic-lytic epigenetic switch, and the MAPK cascade reaction network.
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944 YOUFANG CAO, ANNA TEREBUS, AND JIE LIANG

Table 1

Detailed reactions and rate constants of genetic toggle switch.

R1 : GeneX
k1→ GeneX + X, k1 = 50 s−1 R3 : X

k3→ ∅, k3 = 1 s−1

R2 : GeneY
k2→ GeneY + Y, k2 = 100 s−1 R4 : Y

k4→ ∅, k4 = 1 s−1

R5 : 2X + GeneY
k5→ BGeneY, k5 = 1 × 10−5 nM−2 · s−1 R7 : BGeneY

k7→ 2X + GeneY, k7 = 0.1 s−1

R6 : 2Y + GeneX
k6→ BGeneX, k6 = 1 × 10−5 nM−2 · s−1 R8 : BGeneX

k8→ 2Y + GeneX, k8 = 0.1 s−1

We first show how minimal buffer capacities required for specific error tolerance can
be determined a priori. The time-evolving and the steady state probability landscapes
of these networks are then computed. We further generate the distributions of first
passage times to study the probabilities of rare transition events. Although these three
networks are well known, results reported here are significant, as the full stochasticity
and the time-evolving probability landscapes have not been computed by solving the
underlying dCME for the latter two networks. Furthermore, estimating rare event
probabilities such as short first passage time of transition between different states
has been a very challenging problem, even for the relatively simple one-dimensional
Schlögl model [18, 28].

3.1. Genetic toggle switch and its six-dimensional probability land-
scapes. The genetic toggle switch consists of two genes repressing each other through
binding of their protein dimeric products on the promoter sites of the other genes. This
genetic network has been studied extensively [22, 41, 43, 64]. We follow [9, 64] and
study a detailed model of the genetic toggle switch with a more realistic control mech-
anism of gene regulations. Different from simpler toggle switch models [17, 40, 57, 68],
in which gene binding and unbinding reactions are approximated by Hill functions,
here detailed negative feedback regulation of gene expressions are modeled explicitly
through gene binding and unbinding reactions. Although Hill functions are useful
to curve-fit gene regulation models with experimental observations [63], it may be
inaccurate to model stochastic networks [42, 63]. It is also difficult to obtain the
cooperativity parameters in Hill functions and relate them to the detailed rate con-
stants [42, 63]. Furthermore, a Hill function-based model may not capture important
multistability characteristics of the reaction network. The genetic toggle switch stud-
ied in this example and other previous studies [9, 64] using detailed reaction network
with explicit gene binding and unbinding exhibits four distinct stable states (on/off,
off/on, on/on, and off/off) for the GeneX and GeneY . However, a similar genetic
toggle switch modeled using Hill function exhibits only two stable states (on/off and
off/on) [40, 43].

The molecular species, reactions, and their rate constants for the genetic toggle
switch are listed in Table 1. Specifically, two genes GeneX and GeneY express
protein products X and Y , respectively. Two X/Y protein monomers can bind on the
promoter site of GeneY /GeneX to form protein-DNA complexes BGeneY /BGeneX
and turn off the expression of GeneY /GeneX , respectively.

Number of buffer queues and comparison of state space sizes. According to Al-
gorithm 1, there are two iBDs in this network, namely, iBD1 with reactions R1, R3,
R5 and R7, and iBD2 with R2, R4, R6, and R8. Each is assigned a separate buffer
queue. Detailed steps of iBD partition for the genetic toggle switch network using
Algorithm 1 are illustrated in Figure 4. In this network, reaction R1 generates a new
molecule X and does not alter the copy number of all other species. Therefore, row
X of column R1 is 1 (Figure 4(a)), and 0 for all other rows of column R1. Reaction
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(a) (b)

(c)(d)

Fig. 4. Partitioning the bistable genetic toggle switch network into multiple iBD components
using Algorithm 1. (a) Stoichiometry matrix of the genetic toggle switch constructed from the re-
action network in (1) in the appendix. (b) The reaction adjacency matrix constructed from the
stoichiometry matrix according to (A.1). (c) The Laplacian matrix of the reaction network con-
structed using (A.3). There are two 0 eigenvalues for the Laplacian matrix in (c). (d) The two
eigenvectors corresponding to the two 0 eigenvalues give the partition of the reaction network.

R8 converts one copy of bound gene X (BGeneX) into an unbound gene X (GeneX)
and generates two copies of Y molecules. Therefore, row BGeneX of column R8 in
the stoichiometry matrix is −1, row GeneX is 1, and row Y is 2. All other rows of
column R8 are 0s (Figure 4(a)). The remaining column vectors of the stoichiometry
matrix for other reactions can be obtained similarly. Each row in the resulting sto-
ichiometry matrix records the stoichiometry of a molecular species participating in
all of the reactions. The reaction graph can then be constructed by examining which
pairs of reactions share reactant(s) or product(s). Molecular species X changes copy
numbers in both reaction R1 and R3, and therefore we have the edge eR1, R3 = 1
in the reaction graph GR. We use an adjacency matrix to encode the graph, and
the entry for row R1 and column R3 is therefore 1 (Figure 4(b)). Similarly, R1 and
R5 both involve copy number changes in X , hence eR1, R5 = 1. As R1 and R7 also
involve copy number changes in X , we have eR1, R7 = 1. In contrast, as X is the only
species that changes copy number in reaction R1, and X does not participate either
as a reactant or a product with altered copy number in R2, R4, R6, and R8, the cor-
responding entries in the adjacency matrix of GR therefore have 0s as entries. More
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Table 2

Size comparison of enumerated state spaces for the genetic toggle switch, the epigenetic switch
network of phage lambda, and the MAPK network. Column 1 lists sizes of buffer queues used in
the mb-dCME method, and columns 2 and 3 sizes of the space enumerated by the dCME and the
traditional hypercube methods, respectively. Column 4 lists the reduction factors using the mb-dCME
method over the hypercube method.

Sizes of buffer queues mb-dCME Hypercube method Reduction factor
Bistable genetic toggle switch

10, 10 400 1,936 4.84
20, 20 1,600 7,056 4.41
30, 30 3,600 15,376 4.27
40, 40 6,400 26,896 4.20

Phage lambda epigenetic switch network
10, 10 2,151 61,952 28.80
20, 20 9,711 225,792 23.25
30, 30 22,671 492,032 21.70
40, 40 41,031 860,672 20.98

MAPK signaling network

3, 3 2,176 4.3× 109 2.0× 106

6, 6 209,304 3.3× 1013 1.6× 108

9, 9 6,210,644 1.0× 1016 1.6× 109

14, 6 2,706,935 1.1× 1011 4.1× 104

generally, if the dot product of the stoichiometry vectors of two reactions Ri and Rj

is nonzero, eRi,Rj = 1, otherwise the entry is zero. Once the full adjacency matrix for
the reaction graph is complete (Figure 4(b)), the Laplacian matrix (Figure 4(c)) can
be obtained following (A.3) in the appendix. The number of the eigenvectors of the
Laplacian matrix corresponding to the eigenvalue of 0 gives the number of iBDs in the
reaction network, and the nonzero entries of each eigenvector gives the membership
of the corresponding iBD (Figure 4(d)). In this example of genetic toggle switch, 0
is an eigenvalue of multiplicity of 2 of the Laplacian matrix. The two eigenvectors
associated with the eigenvalue of 0 give the two iBDs (Figure 4(d)). Specifically, the
reactions with nonzero entries in each eigenvector form the corresponding iBD: iBD1

consists of reactions R1, R3, R5, and R7, and iBD2 consists of R2, R4, R6, and R8
(Figure 4(d)).

The genetic toggle switch is sufficiently complex to exhibit reduced sizes of the
enumerated state spaces using the multifinite buffer algorithm, when compared with
the traditional hypercube method. Table 2 lists the sizes of the state spaces using
these two methods. The size of enumerated state space for the hypercube method is
the product of the maximum number of possible states of each individual species. For
example, when both buffer queues have a buffer capacity of 40, the state space size
is 412× 24 = 26,896, in which 40+ 1 = 41 is the total number of all possible different
copy numbers of protein X and protein Y , and 24 is the total different binding and
unbinding configurations for each of GeneX , GeneY , BGeneX , and BGeneY . The
traditional approach generates a state space that is about four times larger than that
generated by the mb-dCME method in this case.

Errors and buffer size determinations. The sizes combination of buffer queues
B = (200, 400) is found to be sufficient to obtain the exact steady state probability
landscape (estimated error < 10−30) according to calculations using (2.23). With the
exact steady state probability landscape known, true errors calculated using (2.4) for
different sizes of the two buffer queues are shown in Figure 5(a) and Figure 5(b) (red
dotted lines and circles), both of which decrease monotonically with increasing buffer
sizes.
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(a) (b)

(c) (d)

Fig. 5. Error estimation and computing the steady state probability landscape and the first
passage time of the genetic toggle switch network. (a) and (b): The a priori estimated error (black
solid curve), the computed error (blue dashed line and squares), and the true error (red dotted
line and circles) of the steady state probability landscape for iBD1 and iBD2, respectively. The a
priori estimated error is always larger than the computed error. The green dashed lines indicate the
estimated minimal buffer size required so the error is within the predefined tolerance of 1 × 10−12.
(c): Steady state probability landscape. (d): The cumulative distribution of the first passage time
from the initial state (xs = {X = 49, Y = 0, GeneX = 1, GeneY = 1, BGeneX = 0, BGeneY = 0})
to the end state (xe = {X = 0, Y = 99}).

The computed error estimates by solving the boundary probability from the un-
derlying dCME (Figure 5(a) and (b), blue dashed lines and squares) also decrease
monotonically with increasing buffer size. The computed error estimates for the first
and second iBD are larger than the true error when the buffer size is larger than 89
and 163, respectively, as would be expected from Fact 3.

To estimate a priori the required minimum buffer sizes for both buffer queues
for a predefined error tolerance of ε = 1.0 × 10−12 so that the total error does not
exceed 2.0 × 10−12, we use (2.23) to estimate errors at different buffer sizes (black
solid lines in Figure 5(a) and (b)). We follow (2.21) and (2.22) to compute αi = k1
and β

(i+1)
= [(i+1)− 2] · k3 for the first iBD, where the subscript (i+1) is the total

copy number of species X in the system, and the subtraction of 2 is necessary because
up to two copies of X can be protected from degradation by binding to GeneY . This
corresponds to the extreme case when GeneX is constantly turned on and GeneY is
constantly turned off. The a priori error estimates at different buffer size are shown in
Figure 5(a) (black solid lines). Similarly, we have αi = k2 and β

i+1
= [(i+1)− 2] · k4

following (2.21) and (2.22) for the second iBD. This corresponds to the other extreme
case when the GeneY is constantly turned on, and GeneX is constantly turned off
(Figure 5(b), black solid lines). As discussed earlier, the a priori estimated error
bounds can be easily computed by examining the maximum and minimum reaction
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(a) (b) (c)

(d) (e) (f )

Fig. 6. The time-evolving probability landscapes of the genetic toggle switch network. (a),
(b), and (c): Probability landscapes at t = 1s, t = 10s, and t = 20s, starting from the uniform
distribution, respectively. (d), (e), and (f): Probability landscapes at t = 1s, t = 10s, and t = 20s
starting from the initial distribution with p(X = 0, Y = 0, GeneX = 1, GeneY = 1, BGeneX =
0, BGeneY = 0; t = 0) = 1, respectively.

rates. There is no need for the transition rate matrix. For both buffer queues, the
a priori estimated errors are conservative and are larger than computed errors at
all buffer sizes. They are also larger than the true errors when the buffer sizes are
sufficiently large. We can therefore determine that the minimal buffer size to satisfy
the predefined error tolerance of ε = 2.0×10−12 is 109 for the first iBD (green dashed
lines in Figure 5(a)) and 180 for the second iBD (green dashed lines in Figure 5(b)).
This combination of buffer sizes B = (109, 180) is used for all subsequent calculations.
The enumerated state space has a total of 78,480 states. The 78,480×78,480 transition
rate matrix is sparse and contains a total of 468,564 nonzero elements.

Steady state and time-evolving probability landscapes. The time-evolving proba-
bility landscapes from two different initial conditions are shown in Figure 6. We
use a time step Δt = 0.5s and a total simulation time of t = 50s. The probability
landscape in Figure 6(a)–(c) starts from the uniform initial distribution, in which
each state takes the same initial probability of 1/78,480. The probability landscape
in Figure 6(d)–(f) starts from an initial probability distribution, in which the state
(X = 0, Y = 0, GeneX = 1, GeneY = 1, BGeneX = 0, BGeneY = 0) has probabil-
ity 1 and all other states have probability 0.

The time-evolving probability landscapes for both initial conditions converge to
the same steady state (Figure 5(c)) at time t = 40s, with the computed error for buffer
queues 1 and 2 being 1.741×10−13 and 2.881×10−13 for results in Figure 6(a)–(c), and
1.716× 10−13 and 2.898× 10−13 for results in Figure 6(d)–(f), respectively. Note that
the Z-scale is different for the time-evolving probability landscapes. The calculation
is completed within two minutes using one single core of a 1GHz Quad-Core AMD
CPU.

The steady state probability landscape is also computed separately (Figure 5(c))
for species X and Y ). It has four peaks that are centered at (X = 0, Y = 99) with a
probability of 7.910 × 10−3, at (X = 49, Y = 0) with a probability of 2.473 × 10−3,
at (X = 49, Y = 99) with a probability of 1.269 × 10−3, and at (X = 0, Y = 0)
with a probability of 5.909 × 10−4, respectively. The computed error estimates of
1.715× 10−13 for the first iBD and 2.899× 10−13 for the second iBD are both smaller
than the predefined error tolerance of ε = 1.0× 10−12. The computing time is within
one minute.

First passage time distribution and rare event probabilities. We study the problem
of the first passage time when the system travels from the initial starting state xs =
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ACCURATE SOLUTION TO THE CHEMICAL MASTER EQUATION 949

Fig. 7. The network model of the lysogeny-lysis decision circuit of phage lambda. CI and Cro
proteins can repress the expression of each other by differentially binding to three operator sites
(OR1, OR2, and OR3). The network can be partitioned into two iBDs using Algorithm 1, as shown
in two shaded areas of different color. There are a total of 11 molecular species and 50 reactions in
this network (see Table 3 in the appendix).

{X = 49, Y = 0, GeneX = 1, GeneY = 1, BGeneX = 0, BGeneY = 0} to the end
state xe = {X = 0, Y = 99}. We modified the transition rate matrix by making
the end state an absorbing state [10, 30]. The time evolving probability landscape
using the absorbing transition rate matrix Aabs is then calculated using a time step
Δt = 0.5 for a total of 500s simulation time.

When the duration is short, the transition from the initial starting state to the
end state is of very low probability. When the first passage time is set to t ≤ 3s, the
probability is calculated to be 1.993 × 10−5, with a computation time of about 10
seconds. Our method enables accurate and rapid calculations of probabilities of such
rare events. As the sampling space of the toggle switch is two-dimensional (X,Y ),
the rare event probability estimations in this network are far more challenging than
the Schlögl model, which was already beyond the original SSA algorithm [23] and a
number of biased stochastic simulation algorithms [15, 28, 45, 61]. To our knowledge,
no other methods have succeeded in calculating accurately the rare event probabilities
in this model of genetic switch.

The computed full cumulative probability distribution of the first passage time
is plotted in Figure 5(d). It increases monotonically with time and approaching
probability 1. The full calculation is completed within 10 minutes.

3.2. Phage lambda epigenetic switch and its 11-dimensional probabil-
ity landscapes. The epigenetic switch for lysogenic maintenance and lytic induc-
tion in phage lambda is a classic problem in systems biology [58]. The efficiency
and stability of the decision circuit of the lysogeny-lysis switch have been studied
extensively [5, 6, 7, 83, 84]. Here we use a more realistic model of the reaction net-
work adapted from reference [11]. It consists of 11 molecular species and 50 reactions.
The network diagram is shown in Figure 7, and detailed reaction schemes and rate
constants are based on previous studies [5, 11, 33, 34, 44, 48, 65] and are listed in
Table 3 in the appendix. Molecular species enclosed in parenthesis are required for
the specific reactions to occur, but with no changes in stoichiometry. Here COR(i)
denotes operator sites ORi bounded by Cro2 dimer, ROR(i) for ORi bounded by CI2
dimer, i = 1, 2, 3.

Number of buffer queues and comparison of state space sizes. There are two iBDs
in this network according to Algorithm 1. The first iBD contains all reactions involving
CI (the dark gray shaded area in Figure 7), and the second iBD contains all reactions
involving Cro (the light gray shaded area in Figure 7). Each iBD is therefore assigned
a separate buffer queue.

Table 2 lists the sizes of the state spaces using the mb-dCME method and the
traditional hypercube method. As before, the latter is the product of the maximum
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Table 3

Detailed reactions and rate constants of phage lambda epigenetic switch.

R1 : ∅ + (OR3 + OR2)
s0CI→ CI + (OR3 + OR2), s0CI = 0.0069/s,

R2 : ∅ + (OR3 + COR2)
s0CI→ CI + (OR3 + COR2), s0CI = 0.0069/s,

R3 : ∅ + (OR3 + ROR2)
s1CI→ CI + (OR3 + ROR2), s1CI = 0.066/s,

R4 : ∅ + (OR1 + OR2)
sCro→ Cro+ (OR1 + OR2), sCro = 0.0929/s,

R5 : CI
dCI→ ∅, dCI = 0.0027/s,

R6 : Cro
dCro→ ∅, dCro = 0.0025/s,

R7 : 2CI + OR1
bCI→ ROR1, bCI = 0.0021/nM2 · s,

R8 : 2CI + OR2
bCI→ ROR2, bCI = 0.0021/nM2 · s,

R9 : 2CI + OR3
bCI→ ROR3, bCI = 0.0021/nM2 · s,

R10 : 2Cro+ OR1
bCro→ COR1, bCro = 0.01289/nM2 · s,

R11 : 2Cro+ OR2
bCro→ COR2, bCro = 0.01289/nM2 · s,

R12 : 2Cro+ OR3
bCro→ COR3, bCro = 0.01289/nM2 · s,

R13 : ROR1 + (OR2)
uROR1→ 2CI + OR1 + (OR2), uROR1 = 0.03998/s,

R14 : ROR1 + (ROR2 + OR3)
u12
ROR1→ 2CI + OR1 + (ROR2 + OR3), u12

ROR1 = 0.0005/s,

R15 : ROR1 + (ROR2 + ROR3)
u123
ROR1→ 2CI + OR1 + (ROR2 + ROR3), u123

ROR1 = 0.05531/s,

R16 : ROR1 + (ROR2 + COR3)
u12
ROR1→ 2CI + OR1 + (ROR2 + COR3), u12

ROR1 = 0.0005/s,

R17 : ROR1 + (COR2)
uROR1→ 2CI + OR1 + (COR2), uROR1 = 0.03998/s,

R18 : ROR2 + (OR1 + OR3)
uROR2→ 2CI + OR2 + (OR1 + OR3), uROR2 = 1.026/s,

R19 : ROR2 + (ROR1 + OR3)
u12
ROR2→ 2CI + OR2 + (ROR1 + OR3), u12

ROR2 = 0.01284/s,

R20 : ROR2 + (OR1 + ROR3)
u23
ROR2→ 2CI + OR2 + (OR1 + ROR3), u23

ROR2 = 0.00928/s,

R21 : ROR2 + (ROR1 + ROR3)
u123
ROR2→ 2CI + OR2 + (ROR1 + ROR3), u123

ROR2 = 0.01284/s,

R22 : ROR2 + (COR1 + OR3)
uROR2→ 2CI + OR2 + (COR1 + OR3), uROR2 = 1.026/s,

R23 : ROR2 + (OR1 + COR3)
uROR2→ 2CI + OR2 + (OR1 + COR3), uROR2 = 1.026/s,

R24 : ROR2 + (COR1 + COR3)
uROR2→ 2CI + OR2 + (COR1 + COR3), uROR2 = 1.026/s,

R25 : ROR2 + (ROR1 + COR3)
u12
ROR2→ 2CI + OR2 + (ROR1 + COR3), u12

ROR2 = 0.01284/s,

R26 : ROR2 + (COR1 + ROR3)
u23
ROR2→ 2CI + OR2 + (COR1 + ROR3), u23

ROR2 = 0.00928/s,

R27 : ROR3 + (OR2)
uROR3→ 2CI + OR3 + (OR2), uROR3 = 5.19753/s,

R28 : ROR3 + (ROR2 + OR1)
u23
ROR3→ 2CI + OR3 + (ROR2 + OR1), u23

ROR3 = 0.04702/s,

R29 : ROR3 + (ROR2 + ROR1)
u123
ROR3→ 2CI + OR3 + (ROR2 + ROR1), u123

ROR3 = 5.19753/s,

R30 : ROR3 + (ROR2 + COR1)
u23
ROR3→ 2CI + OR3 + (ROR2 + COR1), u23

ROR3 = 0.04702/s,

R31 : ROR3 + (COR2)
uROR3→ 2CI + OR3 + (COR2), uROR3 = 5.19753/s,

R32 : COR1 + (OR2)
uCOR1→ 2Cro + OR1 + (OR2), uCOR1 = 0.08999/s,

R33 : COR1 + (ROR2)
uCOR1→ 2Cro+ OR1 + (ROR2), uCOR1 = 0.08999/s,

R34 : COR1 + (COR2 + OR3)
u12
COR1→ 2Cro+ OR1 + (COR2 + OR3), u12

COR1 = 0.01776/s,

R35 : COR1 + (COR2 + ROR3)
u12
COR1→ 2Cro+ OR1 + (COR2 + ROR3), u12

COR1 = 0.01776/s,

R36 : COR1 + (COR2 + COR3)
u123
COR1→ 2Cro+ OR1 + (COR2 + COR3), u123

COR1 = 0.05531/s,

R37 : COR2 + (OR1 + OR3)
uCOR2→ 2Cro+ OR2 + (OR1 + OR3), uCOR2 = 0.6306/s,

R38 : COR2 + (ROR1 + OR3)
uCOR2→ 2Cro + OR2 + (ROR1 + OR3), uCOR2 = 0.6306/s,

R39 : COR2 + (OR1 + ROR3)
uCOR2→ 2Cro + OR2 + (OR1 + ROR3), uCOR2 = 0.6306/s,

R40 : COR2 + (ROR1 + ROR3)
uCOR2→ 2Cro+ OR2 + (ROR1 + ROR3), uCOR2 = 0.6306/s,

R41 : COR2 + (COR1 + OR3)
u12
COR2→ 2Cro+ OR2 + (COR1 + OR3), u12

COR2 = 0.12448/s,

R42 : COR2 + (OR1 + COR3)
u23
COR2→ 2Cro+ OR2 + (OR1 + COR3), u23

COR2 = 0.23822/s,

R43 : COR2 + (COR1 + COR3)
u123
COR2→ 2Cro+ OR2 + (COR1 + COR3), u123

COR2 = 0.14641/s,

R44 : COR2 + (ROR1 + COR3)
u23
COR2→ 2Cro+ OR2 + (ROR1 + COR3), u23

COR2 = 0.23822/s,
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Table 3

(cont.)

R45 : COR2 + (COR1 + ROR3)
u12
COR2→ 2Cro+ OR2 + (COR1 + ROR3), u12

COR2 = 0.12448/s,

R46 : COR3 + (OR2)
uCOR3→ 2Cro+ OR3 + (OR2), uCOR3 = 0.00928/s,

R47 : COR3 + (ROR2)
uCOR3→ 2Cro+ OR3 + (ROR2), uCOR3 = 0.00928/s,

R48 : COR3 + (COR2 + OR1)
u23
COR3→ 2Cro + OR3 + (COR2 + OR1), u23

COR3 = 0.00351/s,

R49 : COR3 + (COR2 + ROR1)
u23
COR3→ 2Cro+ OR3 + (COR2 + ROR1), u23

COR3 = 0.00351/s,

R50 : COR3 + (COR2 + COR1)
u123
COR3→ 2Cro+ OR3 + (COR2 + COR1), u123

COR3 = 0.01092/s

(a) (b)

(c) (d)

Fig. 8. Computing the 11-dimension steady state probability landscape and the first passage
time of the network of epigenetic switch of phage lambda. (a) and (b): The a priori estimated
error (black solid curve), the computed error (blue dashed line and squares), and the true error (red
dotted line and circles) of the steady state probability landscape for iBD1 and iBD2, respectively.
The computed errors and the true errors are always smaller than the a priori estimated errors. The
green dashed lines indicate the estimated minimal buffer sizes required so the error is within the
predefined tolerance of 10−12. (c): The 11-dimensional steady state probability landscape projected
onto the CI–Pro plane. (d): The cumulative distribution of first passage time from the initial state
(xs = {CI = 21, Cro = 0, OR1 = OR2 = OR3 = 0, ROR1 = ROR2 = ROR3 = 0, COR1 =
COR2 = COR3 = 0}) to the end state (xe = {CI = 2, Cro = 33}).

number of possible states of each individual species. The size of the state space by the
traditional approach is about 21–29 times larger than that by the mb-dCME method.

Errors and buffer size determinations. The size combination of buffer queues of
B = (150, 150) is sufficient to obtain the exact steady state probability landscape
according to calculations using (2.23) (estimated error < 10−30). The true errors
calculated using (2.4) for different sizes of two buffer queues are shown in Figure 8(a)
and (b) (red dotted lines and circles), both of which decrease monotonically with
increasing buffer size.
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(a) (b) (c)

Fig. 9. Projection of the 11-dimensional time-evolving probability landscape of the epigenetic
switch of phage lambda projected to the CI–Cro plane starting from the uniform distribution, with
the probability landscape (a) at t = 500s; (b) at t = 2,000s; and (c) at t = 10,000s.

The computed error estimates by solving the boundary probability from the un-
derlying dCME (Figure 8(a) and (b), blue dashed lines and squares) also decrease
monotonically with increasing buffer size, when buffer sizes are larger than 23 and 6
for the first and second iBD, respectively. The computed error estimates for the first
and second iBD are larger than the true error when the buffer size is larger than 28
and 69, respectively, as would be expected from Fact 3.

To estimate a priori the required minimum buffer sizes for a predefined error
tolerance of ε = 1.0 × 10−12, we use (2.23) to estimate a priori errors at different
buffer sizes (black solid lines in Figure 8(a) and (b)). We follow (2.21) and (2.22) to
compute αi = s1CI and β

(i+1)
= [(i + 1) − 6] · dCI for the first iBD, where subscript

(i+1) is the total copy number of species CI in the system, and the subtraction of 6 is
because there can be maximally 6 copies of CI molecules protected from degradation
by binding on the three operator sites OR1, OR2, and OR3. This corresponds to the
extreme case when CI is constantly synthesized at the maximum rate and degraded
at the minimum rate. Similarly, we assign values of αi = sCro and β

i+1
= [(i +

1)− 6] · dCro in (2.21) and (2.22) to calculate the estimated error for the second iBD,
which corresponds to the other extreme case when the Cro is constantly synthesized
at its maximum rate and degraded at the minimum rate. In both cases, a priori
estimated errors are larger than computed errors at all buffer sizes. We can therefore
determine conservatively a priori that the minimal buffer size necessary to satisfy
the predefined error tolerance of 1.0 × 10−12 is 73 for the first iBD (green straight
dashed lines in Figure 8(a)) and 94 for the second iBD (green straight dashed lines in
Figure 8(b)). This combination of buffer sizes B = (73, 94) is used for all subsequent
calculations. The enumerated state space has a total of 180,756 states. The 180,756×
180,756 transition rate matrix is sparse and contains a total of 1,330,838 nonzero
elements.

Steady state and time-evolving probability landscapes. A projection of the time-
evolving 11-dimension probability landscape starting from the uniform initial distri-
bution is shown in Figure 9, in which each state takes the same initial probability of
1/180,756. We use a time step Δt = 5s and a total simulation time of t = 300,000s.
The time-evolving probability landscape converges to the steady state (shown sepa-
rately on Figure 8(c)) at around t = 250,000s with the computed error of 1.496×10−21

for buffer queue 1 and 2.722×10−16 for buffer queue 2. The calculation took 18 hours
using one single core of a 1GHz Quad-Core AMD CPU.

The steady state probability landscape is also computed separately. Its projection
to the CI–Cro plane is plotted in Figure 8(c), which has two peaks centered at
(X = 21Y = 0) with a probability of 1.447 × 10−2 and at (X = 2, Y = 33) with a
probability of 1.211× 10−2, respectively. The computed error of 1.503× 10−21 for the
first iBD and 2.711×10−16 for the second iBD are both significantly smaller than the
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predefined error tolerance of ε = 1.0 × 10−12. The computation of the steady state
probability landscape is completed within 50 minutes.

First passage time distribution and rare event probabilities. We study the problem
of the first passage time when the system travels from the initial state xs = {CI =
21, Cro = 0, OR1 = OR2 = OR3 = 0, ROR1 = ROR2 = ROR3 = 0, COR1 =
COR2 = COR3 = 0} in the peak of CI on the CI−Cro plane, to the end state of xe =
{CI = 2, Cro = 33}, which contains 27 different microstates at the peak of Cro. We
modified the transition rate matrix by making these end microstates absorbing [10, 30].
The time evolving probability landscape using the absorbing transition rate matrix
Aabs is then calculated using a time step Δt = 5 for a total of 250,000s simulation
time.

When the duration is short, the transition from the initial starting state to the
end state is of very low probability. When the first passage time is set to t ≤ 500s,
the probability is calculated to be 7.184×10−9, with a computation time of 9 minutes.
Similar results would require billions of trajectories when using the alternative method
of the stochastic simulation algorithm. Similar to the toggle switch example, this rare
event problem is two-dimensional (CI and Cro), and no current methods we are aware
of can accurately calculate such rare event probabilities.

The computed full cumulative probability distribution of the first passage time
is plotted in Figure 8(d). It increases monotonically with time, and approaching
probability 1. That is, given enough time, the system will reach the end state xe =
{X = 2, Y = 33} with certainty 1. The full calculation is completed within 25 hours.

3.3. Bistable MAPK signaling cascade and its 16-dimensional proba-
bility landscapes. The mitogen-activated protein kinase (MAPK) cascades play
critical roles in controlling cell responses to external signals and in regulating cell be-
havior, including proliferation, migration, differentiation, and polarization [39]. There
are multiple levels of signal transduction in a MAPK cascade, where activated kinase
at each level phosphorylates the kinase at the next level. The MAP kinase is activated
by dual phosphorylations at two conserved threonine (T) and tyrosine (Y) residues.
Phosphorylated MAPKs can also be dephosphorylated by specific MAP kinase phos-
phatases (MKPs). Numerous mathematical models have been developed to study the
complex behavior of the MAPK cascade in signal transduction [35, 51, 60, 69, 80].

We examine in detail both the time-evolving and the steady state probability
landscapes of a MAPK cascade model consisting of two levels of kinases, namely, the
extracellular signal-regulated kinase (ERK) and its kinase MEK. This network model
of 16 molecular species is an open network, in which the phosphorylation processes for
ERK (reactions R5 to R21 in Table 4) [51], as well as the synthesis and degradation
of both ERK and MEK (reactions R1 to R4 in Table 4) are modeled in detail. A
feedback loop in the network enhances the synthesis of MEK by activating ERKs
(Figure 10), leading to bistability [69]. The full network is shown in Figure 11. It
includes a total of 16 molecular species and 35 individual reactions. Details of the
molecular species are listed in Table 5, and reaction schemes and rate constants are
specified in Table 4 in the appendix. We set the copy number of MKP3 to 1 and
assume that phosphorylations do not protect the ERK from degradation. To our
knowledge, this is the largest network where full stochastic probability landscapes are
computed by solving the underlying dCME.

Number of buffer queues and comparison of state space sizes. According to Al-
gorithm 1, there are two iBDs in the network. The first iBD contains all reactions
related to the ERK, labeled as K, (reactions 3–21 in Table 4 and species in the lightly
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Table 4

Detailed reactions and rate constants in MAPK signaling network.

R1 : ∅ s2�
d2

MEK, s2 = 0.001/s, d2 = 0.15/s,

R2 : ∅+ (Kpp)
s3→ MEK+ (Kpp), s3 = 0.005/s,

R3 : ∅ s1�
d1

K, s1 = 0.00024/s, d1 = 0.0001/s,

R4 : KpY
d1→ ∅,KpT

d1→ ∅,Kpp
d1→ ∅, d1 = 0.0001/s,

R5 : K +MEK
k1�
k−1

K MEK Y, k1 = 0.375/nM · s, k−1 = 1.0/s,

R6 : K MEK Y
k2→ KpY +MEK, k2 = 0.06/s,

R7 : KpY +MEK
k3�
k−3

KpY MEK, k3 = 0.375/nM · s, k−3 = 1.0/s,

R8 : KpY MEK
k4→ Kpp +MEK, k4 = 4.5/s,

R9 : K +MEK
k5�
k−5

K MEK T, k5 = 0.375/nM · s, k−5 = 1.0/s,

R10 : K MEK T
k6→ KpT +MEK, k6 = 0.06/s,

R11 : KpT +MEK
k7�
k−7

KpT MEK, k7 = 0.375/nM · s, k−7 = 1.0/s,

R12 : KpT MEK
k8→ Kpp +MEK, k8 = 4.5/s,

R13 : Kpp +MKP3
h1�
h−1

Kpp MKP3, h1 = 0.015/nM · s, h−1 = 1.0/s,

R14 : Kpp MKP3
h2→ KpT MKP3 Y, h2 = 0.032/s,

R15 : KpT MKP3 Y
h3�
h−3

KpT +MKP3, h3 = 0.31/s, h−3 = 0.01/nM · s,

R16 : KpT +MKP3
h4�
h−4

KpT MKP3 T, h4 = 0.01/nM · s, h−4 = 1.0/s,

R17 : KpT MKP3 T
h5→ K MKP3 T, h5 = 0.5/s,

R18 : K MKP3 T
h6�
h−6

K+MKP3, h6 = 0.086/s, h−6 = 0.0011/nM · s,

R19 : KpY +MKP3
h7�
h−7

KpY MKP3, h7 = 0.01/nM · s, h−7 = 1.0/s,

R20 : KpY MKP3
h8→ K MKP3 Y, h8 = 0.47/s,

R21 : K MKP3 Y
h9�
h−9

K+MKP3, h9 = 0.14/s, h−9 = 0.0018/nM · s.

Fig. 10. A simplified conceptual model of the MAPK network. The MEK and ERK (K) form
a positive feedback loop.

shaded area in Figure 11). The second iBD contains reactions of synthesis and degra-
dation of MEK (reactions 1–2 in Table 4 and species in the darkly shaded box in
Figure 11). Each iBD is assigned a separate buffer queue.

To demonstrate the advantage of the mb-dCME state space enumeration method
over the traditional hypercube method, Table 2 lists the sizes of the state space with
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Table 5

Molecular species in the network of bistable MAPK signaling cascade.

Molecular species Descriptions
MEK ERK kinase
MKP3 ERK phosphatase
K ERK, extracellular signal-regulated kinase
KpY Single phosphorylated ERK on Y residue
KpT Single phosphorylated ERK on T residue
Kpp Dual phosphorylated ERK on both Y and T residue
K MEK Y K bound by MEK at residue Y
K MEK T K bound by MEK at residue T
KpY MEK KpY bound by MEK
KpT MEK KpT bound by MEK
Kpp MKP3 Kpp associated with MKP3
KpY MKP3 KpY associated with MKP3
KpT MKP3 Y KpT associated with MKP3 at residue Y
KpT MKP3 T KpT associated with MKP3 at residue T
K MKP3 T K associated with MKP3 at residue T
K MKP3 Y K associated with MKP3 at residue Y

Fig. 11. A detailed network model of the MAPK cascade. The ERK(K) phosphorylation
is catalyzed by the kinase MEK, whereas MEK synthesis is up-regulated by dual phosphorylated
ERK(Kpp). Detailed reactions during the dual phosphorylation process of the ERK(K), the synthesis
and degradation of MEK, are explicitly modeled. Red and blue arrows represent phosphorylation and
dephosphorylation reactions, respectively. Bidirectional arrows represent reversible reactions. The
network can be partitioned into two iBDs using Algorithm 1, as shown in two shaded areas of
different color. There are a total of 16 molecular species and 35 individual reactions in the network
(see Tables 5 (in the appendix) and 4 for more detail).
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three different choices of the buffer queues. The state spaces generated using the
traditional hypercube approach is about 104 to 109 times larger than that generated
by the mb-dCME method. For example, when both buffer queues have a capacity of
9, the size of the enumerated state space using the traditional hypercube method is
(9 + 1)16, in which 16 is the number of molecular species. Compared to the size of
6,210,644 using the mb-dCME method, the reduction factor is approximately 1.6 ×
109. Without this dramatic reduction, it would not be feasible to compute the exact
probability landscape of this model of MAPK cascade network.

Errors and buffer size determinations. The size combination of buffer queues
B = (16, 7) is used to approximate the exact solution to the steady state probability
landscape (estimated error ε < 10−4) according to calculations using (2.23). Although
this estimated ε is larger than what is used in other models, it is still quite small, as
it is the summation of differences in probabilities of the whole state space. This is
due to the complexity of this MAPK model and the limitation of the 3GB CUDA
memory of the GPU processor we used. Access to a more capable computing facility
would allow a different choice of sizes of buffer queues such that a smaller a priori
ε can be used. Note that the computed errors for the steady state are considerably
smaller (10−8 − 10−11) as described below. With the landscape computed using
B = (16, 7) regarded as approximately the true steady state probability landscape,
the approximated true errors calculated using (2.4) for different sizes of two buffer
queues are shown in Figure 12(a) and 12(b) (red dotted lines and circles), both of
which decrease monotonically with increasing buffer sizes.

To estimate a priori the required minimum buffer sizes for both buffer queues for
a predefined error tolerance of ε = 10−3, we use (2.23) to estimate errors a priori at
different buffer size (black solid lines in Figure 12(a) and 12(b)). We follow (2.21)
and (2.22) to compute αi = s1 and β

(i+1)
= [(i + 1)− 5] · d1 for the first iBD. Here

the subscript (i + 1) is the total copy number of ERK. As an ERK molecule can be
protected from degradation by forming as many as five copies of ERK-MKP3 and
ERK-MEK complexes in our model (one copy for each of the four species involving
“ MEK ” and one copy for all species involving “ MKP3,” Table 2), the actual
minimum degradation rates are conservatively calculated to be [(i+1)− 5] ·d1, where
d1 = 0.0001 is the degradation rate of ERK (Table 4). This corresponds to the
extreme case when the ERK is constantly synthesized at its maximum rate and
degraded at the minimum rate. Similarly, we have αi = s3 and β

i+1
= [(i+1)−4] ·d2

for (2.21) and (2.22) for the second iBD. As MEK can be protected from degradation
by forming as many as four copies of complexes with ERK, the actual minimum
degradation rates β

i+1
are then conservatively calculated as [(i+1)−4]·d2, where d2 =

0.15 is the degradation rate ofMEK (Table 4). This corresponds to the other extreme
case when the MEK is constantly synthesized at its maximum rate and degraded at
the minimum rate. For both buffer queues, estimated errors are larger than computed
errors and true errors at all buffer sizes. We can therefore determine from a priori
estimated errors that the minimal buffer size to satisfy the predefined error tolerance
10−3 is 14 for the first iBD (green straight dashed lines in Figure 12(a)), and 6 for the
second iBD (green straight dashed lines in Figure 12(b)). This combination of buffer
sizes B = (14, 6) is used for all subsequent calculations. The enumerated state space
has a total of 2,706,935 states. The 2,706,935 × 2,706,935 transition rate matrix is
sparse and contains a total of 36,869,845 nonzero elements.

Steady state and time-evolving probability landscapes. The 16-dimension time-
evolving probability landscapes starting from the initial probability distribution with
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(a) (b)

(c) (d)

Fig. 12. Computing the 16-dimension steady state probability landscape and the first passage
time of the MAPK cascade network model. (a) and (b): The a priori estimated error (black solid
curve), the computed error (blue dash line and squares), and the true error (red dotted line and
circles) of the steady state probability landscape for iBD1 and iBD2, respectively. The computed
error is significantly smaller than the a priori estimated error. The green straight dashed lines
indicate the estimated minimal buffer size required so the error is within the predefined tolerance
of 10−3. (c): The steady state probability landscape projected to the K–Kpp plane. (d): The
cumulative distribution of first passage time from the initial state (K = 3,MKP3 = 1) to the end
state (Kpp = 2,MKP3 = 1).

(a) (b) (c)

Fig. 13. The projected time evolving 16-dimension probability landscape of the MAPK cas-
cade reaction network starting from the initial probability distribution with p(K = 3,MKP3 =
1, AllOther = 0) = 1. (a): The probability landscape projected to the K–Kpp plane at t = 10s. (b):
Projected probability landscape at t = 2,000s. (c): Projected probability landscape at t = 10,000s.

p(K = 3,MKP3 = 1, others = 0) = 1 are shown in Figure 13. We use a time step
Δt = 10s and a total simulation time of t = 30,000s. The time-evolving probability
landscape converges to the steady state (Figure 12(c)) at about t = 80,000s. The
calculation took 160 minutes using a GPU workstation with an nVidia GeForce GTX
580 card (3GB CUDA memory) [50].

The steady state probability landscape is also solved separately (Figure 12(c),
projected onto theK-Kpp plane). It has two peaks centered at (K = 1,Kpp = 0) with
the probability of 0.1495, and (K = 0,Kpp = 2) with probability 0.1133, respectively.
The computed errors of 3.447×10−8 for the first iBD and 1.335×10−11 for the second
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iBD are both significantly smaller than the predefined error tolerance of ε = 10−3.
The computation is completed within 50 minute using the same GPU workstation.

First passage time distribution and rare event probabilities. We study the problem
of first passage time when the system travels from an initial start state of xs = {K =
3,MPK3 = 1}, with all other species 0 copies, to an end state of xe = {Kpp =
2,MPK3 = 1}, with all other species 0 copies. We modified the transition rate matrix
by making the end state an absorbing state [10, 30]. The time evolving probability
landscape using the absorbing transition rate matrix Aabs is then calculated using a
time step Δt = 1s for a total of 85,000s simulation time.

When the duration is short, the transition from the initial starting state to the
end state is of very low probability. When the first passage time is set to t ≤ 10s,
the probability is calculated to be 6.047 × 10−9, with a computation time of about
22 seconds. Similar results would require billions of trajectories when using the alter-
native method of the stochastic simulation algorithm. Like the toggle switch model,
this rare event problem is two-dimensional (K,Kpp) and no current methods we are
aware of can accurately calculate such rare event probabilities.

The computed full cumulative probability distribution of the first passage time is
plotted in Figure 12(d). It increases monotonically with time and approaching proba-
bility 1. That is, given enough time, the system will reach the end state xe = {Kpp =
2,MPK3 = 1} with certainty 1. The full calculation is completed within 41 hours.

4. Discussions and conclusions. Direct solution to the dCME is of fundamen-
tal importance. Because the dCME plays the role in system biology analogous to that
of the Schrödinger equation in quantum mechanics [8], developing methods for solving
the dCME has important implications, just as developing techniques for solving the
Schrödinger equation for systems with many atoms does.

Without the truncation of higher order expansions of the discrete jump operator
and without assumptions of lower order noise as in the chemical Langevin and the
Fokker–Planck equations, accurate direct computation of the time-evolving as well as
the steady state probability landscapes allows the stochastic properties of a biologi-
cal network to be fully characterized. The overall stochastic behavior of a network,
including the presence or absence of multistabilities, the often small probabilities of
transitions between states, as well as the overall dynamic behavior of the network can
all be fully assessed.

A key challenge to obtain direct solution to the dCME is the obstacle of the enor-
mous discrete state space. The conventional hypercube method for state enumeration
is easy to implement but rapidly becomes intractable when the network architecture
is nontrivial. In this study, we develop the ACME algorithm using multibuffers for
directly solving the dCME. By decomposing the reaction network into independent
components of birth-death processes, multiple buffer queues for these components are
employed for more effective state enumeration. With orders of magnitude reduction in
the size of the enumerated state space, our algorithm enables an accurate solution of
the dCME for a large class of problems, whose solutions were previously unobtainable.
As the network inside each birth-death component becomes more complex, significant
reduction can be achieved. For example, computational studies of the MAPK network
shows that a reduction factor of 6–9 orders (e.g., from 1.0 × 1016 to 6.2 × 106) can
be achieved, allowing a stochastic problem otherwise unsolvable to be computed on a
desktop computer.

As truncation of the state space will eventually occur for systems of a given fixed
finite buffer capacity with fast synthesis reactions, it is essential to quantify the trun-
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cation error and to establish a conservative upper bound of the error, so one can
assess whether the computed results are within a predefined error tolerance and are
therefore trustworthy. This critically important task is made possible through theoret-
ical analysis of the boundary states and their associated steady state probability, via
the construction of an aggregated continuous-time Markov process based on factoring
of the state space by the buffer queue usage. With explicit formulae for calculating
conservative error bounds for the steady state, one can easily calculate error bounds
a priori for a finite state space associated with a given buffer capacity. One can also
determine the minimal buffer capacity required if a predefined error tolerance is to
be satisfied. This eliminates the need for multiple iterations of costly trial computa-
tions to solve the dCME for determining the appropriate buffer capacity necessary
to ensure small truncation errors. Furthermore, for a given fixed memory, we can
also strategically allocate the memory to different buffer queues so the overall error
is minimized, or computing efficiency is optimized.

The analysis of the truncation error also enables accurate computation of the
steady state probability landscape of a stochastic network. This differs significantly
from the finite state projection (FSP) method, which was developed to compute the
transient time evolving probability landscape [55, 56]. The FSP method treats all
boundary states effectively as one absorbing state, which will eventually trap all prob-
ability mass, resulting in a truncation error that can increase to 1 as time proceeds.
The error certificate in the FSP method is used for bounding this leaked probabil-
ity mass and requires trial solutions to the dCME, which can be costly. This error
certificate therefore may be unsuitable for studying the long-time behavior or the
steady state of the probability landscape; as time proceeds it approaches to 1.0 and
becomes uninformative [55, 56]. In contrast, no absorbing states are introduced in
the mb-dCME method; the error bound is based on analysis of the probability mass
on the boundary states. To our knowledge, the ACME method is among the first
general methods that can directly compute the steady state probabilistic landscape
of stochastic networks.

We have also provided computational results of three well-known stochastic net-
works, namely, the toggle switch, the phage lambda epigenetic circuit, and the MAPK
cascade. They are bi- or multi-stable networks. Both the time-evolving and the steady
state probability landscapes are computed, all with error less than a predefined thresh-
old. Many biologically critical but rare events, such as the spontaneous induction of
latent lysogeny of phage lambda provirus into lysis [6, 11, 49], or the cancerogenesis
of a normal cell [31], can in principle be formulated as a problem of estimating the
distribution of the first-passage time. The ACME method can be used to directly
compute the exact probability of rare events in a stochastic model occurring in an ar-
bitrary time interval. This has been demonstrated in all three examples. Our method
can provide solutions to this challenging problem that various forms of specifically
designed stochastic simulation algorithms have difficulties to resolve [2, 10, 15, 61].

In this study, we use the Expokit, a Krylov subspace projection method [67], to
compute all time-evolving probability landscapes. Exploiting the special structure of
the state space, recent development in methods of tensor train decomposition offers
another attractive approach to compute the probability landscape by decomposing the
dCME transition rate matrix into multiplication of smaller tensors [40]. It would be
interesting to explore how this technique can be applied to a state space enumerated by
the mb-dCME method. Although the ACME method dramatically reduces the state
space and can quantify the truncation error asymptotically, it can still fail when the
biological network in question is so large that a reduction factor of O(n!) is insufficient.
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In addition, the a priori error estimate may not be tight for some complex networks.
Further improvements and developments will be the focus of future studies.

Since we have a quantitative estimation of the truncation error, we can be sure
that all major probability peaks are contained in the computed solution of probability
landscapes when the estimated errors are sufficiently small, as are the cases for the
three examples given here. Overall, the goal of this study is to provide a methodology
for high precision solutions to the dCME that can be applied to a large class of prob-
lems. Important unknown features such as basins, attractors, and transitions for many
biological networks can be uncovered and analyzed and their biological significance
assessed. It is now possible to analyze details of the topological, topographical, as well
as dynamic properties of the probability landscape for a large number of biologically
important stochastic networks that are previously not amenable to computational
investigations.

Appendix.

Graph of reaction network, its adjacency and Laplacian matrices. GR

can be represented by an m×m adjacency matrix C, where

(A.1) Cm×m = ||Ci, j || =
{

1 if eij exists,
0 otherwise.

The diagonal degree matrix D of the graph GR is

(A.2) Dm×m = ||Di, j || =
{ ∑m

k=1 Ci,k if i = j,
0 if i �= j,

where each diagonal element Di,i is the vertex degree of the corresponding reaction
Ri. The Laplacian matrix L of the graph GR can be then written as [54]

(A.3) L = D −C.
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