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Abstract The discrete chemical master equation (dCME) provides a general frame-
work for studying stochasticity in mesoscopic reaction networks. Since its direct
solution rapidly becomes intractable due to the increasing size of the state space,
truncation of the state space is necessary for solving most dCMEs. It is therefore
important to assess the consequences of state space truncations so errors can be quan-
tified and minimized. Here we describe a novel method for state space truncation. By
partitioning a reaction network into multiple molecular equivalence groups (MEGs),
we truncate the state space by limiting the total molecular copy numbers in each
MEG. We further describe a theoretical framework for analysis of the truncation error
in the steady-state probability landscape using reflecting boundaries. By aggregating
the state space based on the usage of a MEG and constructing an aggregated Markov
process, we show that the truncation error of a MEG can be asymptotically bounded
by the probability of states on the reflecting boundary of the MEG. Furthermore, trun-
cating states of an arbitrary MEG will not undermine the estimated error of truncating
any other MEGs. We then provide an overall error estimate for networks with mul-
tiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also
introduce an a priori method to estimate the upper bound of its truncation error. This
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a priori estimate can be rapidly computed from reaction rates of the network, with-
out the need of costly trial solutions of the dCME. As examples, we show results of
applying our methods to the four stochastic networks of (1) the birth and death model,
(2) the single gene expression model, (3) the genetic toggle switch model, and (4)
the phage lambda bistable epigenetic switch model. We demonstrate how truncation
errors and steady-state probability landscapes can be computed using different sizes
of the MEG(s) and how the results validate our theories. Overall, the novel state space
truncation and error analysis methods developed here can be used to ensure accurate
direct solutions to the dCME for a large number of stochastic networks.

Keywords Stochastic biological networks · Discrete chemical master equation ·
State space truncation

1 Introduction

Biochemical reaction networks are intrinsically stochastic (Stewart-Ornstein and El-
Samad2012;Qian2012).Deterministicmodels basedon chemicalmass actionkinetics
cannot capture the stochastic nature of these networks (McAdams and Arkin 1999;
Wilkinson 2009; Cao et al. 2010). Instead, the discrete chemical master equation
(dCME) that describes the probabilistic reaction jumps between discrete states pro-
vides a general framework for fully characterizing mesoscopic stochastic processes
in a well-mixed system (Gillespie 1977, 1992, 2009; Van Kampen 2007; Beard and
Qian 2008). The steady-state and time-evolving probability landscapes over discrete
states governed by the dCMEprovide detailed information of these dynamic stochastic
processes. However, the dCME cannot be solved analytically, except for a few very
simple cases (Darvey et al. 1966; McQuarrie 1967; Taylor and Karlin 1998; Laurenzi
2000; Vellela and Qian 2007).

The dCME can be approximated using the Fokker–Planck equation (FPE) and the
chemical Langevin equation (CLE). These approximations are not applicable when
copynumbers are small (Gillespie 2000), as relatively large copynumbers ofmolecules
are required for accurate approximation (Van Kampen 1961; Gillespie 2000, 2002;
Haseltine and Rawlings 2002; Gardiner 2004). Recent studies provided assessment
of errors in these approximations for several reaction networks (Grima et al. 2011;
Thomas et al. 2013), as well as numerical demonstration in which the CLE of a 13-
node lysogeny–lysis decision network of phage lambda was found to fail to converge
to the correct steady-state probability landscape [see appendix of Cao et al. (2010)].
However, consequences of such approximations involving many molecular species
and with complex reaction schemes are generally not known.

A widely used approach to study stochasticity is that of stochastic simula-
tion algorithm (SSA). It generates reaction trajectories following the underlying
dCME (Gillespie 1977), and the stochastic properties of the network can then be
inferred through analysis of a large number of simulation trajectories. However, con-
vergence of such simulations is difficult to determine, and the errors in the sampled
steady-state probability landscape are unknown.

Directly solving the dCME offers another attractive approach. By computing the
probability landscape of a stochastic network numerically, its properties, such as those
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involving rare events, can be studied accurately in detail. The finite state projection
(FSP) method is among several methods that have been developed to solve dCME
directly (Munsky and Khammash 2006; Cao and Liang 2008; MacNamara et al.
2008a, b; Cao et al. 2010; Wolf et al. 2010; Jahnke 2011). The FSP is based on a
truncated projection of the state space and uses numerical techniques to compute the
time-evolving probability landscapes, which are solutions to the dCME (Sidje 1998;
Munsky and Khammash 2006, 2007). Although the error due to state space truncation
can be calculated for the time-evolving probability landscape (Munsky andKhammash
2006), the use of an absorbing boundary, to which all truncated states are projected,
will lead to the accumulation of errors as time proceeds, and eventually trap all prob-
ability mass. The FSP method was designed to study transient behavior of stochastic
networks and is not well suited to study the long-term behavior and the steady-state
probability landscape of a network.

A bottleneck problem for solving the dCME directly is to have an efficient and
adequate account of the discrete state space. As the copy number of each of the n
molecular species takes an integer value, conventional hypercube-based methods of
state enumeration incorporate all vertices in a n-dimensional hypercube nonnegative
integer lattice, which has an overall size of O(

∏n
i=1 bi ), where bi is the maximally

allowed copy number of molecular species i . State enumeration rapidly becomes
intractable, both in storage and in computing time. This makes the direct solution of
the dCME impossible for many realistic problems. To address this issue, the finite
buffer discrete CME (fb-dCME) method was developed for efficient enumeration of
the state space (Cao and Liang 2008). This algorithm is provably optimal in both
memory usage and in time required for enumeration. It introduces a buffer queue
with a fixed number of molecular tokens to keep track of the remaining number of
states that can be enumerated. States with depleted buffer do not absorb probability
mass but reflect them to states already enumerated, with the overall probability mass
conserved. Further, instead of including every states in a hypercube, it examines only
states that can be reached from a given initial state. It can be used to compute the
exact steady-state and time-evolving probability landscape of a closed network, or an
open network when the net gain in newly synthesized molecules does not exceed the
predefined finite buffer capacity.

State space truncation eventually occurs in all methods that directly solve the
dCME. For example, it occurs in open systems when no new states can be enumerated;
therefore, synthesis reaction cannot proceed. However, it is unclear how accurate the
probability landscape computed using a truncated state space is. Furthermore, it is
unclear how to minimize truncation errors, thus limiting the scope of applications of
direct methods such as the fb-dCME method.

In this study, we develop a newmethod for state space truncation and provide a gen-
eral theoretical framework for characterizing the error due to state space truncation.
We start by partitioning the molecular species in a reaction network into a number of
molecular equivalent groups (MEG) according to their chemical compositions. The
state space is then truncated by limiting the maximum copy number of each MEG
instead of individual molecular species. States with exactly the maximum copy num-
ber of a MEG form the reflecting boundary of the state space. We further discuss
networks with a single reflecting boundary in the truncated state space. We then show
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that the total probability of the boundary states can be used as an upper bound of the
truncation error in computed steady-state probability landscape. This is then general-
ized to networks with an arbitrary number of reflecting boundaries.We further develop
an a priori method derived from stochastic ordering for rapid estimation of the trunca-
tion errors of the steady-state probability landscape for a given truncated state space.
The required maximum copy number of each MEG for a predefined error tolerance
can also be determined without computing costly trial solutions to the dCME. Overall,
the method of state space truncation and the upper bounds of truncation errors estab-
lished in this study enables accurate quantification of errors in numerical solutions of
the dCME and can help to design strategies so probability landscapes with small and
controlled errors can be computed for a large class of biological problems which are
previously infeasible.

This paper is organized as follows. We first review basic concepts of the dCME
and issues associated with the finite discrete state space. We then describe how to
partition a reaction network into molecular equivalent groups and how to truncate
the discrete state space. We further discuss truncation errors of the steady-state prob-
ability landscape and how to construct upper bounds of the truncation errors. This
is followed by detailed studies of the single birth and death system, the single gene
expression system, the genetic toggle switch system, and the phage lambda bistable
epigenetic switch system.We examine the a priori estimated error bound, the computed
error, and the true error for different state truncations. We end with discussions and
conclusions.

2 Methods

2.1 Theoretical Framework

2.1.1 Reaction Network, State Space and Probability Landscape

In a well-mixed biochemical system with constant volume and temperature, there
are n molecular species, denoted as X = {X1, X2, . . . , Xn}, and m reactions,
denoted as R = {R1, R2, . . . , Rm}. Each reaction Rk has an intrinsic reaction rate
constant rk . The microstate of the system at time t is given by the nonnegative
integer column vector x(t) ∈ Z

n+ of copy numbers of each molecular species:
x(t) = (x1(t), x2(t), . . . , xn(t))T , where xi (t) is the copy number of molecular
species Xi at time t . An arbitrary reaction Rk with intrinsic rate rk takes the gen-
eral form of

c1k X1 + c2k X2 + · · · + cnk Xn
rk→ c′

1k X1 + c′
2k X2 + · · · + c′

nk Xn,

which brings the system from a microstate x j to xi . The difference between xi and x j

is the stoichiometry vector sk of reaction Rk : sk = xi − x j = (s1k, s2k, . . . , snk)
T =

(c′
1k − c1k, c′

2k − c2k, . . . , c′
nk − cnk)

T ∈ Z
n . The rate Ak(xi , x j ) of reaction Rk that

brings the microstate from x j to xi is determined by rk and the combination number
of relevant reactants in the current microstate x j :
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Ak(xi , x j ) = Ak(x j ) = rk

n∏

l=1

(
xl

clk

)

,

assuming the convention
(0
0

) = 1.
All possible microstates that a system can visit from a given initial condition form

the state space: Ω = {x(t)|x(0), t ∈ (0,∞)}. We denote the probability of each
microstate at time t as p(x(t)), and the probability distribution at time t over the
full state space as p(t) = {(p(x(t))|x(t) ∈ Ω)}. We also call p(t) the probability
landscape of the network (Cao et al. 2010).

2.1.2 Discrete Chemical Master Equation

The dCME can be written as a set of linear ordinary differential equations describing
the change in probability of each discrete state over time:

dp(x, t)

dt
=

∑

x ′,x ′ �=x

[
A
(
x, x′) p

(
x′, t

)− A
(
x′, x

)
p(x, t)

]
. (1)

Note that p(x, t) is continuous in time, but is discrete over the state space. In matrix
form, the dCME can be written as:

d p(t)
dt

= Ap(t), (2)

where A ∈ R
|Ω|×|Ω| is the transition rate matrix formed by the collection of all

A(xi , x j ), which describes the overall reaction rate from state x j to state xi :

A(xi , x j ) =

⎧
⎪⎪⎨

⎪⎪⎩

∑m
k=1 Ak(xi , x j ) if xi �= x j and x j

Rk−→ xi ,

−∑x ′∈Ω,
x ′ �=x j

A
(
x′, x j

)
if xi = x j ,

0 otherwise.

(3)

2.1.3 Molecular Equivalent Groups and Independent Birth–Death Processes

In an open reaction network, synthesis reactions are the only ones that generate new
molecules and increase the total mass of the system. Degradation reactions are the only
ones that destroy molecules and remove mass from the system. The net copy numbers
of various molecular species in an open network gives its total mass. For a given
microstate, the mass for each molecular species is defined. The total mass in a network
can increase to infinity if synthesis reactions persist. The truncation of the infinite
state space of such an open network, which is inevitable due to the limited computing
capacity, can lead to errors in computing the probability landscapes of a dCME.

Here we introduce the concept ofmolecular equivalence groups (MEG), which will
be useful for state space truncation. Specifically, molecular species Xi and X j belong
to the same MEG if Xi can be transformed into X j or X j can be transformed into Xi
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through one or more mass-balanced reactions. A stochastic network can have one or
more MEGs. The total mass of a MEG for a specific microstate is defined as the total
copy number of the most elementary equivalent molecular species in the MEG.

A → B; 2A → C; B + C → D; 2X → Y ; Y → Z . (4)

For example, the reaction network shown in Eq. (4) has two MEGs, i.e., MEG1 =
{A, B, C, D} and MEG2 = {X, Y, Z}. The most elementary molecular species in
MEG1 andMEG2 are A and X , respectively. For any specificmicrostate of the network
x = {a, b, c, d, x, y, z}, the total net copy number of the MEG1 is calculated as
nMEG1

(x) = a + b + 2c + 3d, and the total net copy number of MEG2 can be
calculated as nMEG2

(x) = x + 2y + 2z, where the a, b, c, d, x , y, and z are copy
numbers of corresponding molecular species.

We are interested in MEGs containing synthesis and degradation reactions. The set
of reactions associated with such an open MEG is called an independent birth–death
process (iBD). Reactions in an iBD can increase or decrease the total net copy number
of molecules in the associated MEG.

2.1.4 State Space Truncation by Molecular Equivalent Group

Here we introduce a novel state truncation method. Instead of truncating the state
space by specifying a maximum allowed copy number B for each molecular species,
we specify a maximum allowed molecular copy number B for the j th MEG. Assume
the j th MEG contains n j distinct molecular species, and conservatively ignore the
effects of stoichiometry, the number of all possible states for the j th MEG is then
that of the volume of an n j -dimensional orthogonal corner simplex, with B the length
of all edges with the origin as a vertex. The number of integer lattice nodes in this
n j -dimensional simplex gives the precise number of states of the j th MEG, which
is in turn exactly given by the multiset number

(B+n j
n j

)
. The size of the state space is

therefore much smaller than the size of the state space Bn j that would be generated
by the hypercube method, with a reduction factor of roughly n j ! factorial. Note that
under the constraint of mass conservation, each molecular species in this MEG can
still have a maximum of B copies of molecules.

We further conservatively assume that different MEGs are independent, and each
can havemaximally B copies ofmolecules. The size of the overall truncated state space
is then O(

∏
j

(B+n j
n j

)
). This is much smaller than the n-dimensional hypercube, which

has an overall size of O(
∏

j Bn j ) = O(Bn), with n the total number of molecular
species in the network. Overall, the size of state space generated by MEG truncation
can be dramatically smaller than that generated using the hypercube method.

2.1.5 State Space Aggregation According to the Net Copy Number in Molecular
Equivalent Group

We first consider the stochastic network with only one MEG. We truncate the state
space by fixing the maximum amount of total mass in the network. We are interested
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in estimating the errors due to such a state truncation. To do so, we first describe
how to factor states in the original state space Ω(∞) of infinite size according to the
total net copy number of the MEG in each state. The infinite state space Ω(∞) can
be partitioned into disjoint groups of subsets Ω̃(∞) ≡ {G0,G1, . . . ,GN , . . .}, where
states in each aggregated subset Gs have exactly the same s total copies of equivalent
elementary molecular species of the MEG. The total steady-state probability π̃

(∞)
s on

microstates in each group Gs can then be written as:

π̃ (∞)
s ≡

∑

x∈Gs

π(∞)(x) =
∑

x∈Gs

p(∞)(x, t = ∞). (5)

Based on the state space partition Ω̃(∞), we can reconstruct a transition rate matrix
Ã, which is a permutation of the original dCME matrix A in Eq. (2):

Ã = (Ai, j
)
, 0 ≤ i, j ≤ ∞, (6)

where each block sub-matrix Ai, j includes all transitions from states in group G j to
states in Gi .

In continuous-time Markov model of mesoscopic systems, reactions occur instan-
taneously, and the synthesis and degradation reactions always generate or destroy one
molecule at a time. This also applies to oligomers, which are assumed to form only
upon association of monomers already synthesized, and dissociate into monomers
first before full degradation. The reconstructed matrix Ã is thus a tridiagonal block
matrix, i.e., Ai, j is all 0s if |i − j | > 1.Moreover, synthesis reactions always appear as
lower blocks Ai+1,i , and degradation reactions always as upper blocks Ai,i+1. Diag-
onal blocks Ai,i contains all coupling reactions that do not alter the net number of
synthesized molecules. Note that every Ai+1,i block and Ai,i+1 block only includes
synthesis and degradation reactions associated with the current MEG. For analysis of
networks with multiple MEGs, we assume at this time there is no limit on the total
mass of other MEGs; therefore, the state space is not truncated on these MEGs. These
other MEGs do not alter the total net copy number of molecular species in the current
MEG.

Note that the assumption of the stoichiometric coefficient of one for synthesis and
degradation is only for constructing the proofs of the theorems. In computation, there
is no condition on the stoichiometry of any reaction, and our method is general and
can be applied to any reaction network.

We can obtain the steady-state probability π̃
(∞)
s on aggregated states without solv-

ing the dCME. It is tempting to lump all microstates in each group G j into one state
and replace the original |Ω(∞)| × |Ω(∞)| rate matrix Ã with an aggregated matrix to
study the dynamic changes of the probability landscape on this aggregated state space.
However, stringent requirements must be satisfied for such lumped states to follow a
Markov process (Tian and Kannan 2006; Truffet 1997; Buchholz 1994; Stewart 1994;
Vantilborgh 1985; Kemeny and Snell 1976). Specifically, a transition rate matrix A
for a continuous Markov process is lumpable with respect to a partition Ω̃(∞) if and
only if for all pairs of Gs,Gt ∈ Ω̃(∞), the condition
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Fig. 1 Birth–death system associated with the aggregated rate matrix B. Each circle represents an aggre-
gated state consisting of all microstates with the same copy number of elementary molecules in the MEG.
These aggregated states are connected by aggregated birth and death reactions, with apparent synthesis
rates αi and degradation rates βi+1 (see Lemma 1)

∑

xk∈Gt

Aik =
∑

xk∈Gt

A jk (7)

holds for all xi , x j ∈ Gs (Tian and Kannan 2006). In other words, every state in Gs

must have the same total transition rate to group Gt , and this must be true for all Gs

and Gt (Tian and Kannan 2006).
While Ã does not satisfy this strong condition in general, we can instead construct

a lumped transition matrix B, which is associated with the aggregated state space
derived from the partition Ω̃(∞), such that the aggregated steady-state probability
distribution on the partition Ω̃(∞) computed from the lumped matrix B is equal to
that derived from the steady-state distribution computed from the original matrix A.
That is, steady-state probabilities on partitioned groups in Ω̃(∞) are identical using
either B or the original A.

Assume the steady-state probability distribution π̃(x) over the partitioned state
space Ω̃(∞) is known, the aggregated synthesis rate α

(∞)
i for the group Gi and the

aggregated degradation rate β
(∞)
i+1 for the group Gi+1 at the steady state are two con-

stants (Fig. 1) defined as

α
(∞)
i =

(
1T Ai+1,i

)
· π̃ (Gi )

1T π̃ (Gi )
and β

(∞)
i+1 =

(
1T Ai,i+1

)
· π̃ (Gi+1)

1T π̃ (Gi+1)
, (8)

where π̃(Gi ) and π̃(Gi+1) are the steady-state probability vector over microstates in
the lumped states Gi and Gi+1, respectively. The term 1T Ai+1,i is the row vector of

column-summed rates from Ai+1,i formicrostates inGi , and
π̃ (Gi )

1T π̃ (Gi )
is the steady-state

probability vector π̃(Gi ) over microstates in Gi normalized by the total steady-state
probability on Gi . Similarly, 1T Ai,i+1 is the row vector of column-summed rates from

Ai,i+1 for microstates in Gi+1, and
π̃ (Gi+1)

1T π̃ (Gi+1)
is the steady-state probability vector

π̃(Gi+1) over microstates in Gi+1 normalized by the total steady-state probability on
Gi+1. We can construct an aggregated transition rate matrix B from Ã based on the
following lemma:

Lemma 1 (RateMatrixAggregation) If an MEG has no limit on the total copy number,
it generates an infinite state space Ω(∞) and the rate matrix A is of infinite dimension.
For any homogeneous continuous-time Markov process with such a rate matrix A, an
aggregated continuous-time Markov process with an infinite rate matrix B(∞) can be
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constructed on the partition Ω̃(∞) = {G0,G1, . . . ,GN , . . .} with respect to the total
net copy number of molecules in the network, such that it gives the same steady-
state probability distribution for each partitioned group {Gs} as that given by the
original matrix A, i.e., π(Gs) = ∑

x∈Gs
π(x) for all s = 0, 1, . . ., where π(Ω(∞))

is the steady-state probability distribution associated with A. Specifically, the infinite
transition rate matrix B(∞) can be constructed as a tridiagonal matrix:

B =
(
α(∞), γ (∞),β(∞)

)
, (9)

with the lower off-diagonal vector α(∞) = (α
(∞)
i ), the upper off-diagonal vector

β(∞) = (β
(∞)
i+1 ), and the diagonal vector γ (∞) = (γ

(∞)
i ) = (−α

(∞)
i − β

(∞)
i ), i =

0, . . . ,∞. This is equivalent to transforming the corresponding infinite transition
rate matrix Ã in Eq. (6) into B(∞) by substituting each block sub-matrix Ai+1,i of

synthesis reactions with the corresponding aggregated synthesis rate α
(∞)
i , and each

block Ai,i+1 of degradation reactions with the aggregated degradation rate β
(∞)
i+1 ,

respectively, with α
(∞)
i and β

(∞)
i+1 defined in Eq. (8).

Proof can be found in the “Appendix”.

2.1.6 Analytical Solution of Steady-State Probability of Aggregated States

The system associated with the aggregated rate matrix B can be viewed as a birth–
death process controlled by a pair of “synthesis” and “degradation” transitions between
aggregated states associated with different net copy number of the MEG. It takes the
form:

∅ α
(∞)
i�

β
(∞)
i+1

E, (10)

where E represents the elementary molecular species in the MEG, with its copy num-
ber the total net copy number of theMEG. The rates α

(∞)
i and β

(∞)
i+1 are the aggregated

“synthesis” and “degradation” rates for thisMEG. The aggregated state space and tran-
sitions between them are illustrated in Fig. 1. The steady-state probability distribution
over the aggregated states are governed by Bπ̃ (∞) = 0.

The aggregated rates α
(∞)
i and β

(∞)
i+1 in B are from summations of all entries in

the nonnegative block matrices Ai+1,i and Ai,i+1. As long as there is one or more
microstates in Ai+1,i or Ai,i+1 with nonzero copies of reactants, α

(∞)
i or β

(∞)
i will be

nonzero. We next examine the most general case when α
(∞)
i �= 0 and β

(∞)
i+1 �= 0 for all

i = 0, 1, . . .We simplify our notation and use π̃
(∞)
i for π̃ (∞)(Gi ). Following the well-

known results on analytical solution of the steady-state distribution of the birth–death
processes (Taylor and Karlin 1998; Vellela and Qian 2007), the steady-state solution
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for π̃
(∞)
i and π̃

(∞)
0 can be written as:

π̃
(∞)
i =

i−1∏

k=0

α
(∞)
k

β
(∞)
k+1

π̃
(∞)
0 , (11)

and

π̃
(∞)
0 = 1

1 +∑∞
j=1
∏ j−1

k=0
α

(∞)
k

β
(∞)
k+1

. (12)

Therefore, the steady-state probability π̃
(∞)
i of an arbitrary group Gi can be written

as:

π̃
(∞)
i =

∏i−1
k=0

α
(∞)
k

β
(∞)
k+1

1 +∑∞
j=1
∏ j−1

k=0
α

(∞)
k

β
(∞)
k+1

. (13)

Once α
(∞)
k and β

(∞)
k+1 are known, the total probability of any aggregated state Gi at the

steady state can be easily computed. We will introduce a method in later sections for
easy a priori calculation of error estimates based on Eq. (13) and values of α

(∞)
k and

β
(∞)
k+1 , which are directly obtained from reaction rate constants of the network model,

without the need of solving the dCME.

2.1.7 Truncation Error is Bounded Asymptotically by Probability of Boundary States

When the maximum total net copy number of the MEG is limited to N , states with
a total net copy number larger than N will not be included, resulting in a truncated
state space Ω(N ). Those microstates with exactly N total net copies of molecules in
the network are the boundary states, because neighboring states with one additional
molecule are truncated. The true error Err(N ) of the steady state is the summation of
true probabilities over microstates that have been truncated from the original infinite
state space (Fig. 2):

Err(N ) =
∑

x∈Ω(∞),x /∈Ω(N )

π(∞)(x) = 1 −
∑

x∈Ω(N )

π(∞)(x). (14)

The true error Err(N ) is unknown, as it requires knowledge of π(∞)(x) for all
x ∈ Ω(∞). In this section, we show that Err(N ) asymptotically converges to π̃

(∞)
N

as the maximum net copy number limit N increases. If N is sufficiently large, the
true error Err(N ) is bounded by the true boundary probability π̃

(∞)
N times a constant

(Fig. 2). First, we have:

Lemma 2 (Finite Biological System) For any biological system in which the total
amount of mass is finite, the aggregated synthesis rate α

(∞)
i becomes smaller than
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Fig. 2 An illustration for the boundary probabilities. The solid black line represents the true probability
landscape on the exact state space. The dashed red line represents the probability landscape computed from
the truncated state space with buffer capacity N . The gray shaded area represents the true error due to state
space truncation with buffer capacity N . The probability of copy number N on the true landscape is the true
boundary probability, and the probability of N on the computed landscape is the boundary probability on
the truncated state space. In this study, we show that the computed boundary probability on the truncated
state space can be used to bound the true error from the above (Color figure online)

the aggregated degradation rate β
(∞)
i+1 when the total molecular copy number N is

sufficiently large:

lim
N→∞ sup

i>N

α
(∞)
i

β
(∞)
i+1

< 1. (15)

Proof can be found in the “Appendix.”
Note that in most biological reaction networks, the stronger condition

limN→∞ supi>N
α

(∞)
i

β
(∞)
i+1

= 0 should hold, as synthesis reactions usually have constant

rates, while degradation reactions have increasing rates when the copy number of
the molecule increases. When the net copy number i is sufficiently large, the ratio
approaches zero.

According to Eq. (14) and π̃
(∞)
i+1 < π̃

(∞)
i as discussed above, when the total net

molecular copy number N increases to infinity, the true error Err(N ) converges to
zero. For a finite system, the series of the boundary probability {π̃ (∞)

N } (Eq. (13))
also converges to 0, since the sequence of its partial sums converges to 1. That is, the
N th member π̃

(∞)
N of this series converges to 0 and the residual sum of this series

∑∞
i=N+1 π̃

(∞)
i ≡ Err(N ) converges to 0. We now study the convergence behavior of

the ratio of Err(N ) and π̃
(∞)
N .

123



Y. Cao et al.

Theorem 1 (Asymptotic Convergence of Error) For a truncated state space with a
maximum net molecular copy number N in the network, the true error Err(N ) follows
the inequality below when N increases to infinity:

Err(N ) ≤
α

(∞)
M

β
(∞)
M+1

1 − α
(∞)
M

β
(∞)
M+1

π̃
(∞)
N , (16)

where M is an integer selected from N , . . . ,∞ to satisfy
α

(∞)
M

β
(∞)
M+1

= supk≥N

{
α

(∞)
k

β
(∞)
k+1

}

.

Proof can be found in the “Appendix.”
According to Theorem 1, the true error Err(N ) is asymptotically bounded by the

boundary probability π̃
(∞)
N multiplied by a simple function of the aggregated synthesis

rates α
(∞)
M and degradation rates β

(∞)
M+1. We can therefore use Inequality (16) to con-

struct an upper bound for Err(N ).We examine three cases: (1) Ifα(∞)
M /β

(∞)
M+1 < 0.5, the

true error is always smaller than the boundary probability: Err(N ) < π
(∞)
N , when the

maximumnetmolecular copy number N is sufficiently large. (2) Ifα(∞)
M /β

(∞)
M+1 = 0.5,

the true error converges asymptotically to π
(∞)
N . (3) If 0.5 <

α
(∞)
N

β
(∞)
N+1

< 1.0, the error

is bounded by π
(∞)
N multiplied by a constant C ≡ α

(∞)
M /β

(∞)
M+1

1−α
(∞)
M /β

(∞)
M+1

according to Inequal-

ity (16).
In realistic biological reaction networks, case (1) is most applicable. As rates of

synthesis reactions usually are constant, whereas rates of degradation reactions depend
on the copy number of net molecules in the network, the ratio between aggregated
synthesis rate and degradation rate decreases monotonically with increasing net mole-
cular copy numbers N . We therefore conclude that the boundary probability π

(∞)
N

indeed provides an upper bound to the state space truncation error. In addition, in case
(1) M = N , and α

(∞)
N /β

(∞)
N+1 = α

(∞)
M /β

(∞)
M+1. Therefore, Inequality (16) can be further

rewritten as:

Err(N ) ≤
α

(∞)
N

β
(∞)
N+1

1 − α
(∞)
N

β
(∞)
N+1

π̃
(∞)
N . (17)

2.1.8 Computed Probability of Boundary States on Truncated State Space Bounds
the True Boundary Probability

It is not practical to compute the true boundary probability π
(∞)
N on the original

infinite state space. In this section, we show that the probability of boundary states
π

(N )
N is larger than π

(∞)
N . Therefore, we can use π

(N )
N on truncated state space as an
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upper bound for Err(N ). That is, the steady-state probability π
(N )
N computed using the

truncated state space over the boundary states can be used to bound Err(N ).
We first show that the truncated state space and its ratematrix can also be aggregated

according to the net copy number of molecules in MEG following Lemma 3, which
is similar to Lemma 1:

Lemma 3 A MEG with a maximum of N total copy number of elementary molec-
ular species gives a truncated state space Ω(N ) and a truncated rate matrix A(N ).
For any homogeneous continuous-time Markov process with such a rate matrix A(N ),
an aggregated continuous-time Markov process with a rate matrix B(N ) can be con-
structed on the partition Ω̃(N ) = {G0,G1, . . . ,GN } with respect to the total net copy
number of molecules in the network, such that it gives the same steady-state probability
distribution for each partitioned group {Gs} as that given by the original matrix A(N ),
i.e., π(Gs) = ∑

x∈Gs
π(x) for all s = 0, 1, . . . , N, where π(x) is the steady-state

probability distribution associated with A(N ).
Specifically, the rate matrix B(N ) can be constructed as:

B(N ) =
(
α(N ), γ (N ),β(N )

)
, (18)

with the lower off-diagonal vector

α(N ) =
(
α

(N )
i

)
, i = 0, . . . , N − 1.

the upper off-diagonal vector

β(N ) =
(
β

(N )
i

)
, i = 1, . . . , N .

and the diagonal vector

γ (N ) =
(
γ

(N )
i

)
=
(
−α

(N )
i − β

(N )
i

)
, i = 0, . . . , N .

It is equivalent to substituting the block sub-matrices Ai+1,i and Ai,i+1 in the original

rate matrix Ã with the corresponding aggregated synthesis rate α
(N )
i and degradation

rate β
(N )
i+1 , respectively. The aggregated rates on the truncated state space are:

α
(N )
i = 1T Ai+1,i

π̃(Gi )

1T π̃(Gi )
and β

(N )
i+1 = 1T Ai,i+1

π̃(Gi+1)

1T π̃(Gi+1)
. (19)

Proof Same as Lemma 1.

Similar to the case of infinite state space, we can write out in analytic form the total
steady-state probability π̃

(N )
i over each aggregated group Gi as:

π̃
(N )
i =

∏i−1
k=0

α
(N )
k

β
(N )
k+1

1 +∑N
j=1
∏ j−1

k=0
α

(N )
k

β
(N )
k+1

, i = 0, 1, 2, . . . , N . (20)
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Specifically, the total steady-state probability π̃
(N )
N over thegroupof aggregatedbound-

ary states GN is:

π̃
(N )
N =

∏N−1
k=0

α
(N )
k

β
(N )
k+1

1 +∑N
j=1
∏ j−1

k=0
α

(N )
k

β
(N )
k+1

. (21)

We now study how state space truncation affects the steady-state probabilities over
the aggregated groups.

Theorem 2 (Boundary Probability Increases after State Space Truncation) The total
steady-state probability π̃

(N )
i of an aggregated state group Gi , for all i = 0, 1, . . . , N,

on the truncated state space Ω̃(N ) with a maximum net molecular copy number N, is
greater than or equal to the non-truncated probability π̃

(∞)
i over the same group Gi

obtained using the original state space Ω̃(∞) of infinite size, i.e., π̃
(∞)
i ≤ π̃

(N )
i .

Proof can be found in the “Appendix.”
In summary, the boundary probability increases when the state space is truncated

π̃
(N )
N ≥ π̃

(∞)
N . From Theorem 1, we always have Err(N ) ≤ Cπ̃

(∞)
N . Therefore, we can

bound Err(N ) by the boundary probability π
(N )
N computed using the truncated state

space when α
(N )
i �= 0 and β

(N )
i+1 �= 0.

2.1.9 From One to Multiple MEGs

In complex reaction networks, multiple MEGs occur. Since different MEGs are pair-
wise disjoint, we can aggregate the same state space and reconstruct the permuted rate
matrix according to different MEG one at a time. Lemmas 1–3 and Theorems 1 and 2
are all valid for each individual MEG. That is, the true error of truncating one MEG
is bounded by the boundary probability computed using the state space truncated in
that particular MEG, while all other MEGs have infinite net molecular copy numbers.
However, it is not possible to compute the solution of dCME with infinite molecules
in any MEG. Below we study how error bounds can be constructed when states in all
MEGs are truncated simultaneously.

2.1.10 From Truncating One to Truncating All MEGs

We use I = (∞, . . . ,∞) to denote the vector of infinite net copy numbers for all
MEGs in the network. I corresponds to the original infinite state space Ω(I) without
any truncation. We use A(I) and π (I) to denote the transition rate matrix and the
steady-state probability distribution over Ω(I), respectively. Furthermore, we have
A(I)π (I) = 0.

We use I j = (∞, . . . , N j , . . . ,∞) to denote the vector ofmaximum copy numbers
with only the j th MEG limited to a finite copy number N j and all other MEGs with
infinite copy numbers. The corresponding state space is denoted Ω(I j ), the transition
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rate matrix A(I j ), and the steady-state probability distribution π (I j ). At the steady
state, we also have A(I j )π (I j ) = 0.

We now add one more truncation to the i th MEG in addition to the j th MEG. We
denote the vector of maximum copies as Ii, j = (∞, . . . , Ni , . . . , N j , . . . ,∞), with
Ni and N j the maximum copy numbers of the i th and j th MEG, respectively. All
other MEGs can have infinite molecular copy numbers. We denote the corresponding
state space as Ω(Ii, j ), the transition rate matrix A(Ii, j ), the steady-state probability
distribution π (Ii, j ). At the steady state, we have A(Ii, j )π (Ii, j ) = 0.

When all w number of MEGs in the network are truncated using a vector of maxi-
mum copies B = (N1, . . . , Ni , . . . , N j , . . . , Nw), we have a finite state space Ω(B).
Obviously, we have Ω(B) ⊆ Ω(Ii, j ) ⊆ Ω(I j ) ⊆ Ω(I).

We have already shown that for each truncated MEG on the infinite state space, the
truncation error is bounded by the corresponding boundary probability. We now show
that this error bound also holds for the fully truncated state spacesΩ(B). We show first
adding only one additional truncation at the i th MEG to the singularly truncated state
space Ω(I j ) and demonstrate that the probability of each state in the doubly truncated
state spaceΩ(Ii, j ) is no smaller than the probability in singularly truncated state space
Ω(I j ), i.e., π(Ii, j )(x) ≥ π(I j )(x) for all x ∈ Ω(Ii, j ).

Theorem 3 At steady state, π (Ii, j ) ≥ π (I j ) and π (Ii, j ) approaches π (I j ) component-
wise for any state in Ω(Ii, j ) when the maximum net copy number limit for the i th MEG
Ni goes to ∞.

Proof can be found in the “Appendix.”
Theorem 3 shows that introducing an additional truncation at the i th MEG does not

decrease the boundary probability of the j thMEG.Therefore, the boundary probability
from doubly truncated state spaceΩ(Ii, j ) can also be used to bound the true error after
state truncations at both i th and j th MEG. Furthermore, we can show by induction
that boundary probabilities computed from the fully truncated state space Ω(B) can
also be used to bound the truncation errors of each MEG, respectively.

2.1.11 Upper and Lower Bounds for Steady-State Boundary Probability

In this section, we introduce an efficient and easy-to-compute method to obtain
an upper and lower bound of the boundary probabilities π̃

(N )
N a priori without

the need to solving the dCME. The method can be used to rapidly determine
whether the maximum copy number limits to MEGs are adequate to obtain the
direct solution to dCME with a truncation error smaller than the predefined toler-
ance. The optimal maximum copy number for each MEG can therefore be estimated a
priori.

As a consequence of Theorem (3) discussed above, the boundary probability com-
puted on the truncated state space Ω(B) can be used as an error bound. We now use
the truncated rate matrix to derive the upper and lower bounds.

Denote the maximum and minimum aggregated synthesis rates from the block
sub-matrix Ai+1,i as
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α
(N )
i = max

{
1T Ai+1,i

}
and α

(N )
i = min{1T Ai+1,i }, (22)

respectively, and the maximum and minimum aggregated degradation rates from the
block sub-matrix Ai,i+1 as

β
(N )

i+1 = max
{
1T Ai,i+1

}
and β(N )

i+1
= min

{
1T Ai,i+1

}
, (23)

respectively. Note that α
(N )
i , α(N )

i , β
(N )

i+1, and β(N )
i+1

can be easily calculated from the
reaction rates in the network without need for generating and partitioning the dCME
transition rate matrix Ã. As α

(N )
i and β

(N )
i+1 given in Eq. (8) are weighted sums of

vector 1T Ai+1,i and 1T Ai,i+1 with regard to the steady-state probability distribution
π̃ (N )(Gi ), respectively, we have

α
(N )
i ≤ α

(N )
i ≤ α

(N )
i and β(N )

i+1
≤ β

(N )
i+1 ≤ β

(N )

i+1.

We use results from the theory of stochastic ordering for comparing Markov
processes to bound π

(N )
N . Stochastic ordering “≤st” between two infinitesimal gener-

ator matrices Pn×n and Qn×n of Markov processes is defined as (Truffet 1997; Irle
2003)

P ≤st Q if and only if
n∑

k= j

Pi,k ≤
n∑

k= j

Qi,k for all i, j.

To derive an upper bound for π̃
(N )
N in Eq. (21), we construct a new matrix B by

replacing α
(N )
i with the corresponding α

(N )
i and β

(N )
i+1 with the corresponding β(N )

i+1
in

the matrix B. Similarly, to derive an lower bound for π̃
(N )
N , we construct the matrix B

by replacing α
(N )
i with the corresponding α

(N )
i and replace β

(N )
i+1 with β

(N )

i+1 in B. We
then have the following stochastic ordering:

B ≤st B ≤st B.

All three matrices B, B, and B are “≤st-monotone” according to the definitions
in Truffet (1997). The steady-state probability distributions of matrices B, B, and B
maintain the same stochastic ordering [Theorem 4.1 of Truffet (1997)]:

πB ≤st πB ≤st πB .

Therefore, we have the inequality:

π̃
(N )
N ≤ π̃

(N )
N ≤ π̃

(N )

N .
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Here the lower bound π̃
(N )
N is the boundary probability fromπB , π̃ (N )

N is the boundary

probability from πB , and the upper bound π̃
(N )

N is the boundary probability computed

fromπB . FromEq. (21), the upper bound π̃
(N )

N can be calculated a priori from reaction
rates:

π̃
(N )

N =
∏N−1

k=0
α

(N )
k

β
(N )
k+1

1 +
N∑

j=1

∏ j−1
k=0

α
(N )
k

β
(N )
k+1

, (24)

and the lower bound π̃
(N )
N can also be calculated as:

π̃
(N )
N =

∏N−1
k=0

α
(N )
k

β
(N )
k+1

1 +∑N
j=1
∏ j−1

k=0
α

(N )
k

β
(N )
k+1

. (25)

These are general formula for upper and lower bounds of the boundary probabilities

of any MEG in a reaction network. Note that while π̃
(N )

N is easy to compute, it may
not be a tight error bound when the MEG involves many molecular species with
overall complex interactions. This will be shown in the example of the phage lambda
epigenetic switch model (Fig. 6a, b).

For a reaction network with multiple MEGs, we have

w∑

i=1

π̃
(Ni )
Ni

≤
w∑

i=1

π̃
(Ni )
Ni

≤
w∑

i=1

π̃
(Ni )

Ni
,

where Ni is the maximum copy number for the i th MEG. The upper bounds for the
total error Err(Ω

(B)) can therefore be obtained straightforwardly by taking summation
of upper bounds for each individual MEG:

Err
(
Ω(B)

)

≤
w∑

i=1

π̃
(Ni )

Ni
. (26)

This upper bound of
∑w

i=1 π̃
(Ni )

Ni
can therefore be used as an a priori estimated bound

for the total truncation error Err(Ω
(B)) for the state space Ω(B) using truncation of

B = (N1, . . . , Ni , . . . , N j , . . . , Nw).

3 Biological Examples

Below we give examples on characterizing the truncation errors in the steady-state
probability landscapes for four biological reaction networks. We study the models of
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the birth and death process, the single gene expression, the model of genetic toggle
switch, and the phage lambda epigenetic switch model. We first show how each net-
work can be partitioned into MEGs, and how truncation errors for each MEG can be
estimated a priori. By enumerating the state space and directly computing the steady-
state probability landscapes of the dCMEs using the fb-dCME method, we examine
the true truncation errors, the computed boundary probabilities, and the a priori esti-
mated truncation error. We demonstrate that indeed the truncation error is bounded
from above by the computed boundary probability, and by the a priori error estimate
according to theoretical analyses described earlier, once the copy number limit is
sufficiently large for the MEG(s).

3.1 Birth–Death Process

The birth–death process is a ubiquitous biochemical phenomenon. In its simplest
form, it involves synthesis and degradation of only one molecular species. We study
this simple birth–death process, whose reaction scheme and rate constants are specified
as follows:

R1 : ∅ ks→ X, ks = 1/s,

R2 : X
kd→ ∅, kd = 0.025/s. (27)

The steady-state probability landscape of the birth–death process iswell known (Taylor
andKarlin 1998;Vellela andQian2007).This process has also been studied extensively
as a problem of estimating rare event probability (Daigle et al. 2011; Roh et al. 2011;
Cao and Liang 2013).

Molecular Equivalent Group (MEG) This single birth and death process is an open
network because of the presence of the synthesis reaction. There is only one MEG.
We truncate the state space at different values of the maximum copy number of the
MEG, ranging from 0 to 200, and compute the boundary probabilities at each different
truncation.

Asymptotic Convergence of Errors (Theorem 1) To numerically demonstrate Theo-
rem 1, we compute the true truncation error of the steady-state solution to the dCME.
We use a large copy number of MEG = 200, which gives an infinitesimally small
boundary probability of 1.391×10−72. Steady-state solution obtained using thisMEG
number coincides with analytical solution and is therefore considered to be exact.With
this exact steady-state probability landscape, the true truncation error Err(N ) at smaller
MEG sizes can be computed using Eq. (14) (Fig. 3a, blue dashed line and crosses). The
corresponding boundary probabilities π

(∞)
N are computed from this exact steady-state

probability landscape (Fig. 3a, green dashed line and circles).
Consistent with the statement in the Theorem 1, we find here that the true error

Err(N ) (Fig. 3a, blue dashed line and crosses) is bounded by the computed boundary
probability π

(∞)
N (Fig. 3a, green dashed line and circles) when the size of the MEG
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A B

Fig. 3 Error quantification and comparisons for the birth–death model. a The a priori estimated error (red
solid line), the computed error (green line and circles), and the true error (blue line and crosses) of the steady-
state probability landscape. The inset shows the ratio of the true errors to the computed errors at different
sizes of theMEG, and the gray straight linemarks the ratio one. The computed errors are larger than the true
errors when the black line is below the gray straight line. b The steady-state probability landscapes of X
obtained with different truncations of net molecular number in the MEG. Note that probability distributions
end at X where truncation occurs. The probabilities in the landscapes are inflated when truncating the state
space at smaller net molecular numbers of the MEG (Color figure online)

is sufficiently large. The inset of Fig. 3a shows the ratio of the true errors to the
computed errors at different sizes of the MEG, and the gray straight line marks the
ratio one. The computed errors are larger than the true errors when the black line is
below the gray straight line (Fig. 3a, inset). In this example, the computed boundary
probability is greater than the true error when N > 79, as would be expected from
Theorem 1.

A Priori Estimated Error Bound To examine the a priori estimated upper bound for
truncation error, we follow Eqs. (22) and (23) to assign values of αi = ks and β

i+1
=

kd(i + 1) for this network. We compute the a priori upper error bound for different
truncations using Eq. (24) (Fig. 3a, red solid line). For this simple network, αi =
αi = αi and β i = βi = β

i
; therefore, the a priori estimated error is exactly the same

as the analytic solution for the steady-state distribution for this simple birth–death
network, and it coincides with the computed error (Fig. 3a red and green lines). The
true error, computed error, and the a priori error bound all decrease monotonically
with increasing MEG size N (Fig. 3a).

Increased Probability After State Space Truncation (Theorem 2) According to The-
orem 2, the probability of a state increases upon state space truncation. We compare
the steady-state probability landscapes of X computed using truncations at differ-
ent sizes ranging from 40 to 50 with the exact steady-state landscape (Fig. 3b, red
line). Our results indeed show clearly that all probabilities increase as more states
are truncated (Fig. 3b). The probability landscape computed using N = 50 (Fig. 3b,
yellow line) or larger is very close to the exact landscape using N = 200 (Fig. 3b,
red line). However, the probability landscapes computed using smaller N deviate sig-
nificantly from the exact probability landscape. The smaller the MEG size, the more
significant the deviation is. These results are fully consistent with the statements of
Theorem 2.
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3.2 Single Gene Expression Model

Transcription and translation are fundamental processes in gene regulatory networks
that often involve significant stochasticity. The abundance of mRNA and expressed
proteins of a gene is usually 2–4 orders of magnitude apart in a cell. There are only a
few or dozens of copies of mRNA molecules in each cell for one gene, but the copy
number of proteins can range from 100s to 10,000s (Taniguchi et al. 2010). Here we
study a model of the fundamental process of single gene transcription and translation
using the following reaction scheme and rate constants:

R1 : Gene + ∅ ke→ Gene + mRNA, ke = 1.0/s,

R2 : mRNA + ∅ kt→ mRNA + Protein, kt = 1.0/s,

R3 : mRNA
km→ ∅, km = 0.1/s,

R4 : Protein
kd→ ∅, kd = 0.01/s. (28)

Molecular Equivalent Group (MEG) This single gene expression model is an open
network. We can participate this model into two MEG, with MEG1 consisting of
speciesmRNAandMEG2 consisting of protein.Note that protein synthesis depends on
the copy number mRNA, despite the fact that mRNA and protein are two independent
molecular species that cannot be transformed into each other.

Asymptotic Convergence of Errors (Theorem 1) To numerically demonstrate The-
orem 1, we compute the true error of the steady-state solution to the dCME using
sufficiently large sizes of MEG1 = 64 and MEG2 = 2580, which gives negligible
truncation error, with infinitesimally small boundary probabilities 3.58 × 10−30 for
MEG1 and 1.15× 10−32 for MEG2. Solution obtained using these MEGs is therefore
considered to be exact. With this exact steady-state probability landscape, the true
truncation error Err(N ) at smaller sizes of MEG1 and MEG2 can be computed using
Eq. (14) (Fig. 4a, b, blue dashed lines and crosses). The corresponding boundary prob-
abilities π

(∞)
N or computed error are obtained from the exact steady-state probability

landscape for both MEG1 (Fig. 4a, green dashed line and circles) and MEG2 (Fig. 4b,
green dashed line and circles).

Consistent with the statement in Theorem 1, our results show that the true error
Err(N ) is bounded by the computed boundary probability π

(∞)
N in the MEG1 when

N1 ≥ 20 (Fig. 4a, blue dashed lines and crosses, green dashed lines and circles, and
the inset). In the MEG2, although the true errors are larger than computed errors even
when the MEG size is large (Fig. 4a, inset), the true error can be bounded by the
computed error when N2 ≥ 5000 by a multiplication factor of 6 (Fig. 4b, blue dashed
lines and crosses, green dashed lines and circles, and the inset). This is expected from
Theorem 1.

A Priori Estimated Error Bound To examine a priori estimated upper bounds for the
truncation errors inMEG1 andMEG2, we follow Eqs. (22) and (23) to assign values of
αi = ke and β

(i+1)
= km(i + 1) for the MEG1. Because of the dependency of protein
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A B

C D

Fig. 4 Error quantification and comparisons for the single gene expression model. a, b The a priori
estimated error (red solid lines), the computed error (green lines and circles), and the true error (blue lines
and crosses) of the steady-state probability landscapes ofmRNA and protein at different sizes of truncations.
The insets in a, b show the ratio of the true errors to the computed errors at different sizes of the MEG,
and the gray straight line marks the ratio one. The computed errors are larger than the true errors when
the black line is below the gray straight line. c The steady-state probability landscapes of protein solved
using different truncations of net molecular number in the MEG2. Note that probability distributions end
at where truncation occurs. The probabilities in the landscapes are significantly inflated when truncating
the state space at smaller net molecular numbers of the corresponding MEG. d The steady-state probability
landscapes of mRNA solved using different truncations of net molecular number in theMEG2. In this cases,
the probabilities in the landscapes are not affected by the truncation of the opposite MEG (Color figure
online)

synthesis on the mRNA copy numbers, we set αi = 64 · kt and β
i+1

= kd(i + 1)
following Eqs. (22) and (23) for the MEG2, where the factor 64 is the maximum copy
number of mRNA in the MEG1. We compute the a priori estimated upper bounds
of errors for different truncations of MEG1 and MEG2 using Eq. (24) (Fig. 4a, b,
red solid lines). The true truncation errors and the a priori estimated error bounds of
MEG1 and MEG2 all decrease monotonically with increasing MEG sizes (Fig. 4a, b).
The computed errors also monotonically decrease in both MEGs. For MEG1, the a
priori estimated error bounds coincide with the computed errors (Fig. 4a red and green
lines). For the MEG2, the a priori estimated error bounds are larger than computed
errors at all MEG sizes.

Increased Probability After State Space Truncation (Theorem 2) According to The-
orem 2, the probability landscape projected on the MEGs increase after state space
truncation. We compute the steady-state probability landscapes of protein obtained
using truncations at different sizes of the MEG, ranging from 0 to 2580 for MEG2,
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while MEG1 is fixed at 64 (Fig. 4c). The results are compared with the exact steady-
state landscape computed using MEG2 = 2600 (Fig. 4c, red line).

Our results show clearly that all probabilities in the landscapes increase when
more states are truncated at smaller MEG size (Fig. 4c). The probability landscapes
computed using larger size of the MEG (e.g., MEG2 = 1400, Fig. 4c, yellow line)
are approaching the exact landscape (Fig. 4c, red line). The probability landscapes
obtained using smaller MEG sizes deviate significantly from the exact probability
landscape. The smaller the MEG size, the more pronounced the deviation is. These
numerical results are fully consistent with Theorem 2.

Truncating Additional MEGs Does Not Decrease Probabilities (Theorem 3) We fur-
ther examineTheorem3, i.e., the probability landscape projected on oneMEG increase
with state space truncation at another MEG. We compare the projected steady-state
probability landscapes onmRNAobtainedusing truncations of different sizes ofMEG2
ranging from0 to 2580,while theMEG1 is fixed at 64 (Fig. 4d).We compare the results
with the exact steady-state landscape (Fig. 4d, red line).

Our results show that all probabilities on the landscapes of mRNA are not affected
by the truncations at the MEG2 (Fig. 4d). The probability landscapes computed using
different sizes ofMEG2 are the same (Fig. 4d). These numerical results are completely
consistent with Theorem 3, because the probabilities of mRNA are not decreased by
the truncation at the MEG of protein.

3.3 Genetic Toggle Switch

The bistable genetic toggle switch consists of two genes repressing each other through
binding of their protein dimeric products on the promoter sites of the other genes. This
genetic network has been studied extensively (Gardner et al. 2000; Kepler and Elston
2001; Kim and Wang 2007; Schultz et al. 2007). We follow references (Schultz et al.
2007; Cao and Liang 2008) and study a detailed model of the genetic toggle switch
with a more realistic control mechanism of gene regulations. Different from simpler
toggle switch models (Munsky and Khammash 2008; Deuflhard et al. 2008; Sjöberg
et al. 2009; Kazeev et al. 2014), in which gene binding and unbinding reactions are
approximated by Hill functions, here details of the gene binding and unbinding reac-
tions are modeled explicitly. The molecular species, reactions, and their rate constants
are listed below:

R1 : GeneA
k1→ GeneA + A, ksA = 40 s−1,

R2 : GeneB
k2→ GeneB + B, ksB = 20 s−1,

R3 : A
k3→ ∅, kdA = 1 s−1,

R4 : B
k4→ ∅, kdB = 1 s−1,

R5 : 2A + GeneB
k5→ b GeneB, kbA = 1 × 10−5 nM−2 s−1,

R6 : 2B + GeneA
k6→ b GeneA, kbB = 3.5 × 10−5 nM−2 s−1,

123



Accurate State Truncation for Discrete Chemical Master Equation

R7 : b GeneB
k7→ 2A + GeneB, kuA = 1 s−1,

R8 : b GeneA
k8→ 2B + GeneA, kuB = 1 s−1. (29)

Specifically, two genes GeneA and GeneB express protein products A and B, respec-
tively. Two protein monomers A or B can bind on the promoter site of GeneB or
GeneA to form protein–DNA complexes bGeneB or bGeneA and turn off the expres-
sion of GeneB or GeneA, respectively.

Molecular Equivalent Group (MEG) There are two MEGs in this network: MEG1
consists of species A and bGeneB, and MEG2 consists of B and bGeneA.

Asymptotic Convergence of Errors (Theorem 1) To numerically demonstrate The-
orem 1, we compute the true error of the steady-state solution to the dCME using
sufficiently large sizes of MEG1 = 120 and MEG2 = 80, which gives negligible
truncation error, with infinitesimally small boundary probabilities 5.275 × 10−24 for
MEG1 and 2.561 × 10−23 for MEG2. Solution obtained using these MEGs is there-
fore considered to be exact. With this exact steady-state probability landscape, the true
truncation error Err(N ) at smaller sizes of MEG1 and MEG2 can both be computed
using Eq. (14) (Fig. 5a, b, blue dashed lines and crosses). The corresponding boundary
probabilities π

(∞)
N or computed error are computed from the exact steady-state prob-

ability landscape for both MEG1 (Fig. 5a, green dashed line and circles) and MEG2
(Fig. 5b, green dashed line and circles).

Consistent with the statement in Theorem 1, our results show that the true error
Err(N ) (Fig. 5a, b, blue dashed lines and crosses) is bounded by the computed boundary
probability π

(∞)
N (Fig. 5a, B, green dashed lines and circles) when the size of theMEG

is sufficiently large. The insets in Fig. 5a, b show the ratios of the true errors to the
computed errors at different sizes of the MEG, and the gray straight line marks the
ratio one. The computed errors are larger than the true errors when the black line is
below the gray straight line (Fig. 5a, b, insets). In this example, the computed boundary
probability is greater than the true error when MEG1 >82 and MEG2 >42, as would
be expected from Theorem 1.

A Priori Estimated Error Bound To examine a priori estimated upper bounds for
the truncation errors in MEG1 and MEG2, we follow Eqs. (22) and (23) to assign
values of αi = ksA and β

(i+1)
= [(i + 1) − 2] · kdA for the MEG1, where the

subscript (i + 1) is the total copy number of species A in the system. The sub-
traction of 2 is necessary because up to two copies of A can be protected from
degradation by binding to GeneB. This corresponds to the extreme case when
GeneA is constantly turned on and GeneB is constantly turned off. Similarly, we
have αi = ksB and β

i+1
= [(i + 1) − 2] · kdB following Eqs. (22) and (23) for

the MEG2. This corresponds to the other extreme case when the GeneB is con-
stantly turned on, and GeneA is constantly turned off. We compute the a priori
estimated upper bounds of errors for different truncations of MEG1 and MEG2 using
Eq. (24) (Fig. 5a, b, red solid lines). The true truncation errors and the a priori esti-
mated error bounds of MEG1 and MEG2 all decrease monotonically with increasing
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Fig. 5 Error quantification and comparisons for the genetic toggle switchmodel. a,b: The a priori estimated
error (red solid lines), the computed error (green lines and circles), and the true error (blue lines and
crosses) of the steady-state probability landscapes of a, b at different sizes of truncations. The insets in
a, b show the ratio of the true errors to the computed errors at different sizes of the MEG, and the gray
straight line marks the ratio one. The computed errors are larger than the true errors when the black
line is below the gray straight line. c, d The steady-state probability landscapes of a, b solved using
different truncations of net molecular number in the MEG1 and MEG2, respectively. Note that probability
distributions end at where truncation occurs. The probabilities in the landscapes are significantly inflated
when truncating the state space at smaller net molecular numbers of the corresponding MEG. e, f The
steady-state probability landscapes of a, b solved using different truncations of net molecular number
in the MEG2 and MEG1, respectively. The probabilities in the landscapes are also significantly inflated
when truncating the state space at smaller net molecular numbers of the opposite MEG (Color figure
online)

MEG sizes (Fig. 5a, b). The computed errors also monotonically decrease when
the MEG sizes are larger than 40 for MEG1 and 20 for MEG2. For both MEGs,
the a priori estimated error bounds are larger than computed errors at all MEG
sizes. They are also larger than the true errors when the MEG sizes are sufficiently
large.
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Increased Probability After State Space Truncation (Theorem 2) According to The-
orem 2, the probability landscape projected on the MEGs increase after state space
truncation. We first compute the steady-state probability landscapes of A obtained
using truncations at different sizes of the MEG ranging from 0 to 119 for MEG1,
while MEG2 is fixed at 80 (Fig. 5c). The results are compared with the exact steady-
state landscape computed using MEG1 = 120 and MEG2 = 80 (Fig. 5c, red line).
We then also similarly examine the steady-state probability landscapes of B obtained
using truncations at different sizes of MEG2 from 0 to 79, while MEG1 is fixed at 120
(Fig. 5d).

Our results show clearly that all probabilities in the landscapes increase when more
states are truncated at smaller MEG sizes (Fig. 5c, d). The probability landscapes
computed using larger sizes of MEGs (e.g., MEG1 = 50, Fig. 5c, yellow line and
MEG2 = 32, Fig. 5d, yellow line) are approaching the exact landscape (Fig. 5c, d,
red line). The probability landscapes obtained using smaller MEGs deviate signif-
icantly from the exact probability landscape. The smaller the MEG size, the more
significant the deviation is. These numerical results are completely consistent with
Theorem 2.

Truncating Additional MEGs Does Not Decrease Probabilities (Theorem 3) We fur-
ther examineTheorem3, i.e., the probability landscape projected on oneMEG increase
with state space truncation at another MEG. We first compare the projected steady-
state probability landscapes on A obtained using truncations of different sizes ofMEGs
ranging from 0 to 80 for MEG2, while MEG1 is fixed at 120 (Fig. 5e) We compare
the results with the exact steady-state landscape (Fig. 5e, red line). We also similarly
examine the projected steady-state probability landscapes of B obtained using trun-
cations at different sizes of MEG1 ranging from 0 to 120, while MEG2 is fixed at 80
(Fig. 5f).

Our results clearly show that all probabilities on the landscapes of MEG1 (MEG2)
increasewhen the state space is truncated atMEG2 (MEG1) (Fig. 5e, f). The probability
landscapes computed using larger sizes of MEGs (e.g., MEG2 = 32 in Fig. 5e, yellow
line and MEG1 = 50 in Fig. 5f, yellow line) are approaching the exact landscape
using MEG1 = 120 and MEG2 = 80 (Fig. 5e, f, red line). However, the probabil-
ity landscapes using smaller MEGs significantly deviate from the exact probability
landscape. The smaller the MEG size, the more significant the deviation is. These
numerical results are completely consistent with Theorem 3.

3.4 Phage Lambda Bistable Epigenetic Switch

The bistable epigenetic switch for lysogenic maintenance and lytic induction in phage
lambda is one of the well-parameterized realistic gene regulatory system. The effi-
ciency and stability of the switch have been extensively studied (Arkin et al. 1998;
Aurell et al. 2002; Aurell and Sneppen 2002; Zhu et al. 2004a, b). Here we characterize
the truncation error to the dCME solutions of the reaction network adapted from Cao
et al. (2010). The network consists of 11 different species and 50 different reactions.
The detailed reaction schemes and rate constants are shown in Table 1.
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Table 1 Reaction scheme and rate constants in phage lambda epigenetic switch mode

Reactions Rate constants (/s)

Synthesis reactions (Arkin et al. 1998; Li et al. 1997; Hawley and McClure 1980, 1982)

∅ + (OR3 + OR2) → CI2 + (OR3 + OR2) ksCI2 = 0.0069

∅ + (OR3 + COR2) → CI2 + (OR3 + COR2) ksCI2 = 0.0069

∅ + (OR3 + ROR2) → CI2 + (OR3 + ROR2) ks1CI2 = 0.069

∅ + (OR1 + OR2) → Cro2 + (OR1 + OR2) ksCro2 = 0.0929

Degradation reactions (Shea and Ackers 1985; Arkin et al. 1998)

CI2 → ∅ kdCI2 = 0.0026

Cro2 → ∅ kdCro2 = 0.0025

Association rate of binding reactions (Kuttler and Niehren 2006)

CI2 + OR1 → ROR1 kbOR1CI2 = 0.021

CI2 + OR2 → ROR2 kbOR2CI2 = 0.021

CI2 + OR3 → ROR3 kbOR3CI2 = 0.021

Cro2 + OR1 → COR1 kbOR1Cro2 = 0.021

Cro2 + OR2 → COR2 kbOR2Cro2 = 0.021

Cro2 + OR3 → COR3 kbOR3Cro2 = 0.021

Dissociation reactions—CI2 dissociation from OR1

ROR1 + (OR2) → CI2 + OR1 + (OR2) 0.00898

ROR1 + (ROR2 + OR3) → CI2 + OR1 + (ROR2 + OR3) 0.00011

ROR1 + (ROR2 + ROR3) → CI2 + OR1 + (ROR2 + ROR3) 0.01242

ROR1 + (ROR2 + COR3) → CI2 + OR1 + (ROR2 + COR3) 0.00011

ROR1 + (COR2) → CI2 + OR1 + (COR2) 0.00898

Dissociation reactions—CI2 dissociation from OR2

ROR2 + (OR1 + OR3) → CI2 + OR2 + (OR1 + OR3) 0.2297

ROR2 + (RO R1 + OR3) → C I2 + OR2 + (ROR1 + OR3) 0.0029

ROR2 + (OR1 + ROR3) → CI2 + OR2 + (OR1 + ROR3) 0.0021

ROR2 + (ROR1 + ROR3) → CI2 + OR2 + (ROR1 + ROR3) 0.0029

ROR2 + (COR1 + OR3) → CI2 + OR2 + (COR1 + OR3) 0.2297

ROR2 + (OR1 + COR3) → CI2 + OR2 + (OR1 + COR3) 0.2297

ROR2 + (COR1 + COR3) → CI2 + OR2 + (COR1 + COR3) 0.2297

ROR2 + (ROR1 + COR3) → CI2 + OR2 + (ROR1 + COR3) 0.0029

ROR2 + (COR1 + ROR3) → CI2 + OR2 + (COR1 + ROR3) 0.0021

Dissociation reactions—CI dissociation from OR3

ROR3 + (OR2) → CI2 + OR3 + (OR2) 1.13

ROR3 + (ROR2 + OR1) → CI2 + OR3 + (ROR2 + OR1) 0.0106

ROR3 + (ROR2 + ROR1) → CI2 + OR3 + (ROR2 + ROR1) 0.0106

ROR3 + (ROR2 + COR1) → CI2 + OR3 + (ROR2 + COR1) 0.0106

ROR3 + (COR2) → CI2 + OR3 + (COR2) 1.13
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Table 1 continued

Reactions Rate constants

Dissociation reactions—Cro dissociation from OR1

COR1 + (OR2) → Cro2 + OR1 + (OR2) 0.0202

COR1 + (ROR2) → Cro2 + OR1 + (ROR2) 0.0202

COR1 + (COR2 + OR3) → Cro2 + OR1 + (COR2 + OR3) 0.0040

COR1 + (COR2 + ROR3) → Cro2 + OR1 + (COR2 + ROR3) 0.0040

COR1 + (COR2 + COR3) → Cro2 + OR1 + (COR2 + COR3) 0.0040

Dissociation reactions—Cro dissociation from OR2

COR2 + (OR1 + OR3) → Cro2 + OR2 + (OR1 + OR3) 0.1413

COR2 + (ROR1 + OR3) → Cro2 + OR2 + (ROR1 + OR3) 0.1413

COR2 + (OR1 + ROR3) → Cro2 + OR2 + (OR1 + ROR3) 0.1413

COR2 + (ROR1 + ROR3) → Cro2 + OR2 + (ROR1 + ROR3) 0.1413

COR2 + (COR1 + OR3) → Cro2 + OR2 + (COR1 + OR3) 0.0279

COR2 + (OR1 + COR3) → Cro2 + OR2 + (OR1 + COR3) 0.053

COR2 + (COR1 + COR3) → Cro2 + OR2 + (COR1 + COR3) 0.0328

COR2 + (ROR1 + COR3) → Cro2 + OR2 + (ROR1 + COR3) 0.053

COR2 + (COR1 + ROR3) → Cro2 + OR2 + (COR1 + ROR3) 0.0279

Dissociation reactions—Cro dissociation from OR3

COR3 + (OR2) → Cro2 + OR3 + (OR2) 0.0022

COR3 + (ROR2) → Cro2 + OR3 + (ROR2) 0.0022

COR3 + (COR2 + OR1) → Cro2 + OR3 + (COR2 + OR1) 0.0008

COR3 + (COR2 + ROR1) → Cro2 + OR3 + (COR2 + ROR1) 0.0008

COR3 + (COR2 + COR1) → Cro2 + OR3 + (COR2 + COR1) 0.003

CORn denotes Cro2-bound operator site ORn, RORn denotes CI2-bound ORn, where n can be 1, 2, and 3.
Note that molecular species enclosed in parentheses are those whose presence is required for the specific
reactions to occur, but their copy numbers do not influence the transition rates between microstates

Molecular Equivalent Group (MEG) The network can be partitioned into twoMEGs.
The MEG1 consists of the dimer of CI protein CI2 and all complexes of operator
sites bounded with CI2. The MEG2 consists of the dimer of Cro protein Cro2 and all
complexes of operator sites bounded with Cro2.

Asymptotic Convergence of Errors (Theorem 1) To numerically demonstrate The-
orem 1, we compute the true error of the steady-state solution to the dCME using
sufficiently large sizes of MEG1 = 80 and MEG2 = 38, which gives negligible
truncation error, with infinitesimally small boundary probabilities 6.96 × 10−31 for
MEG1 and 3.95× 10−32 for MEG2. Solution obtained using these MEGs is therefore
considered to be exact. With this exact steady-state probability landscape, the true
truncation error Err(N ) at smaller sizes of MEG1 and MEG2 can both be computed
using Eq. (14) (Fig. 6a, b, blue dashed lines and crosses). The corresponding boundary
probabilities π

(∞)
N or computed error is computed from the exact steady-state prob-

ability landscape for both MEG1 (Fig. 6a, green dashed line and circles) and MEG2
(Fig. 6b, green dashed line and circles).
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Fig. 6 Error quantification and comparisons for the phage lambda bistable epigenetic switch model. a, b
The a priori estimated error (red solid lines), the computed error (green lines and circles), and the true error
(blue lines and crosses) of the steady-state probability landscapes of CI and Cro dimers at different sizes
of truncations. The insets in a, b show the ratio of the true errors to the computed errors at different sizes
of the MEG, and the gray straight line marks the ratio one. The computed errors are larger than the true
errors when the black line is below the gray straight line. c, d The steady-state probability landscapes of
CI and Cro dimers solved using different truncations of net molecular number in the MEG1 and MEG2,
respectively. Note that probability distributions end at where truncation occurs. The probabilities in the
landscapes are significantly inflated when truncating the state space at smaller net molecular numbers of
the corresponding MEG. e, f The steady-state probability landscapes of CI and Cro dimers solved using
different truncations of net molecular number in theMEG2 andMEG1, respectively. The probabilities in the
landscapes are also significantly inflated when truncating the state space at smaller net molecular numbers
of the opposite MEG (Color figure online)

Consistent with the statement in Theorem 1, our results show that the true error
Err(N ) (Fig. 6a, b, blue dashed lines and crosses) is bounded by the computed boundary
probability π

(∞)
N (Fig. 6a, b, green dashed lines and circles) when the size of the MEG

is sufficiently large. The insets in Fig. 6a, b show the ratios of the true errors to the
computed errors at different sizes of the MEG, and the gray straight lines mark the
ratio one. The computed errors are larger than the true errors when the black line is
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below the gray straight line (Fig. 6a, b, insets). In this example, the computed boundary
probability is greater than the true error when MEG1 ≥24 and MEG2 ≥3, as would
be expected from Theorem 1.

A Priori Estimated Error Bound To examine a priori estimated upper bounds for the
truncation errors in MEG1 and MEG2, we follow Eqs. (22) and (23) to assign values
of αi = ks1CI2 and β

(i+1)
= [(i + 1) − 3] · kdCI2 for the MEG1, where the subscript

(i + 1) is the total copy number of species CI2 in the system. The subtraction of 3
is necessary because up to three copies of CI2 can be protected from degradation by
binding to operator sites OR1, OR2, and OR3. Similarly, we have αi = ksCro2 and
β

i+1
= [(i + 1)− 3] · kdCro2 following Eqs. (22) and (23) for the MEG2. We compute

the a priori estimated upper bounds of errors for different truncations of MEG1 and
MEG2 using Eq. (24) (Fig. 6a, b, red solid lines). The true truncation errors and the
a priori estimated error bounds of MEG1 and MEG2 all decrease monotonically with
increasing MEG sizes (Fig. 6a, b). The computed errors also monotonically decrease
when the MEG sizes are larger than 13 for MEG1 and 4 for MEG2. For both MEGs,
the a priori estimated error bounds are larger than computed errors at all MEG sizes.
They are also larger than the true errors when the MEG sizes are sufficiently large.

Increased Probability After State Space Truncation (Theorem 2) According to The-
orem 2, the probability landscape projected on the MEGs increase after state space
truncation. We first compute the steady-state probability landscapes of CI2 obtained
by truncating MEG1 at different sizes ranging from 0 to 80, while MEG2 is fixed at 38
(Fig. 6c). The results are compared with the exact steady-state landscape computed
using MEG1 = 80 and MEG2 = 38 (Fig. 6c, red line). We then also similarly exam-
ine the steady-state probability landscapes of Cro2 obtained by truncating at different
sizes of MEG2 from 0 to 38, while MEG1 is fixed at 80 (Fig. 6d).

Our results show clearly that all probabilities in the landscapes increase when more
states are truncated at smaller MEG sizes (Fig. 6c, d). The probability landscapes
computed using larger sizes of MEGs (e.g., MEG1 = 30, Fig. 6c, yellow line and
MEG2 = 8, Fig. 6d, yellow line) are approaching the exact landscape (Fig. 6c, d, red
line). The probability landscapes obtained using smaller MEGs deviate significantly
from the exact probability landscape. The smaller the MEG size, the more significant
the deviation is. These numerical results are completely consistent with Theorem 2.

Truncating Additional MEGs Does Not Decrease probabilities (Theorem 3) We fur-
ther examineTheorem3, i.e., the probability landscape projected on oneMEG increase
with state space truncation at another MEG. We first compare the projected steady-
state probability landscapes on CI2 obtained by truncating MEG2 at different sizes
ranging from 0 to 38, while MEG1 is fixed at 80 (Fig. 6e). We compare the results
with the exact steady-state landscape (Fig. 6e, red line). We also similarly examine
the projected steady-state probability landscapes of Cro2 obtained by truncating at
different sizes of MEG1 ranging from 0 to 80, while MEG2 is fixed at 38 (Fig. 6f).

Our results show that all probabilities on the landscapes of MEG1 (MEG2) increase
when the state space is truncated at MEG2 (MEG1) (Fig. 6e, f). The probability land-

123



Y. Cao et al.

scapes computed using larger sizes of MEGs (e.g., MEG2 = 8 in Fig. 6e, yellow
line and MEG1 = 30 in Fig. 6f, yellow line) are approaching the exact landscape
using MEG1 = 80 and MEG2 = 38 (Fig. 6e, f, red line). However, the probabil-
ity landscapes using smaller MEGs significantly deviate from the exact probability
landscape. The smaller the MEG size, the more significant the deviation is. These
numerical results are completely consistent with Theorem 3.

4 Discussion and Conclusions

Solving the dCME is of fundamental importance for studying stochasticity in reaction
networks. The main challenges are the discrete nature of the states and the difficulty
in enumerating these states, as the size of the state space expands rapidly when the
network becomes more complex. In this study, we describe a novel approach for state
space truncation. Instead of taking a high-dimensional hypercube as the truncated state
space, we introduce the concept of MEG and truncate the state space into the same
or lower-dimensional simplexes, with the same effective copy number of molecules
in each dimension by taking advantage of the principle of mass conservation. For
complex networks, the reduction in the size of the state space can be dramatic.

Our study addresses a key issue in obtaining direct solution to the dCME. As state
space truncation is inevitable, it is important to quantify the errors of such trunca-
tions, so the accuracy of the dCME solutions can be assessed and managed. We have
developed a general theoretical framework for quantifying the errors of state space
truncation on the steady-state probability landscape. By decomposing the reaction net-
work into MEGs, the error contribution from each individual MEG is quantified. This
critically important task is made possible through analyzing the states on the reflect-
ing boundary and their associated steady-state probabilities. The boundary probability
analysis has been based on the construction of an aggregated continuous-timeMarkov
process by factoring the state space according to the total numbers ofmolecules in each
MEG. With explicit formulas for calculating conservative error bounds for the steady
state, one can easily calculate the a priori error bounds for any given size of a MEG.
Furthermore, our theory allows the determination of the minimally required sizes of
MEGs if a predefined error tolerance is to be satisfied. As shown in the examples, to
determine the appropriate MEG sizes a priori, one can first calculate the estimated
errors at different sizes of each MEG and choose the minimal MEG sizes that satisfies
the overall error tolerance. This eliminates the need ofmultiple iterations of costly trial
computations to solve the dCME for determining the appropriate total copy numbers
necessary to ensure small truncation errors. This is advantageous over conventional
numerical techniques, where errors are typically assessed through post-processing of
trial solutions.

In complex networks, state truncation in one molecular group may affect the errors
of othermolecular groups. By partitioning the network into separateMEGs, themutual
influence of the effects of state truncations in different groups can be reduced. In such
cases, we have proved that the asymptotic errors in any truncated MEG will not be
underestimated by the state truncations in other MEGs. Based on this conclusion, one
can increase the size of each particular MEG in order to achieve a small truncation
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error of that MEG. When the truncation error for every MEG is below the prescribed
threshold of error tolerance, the total truncation error of the whole state space will be
guaranteed to be bounded by the sum of individual truncation errors in each MEG.

While our method ensures that there is no mass exchange between different MEGs
and often couplings between MEGs are weak, it does not rule out the existence of
possible strong couplings among MEGs. In the example of the single gene expression
model, there is a strong coupling between mass-isolated mRNAMEG and the protein
MEG. In this case, protein synthesis strongly depends on the amount of available
mRNA. As a result, the protein probability distribution can be heavily influenced by
the choices of the mRNA MEG size, and its peak is shifted when the size of mRNA
MEG is near exhaustion (data not shown). This issue rapidly disappears when MEG
sizes become sufficiently large to ensure that the truncation error to be smaller than
the specified error tolerance (Fig. 4).

Our method differs from the FSP method (Munsky and Khammash 2006, 2007),
which employs an absorbing boundary state to calculate the truncation error. Transi-
tions from any states in the available finite state space to any outside state are sent to
the absorbing state, and the reactions are made irreversible. The truncation error in the
FSP method is taken as the probability mass on the absorbing boundary state. It has
two components: one from the lost probability mass due to the state truncation and the
other from the trapped probability mass due to the absorbing nature of the boundary
state. As time proceeds, the trapped probability mass on the absorbing state will grow
and dominate. At the steady state, all probability mass will be trapped in the absorbing
state, which can no longer reflect the truncated probability mass. Therefore, the FSP
method cannot be used to study the long-term as well as the steady-state behavior of
a stochastic network.

In contrast, ourmethod employs a reflecting boundary and can characterize the trun-
cation errors in the steady state. All transitions between boundary and non-boundary
states are retained after state space truncation, and the reversible nature of transitions
unaltered. The reflecting boundaries allow analysis of the steady-state truncation error
of each MEG. Our method can be used to study the steady-state probability land-
scape. Furthermore, our method also allows direct computation of the distribution of
first passage time; an important problem in studying rare events in biological networks
currently relies heavily on sampling techniques.

We have also provided computational results of four stochastic networks, namely
the birth–death process consisting of one MEG, the single gene expression model,
the genetic toggle switch model, and the phage lambda epigenetic switch model, each
consisting of twoMEGs, respectively. By comparing true errors, computed errors, and
a priori estimated errors at different truncation sizes, we have numerically verified the
theorems presented in this study. First, the true error for truncating a MEG is bounded
by the total probability mass on the reflecting boundary of theMEG (Theorem 1). Sec-
ond, the projected probability on one MEG increases upon the state space truncation
at this MEG (Theorem 2). Third, the projected probability on one MEG also increases
when the state space is truncated at another MEG (Theorem 3). Furthermore, we show
that the a priori estimated error bound is effective when the network is truncated at a
sufficiently large size of MEG.
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Recent studies based on tensor representation of the transition rate matrices show
that the storage requirement of solving CME can be significantly reduced and com-
putational time improved (Kazeev et al. 2014; Liao et al. 2015). However, accurate
tensor representation and tensor-based approximation strongly depend on the separa-
bility of system states, that is, whether the system can be decomposed into a number
of relatively independent smaller sub-systems (Verstraete and Cirac 2006; Kazeev
et al. 2014). While complete separability can be achieved in some cases, e.g., the one-
dimensional quantum spin system (Verstraete and Cirac 2006), errors are generally
unknown for biological networks that are not fully separable.

The tensor method of Liao et al. (2015) can reduce the state space dramatically for
a number of networks. For example, the size of the state space of the Fokker–Planck
equation of the Schlögl model is reduced from 2.74×1011 to 4.01×103+2.07×105,
with a reduction factor of 106. It will be interesting to further assess the reduction factor
if the full discrete CMEs instead of the Fokker–Planck equations of these network
models are solved so a direct comparison can be carried out.

Our finite buffer approach compares favorably with the tensor train method
of Kazeev et al. (2014) for the network of enzymatic futile cycles (Cao and Liang
2013). This network is a closed system, and technically no finite buffer is required
when the enumerated states can fit into the computer memory; therefore, analysis of
truncation error would be unnecessary. Regardless, our approach of state enumera-
tion leads to a state space of only 1071 microstates, a reflection of the O(n!) order
of reduction. In contrast, the tensor train method is based on a state space of a size
of 222 = 4.19 × 106. Using our finite buffer method, both the time-evolving and
the steady-state probability landscapes can be computed efficiently in <10s (data not
shown), but the tensor trainmethod requires 1.52×104 s for the time evolution of t = 1
to be computed as reported in Kazeev et al. (2014). For the model of toggle switch,
computing the time evolution of the probability landscape up to t = 30 s requires
14,541s or 4h of wall clock time using the tensor train method (Kazeev et al. 2014).
Our method completes the computation of the steady-state probability landscape in
ca. 3300s or 55min of wall clock time.

We further note that our work complements tensor-based methods (Kazeev et al.
2014; Liao et al. 2015). Tensor-based methods directly reduce the storage of the
transition rate matrices (Kazeev et al. 2014), without altering the hypercubic nature
of the underlying state space. In contrast, our method first reduces the state space by a
factor of O(n!), leading to a dramatically reduced transition rate matrix. It is possible
that there exist alternative approaches to construct tensors of the transition rate matrix
without assuming that the truncated state space is a hypercube as is the case in Kazeev
et al. (2014). Whether our approach can be useful for further reduction in storage and
computational speedup is a possible direction for future exploration.

Overall, we have introduced an efficient method for state space truncation and have
developed theory to quantify the errors of state space truncations. Results presented
here provide a general framework for high-precision numerical solutions to a dCME.
It is envisioned that the approach of direct solution of a dCME can be broadly applied
to many stochastic reaction networks, such as those found in systems biology and in
synthetic biology.
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Appendix: Proof of Lemma 1

Proof By sorting the state space according to the partition Ω̃(∞) and reconstructing the

transition ratematrix Ã in Eq. (6), the dCMEcan be rewritten as d p̃
(∞)

(t)
dt

= Ã p̃(∞)(t),

where p̃(∞) is the probability distribution on the partitioned state space.We sum up the
master equations over all microstates in each groupGi and obtain a separate aggregated
equation for each group. As the reordered matrix Ã is a block tridiagonal matrix, the
summed discrete chemical master equation is reduced to:

dp(∞)(G0, t)

dt
= d

∑
x∈G0

p(x, t)

dt
=
(
1T A0,0

)
p̃(∞)(G0, t) +

(
1T A0,1

)
p̃(∞)(G1, t),

dp(∞)(Gi , t)

dt
= d

∑
x∈Gi

p(x, t)

dt
=
(
1T Ai,i−1

)
p̃(∞)(Gi−1, t)

+
(
1T Ai,i

)
p̃(∞)(Gi , t) +

(
1T Ai,i+1

)
p̃(∞)(Gi+1, t), for i = 1, . . . , ∞. (30)

The overall probability change of each group Gi depends on the probability vector
p̃(∞)(Gi , t) itself, as well as the probability vector p̃(∞)(Gi−1, t) and the probability
vector p̃(∞)(Gi+1, t) of the immediate neighboring groups. It also depends on the rates
of synthesis and degradation reactions in elements of Ai,i−1 and Ai,i+1, respectively,
as well as rates of coupling reactions in Ai,i . From the definition of transition rate
matrix given in Eq. (3), we have:

1T A0,0 = −1T A1,0,

1T Ai−1,i + 1T Ai,i = −1T Ai+1,i , for i = 1, . . . ,∞. (31)

At the steady state when all dp(∞)(Gi )

dt
= 0, we combine line 1 of Eq. (30) and line

1 of Eq. (1), and obtain:

(
1T A1,0

)
π̃ (∞)(G0) =

(
1T A0,1

)
π̃ (∞)(G1).

From line 2 of Eq. (30) at steady state and after incorporating line 1 of Eq. (1),
we have: (1T A1,2)π̃

(∞)(G2) = (1T A0,0)π̃
(∞)(G0) − (1T A1,1)π̃

(∞)(G1). After fur-
ther incorporating line 1 of Eq. (30) at steady state, we have (1T A1,2)π̃

(∞)(G2) =
−(1T A0,1)π̃

(∞)(G1) − (1T A1,1)π̃
(∞)(G1). Incorporating line 2 of Eq. (1), we have:

(
1T A2,1

)
π̃ (∞)(G1) =

(
1T A1,2

)
π̃ (∞)(G2).
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Assume (1T Ai, i−1)π̃
(∞)(Gi−1) = (1T Ai−1, i )π̃

(∞)(Gi ), we have from the i th line
of Eq. (30) at the steady state

(
1T Ai,i+1

)
π̃ (∞)(Gi+1) = −

(
1T Ai,i−1

)
π̃ (∞)(Gi−1) −

(
1T Ai,i

)
π̃ (∞)(Gi )

= −
(
1T Ai−1,i

)
π̃ (∞)(Gi ) −

(
1T Ai,i

)
π̃ (∞)(Gi ). (32)

With the i th line of Eq. (1), we further have:

(
1T Ai,i+1

)
π̃ (∞)(Gi+1) =

(
1T Ai+1,i

)
π̃ (∞)(Gi ).

Overall, we have:

(
1T A1,0

)
π̃ (∞)(G0) =

(
1T A0,1

)
π̃ (∞)(G1),

(
1T Ai+1,i

)
π̃ (∞)(Gi ) =

(
1T Ai,i+1

)
π̃ (∞)(Gi+1), for i = 1, . . . ,∞. (33)

As both sides are constants, we can find αi and βi+1 such that:

(
1T Ai+1,i

)
π̃ (∞)(Gi ) = 1T αi π̃

(∞)(Gi ) = αi1
T π̃ (∞)(Gi ),

(
1T Ai,i+1

)
π̃ (∞)(Gi+1) = 1T βi+1π̃

(∞)(Gi+1) = βi+11
T π̃ (∞)(Gi+1), (34)

for all i = 0, 1, . . ., where i is the total copy number of theMEG.We obviously have:

αi =
(
1T Ai+1,i

)
· π̃ (∞)(Gi )

1T π̃ (∞)(Gi )
and βi+1 =

(
1T Ai,i+1

)
· π̃ (∞)(Gi+1)

1T π̃ (∞)(Gi+1)
,

where αi is the sum of column sums of sub-matrix Ai+1,i weighted by the steady-state
probability distribution π̃ (∞) on group Gi , βi+1 is the sum of column summation of
sub-matrix Ai,i+1 weighted by the steady-state probability distribution on group Gi+1.

As 1T π̃ (∞)(Gi ) is the total steady-state probability mass over states in group Gi , we
substitute Eq. (1) back into Eq. (1) and obtain the following relationship of steady-state
distribution on the partitions of Ω̃∞:

α01
T π̃ (∞)(G0) = β11

T π̃ (∞)(G1),
αi1

T π̃ (∞)(Gi ) = βi+11
T π̃ (∞)(Gi+1), for i = 1, . . . ,∞. (35)

The steady-state solution to Eq. (1) is equivalent to the steady-state solution of a
dCME with the transition rate matrix B defined as in Eq. (9).
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Proof of Lemma 2

Proof If limN→∞ supi>N
α

(∞)
i

β
(∞)
i+1

≥ 1 held, then there would be an infinite number of

terms
α

(∞)
i

β
(∞)
i+1

> 1. There should exist an integer N ′ such that for all i > N ′, we have

β
(∞)
i+1 ≤ α

(∞)
i . According to Eq. (1), we would have π̃

(∞)
i+1 ≥ π̃

(∞)
i in the steady state

for all i > N ′. This contradicts with the assumption of a finite system, as the total
probabilitymass on boundary states increasesmonotonically as the netmolecular copy
number of the network increases after N ′. This makes the overall system a pure-birth
process. Therefore, for a finite biological system, we have Eq. (15).

Proof of Theorem 1

Proof From Eq. (13), we can first derive an explicit expression of the true error Err(N )

using the aggregated synthesis and degradation rates α
(∞)
k and β

(∞)
k+1 given in Eq. (8):

Err(N ) = 1 −
∑

x∈Ω(N )

π(∞)(x) = 1 −
N∑

i=0

1T π̃ (∞)(Gi )

= 1 − π̃
(∞)
0

⎛

⎝1 +
N∑

j=1

j−1∏

k=0

α
(∞)
k

β
(∞)
k+1

⎞

⎠

= 1 −
1 +∑N

j=1
∏ j−1

k=0
α

(∞)
k

β
(∞)
k+1

1 +∑∞
j=1
∏ j−1

k=0
α

(∞)
k

β
(∞)
k+1

=
∑∞

j=N+1
∏ j−1

k=0
α

(∞)
k

β
(∞)
k+1

1 +∑∞
j=1
∏ j−1

k=0
α

(∞)
k

β
(∞)
k+1

.

(36)

From Eqs. (36), (13), and Lemma 2, we have:

Err(N )

π̃
(∞)
N

=
∑∞

j=N+1
∏ j−1

k=0
α

(∞)
k

β
(∞)
k+1

∏N−1
k=0

α
(∞)
k

β
(∞)
k+1

=

(
∏N−1

k=0
α

(∞)
k

β
(∞)
k+1

)(
∑∞

j=N+1
∏ j−1

k=N
α

(∞)
k

β
(∞)
k+1

)

∏N−1
k=0

α
(∞)
k

β
(∞)
k+1

=
∞∑

j=N+1

j−1∏

k=N

α
(∞)
k

β
(∞)
k+1

≤
∞∑

j=N+1

[

sup
k≥N

{
α

(∞)
k

β
(∞)
k+1

}] j−N

=
∞∑

j=1

[

sup
k≥N

{
α

(∞)
k

β
(∞)
k+1

}] j

.

(37)

When N is sufficiently large, supk≥N

{
α

(∞)
k

β
(∞)
k+1

}

< 1 from Lemma 2, the terms in the

infinite series
∑∞

j=1

[

supk≥N

{
α

(∞)
k

β
(∞)
k+1

}] j

then forms a converging geometric series.

Therefore, we have
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∞∑

j=1

[

sup
k≥N

{
α

(∞)
k

β
(∞)
k+1

}] j

=
supk≥N

{
α

(∞)
k

β
(∞)
k+1

}

1 − supk≥N

{
α

(∞)
k

β
(∞)
k+1

} ,

and the following inequality holds:

lim
N→∞

Err(N )

π̄
(∞)
N

≤ lim
N→∞

supk≥N

{
α

(∞)
k

β
(∞)
k+1

}

1 − supk≥N

{
α

(∞)
k

β
(∞)
k+1

} .

Let M ∈ {N , . . . ,∞} be the integer such that
α

(∞)
M

β
(∞)
M+1

= supk≥N

{
α

(∞)
k

β
(∞)
k+1

}

, we have

the following inequality equivalent to Inequality (16):

lim
N→∞

Err(N )

π̄
(∞)
N

≤ lim
N→∞

α
(∞)
M

β
(∞)
M+1

1 − α
(∞)
M

β
(∞)
M+1

.

Proof of Theorem 2

Proof We first consider two truncated state spaces Ω̃(N ) and Ω̃(N+1). Following
Eq. (30), two finite sets of the block chemical master equation can be constructed
for these two state spaces. The first set containing N equations is built on the state
space Ω̃(N ).

dp(N )(G0, t)

dt
=
(
1T A0,0

)
p̃(N )(G0, t) +

(
1T A0,1

)
p̃(N )(G1, t),

dp(N )(Gi , t)

dt
=
(
1T Ai,i−1

)
p̃(N )(Gi−1, t) +

(
1T Ai,i

)
p̃(N )(Gi , t)

+
(
1T Ai,i+1

)
p̃(N )(Gi+1, t), for i = 1, . . . , N − 1,

dp(N )(GN , t)

dt
=
(
1T AN ,N−1

)
p̃(N )(GN−1, t) +

(
1T AN ,N

)
p̃(N )(GN , t). (38)

The second set is built on the state space Ω̃(N+1) containing N + 1 equations.

dp(N+1)(G0, t)

dt
=
(
1T A0,0

)
p̃(N+1)(G0, t) +

(
1T A0,1

)
p̃(N+1)(G1, t),

dp(N+1)(Gi , t)

dt
=
(
1T Ai,i−1

)
p̃(N+1)(Gi−1, t) +

(
1T Ai,i

)
p̃(N+1)(Gi , t)

+
(
1T Ai,i+1

)
p̃(N+1)(Gi+1, t), for i = 1, . . . , N − 1,
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dp(N+1)(GN , t)

dt
=
(
1T AN ,N−1

)
p̃(N+1)(GN−1, t) +

(
1T AN ,N

)
p̃(N+1)(GN , t)

+
(
1T AN ,N+1

)
p̃(N+1)(GN+1, t),

dp(N+1)(GN+1, t)

dt
=
(
1T AN+1,N

)
p̃(N+1)(GN , t)

+
(
1T AN+1,N+1

)
p̃(N+1)(GN+1, t). (39)

At steady state, the left-hand side of the equations are zeros. For the first N equations,
the corresponding blockmatrices are the same for both state spaces Ω̃(N ) and Ω̃(N+1).
We can then subtract the right-hand side of Eq. (39) from Eq. (1) and obtain the
following steady-state equations:

1T A0,0�π0 + 1T A0,1�π1 = 0,

1T Ai,i−1�π i−1 + 1T Ai,i�π i + 1Ai,i+1�π i+1 = 0, for i = 1, . . . , N − 1,

(40)

where �π i = π
(N )
i − π

(N+1)
i is the steady-state probability difference between the

state group Gi in the dCME on Ω̃(N ) and Ω̃(N+1). However, the block sub-matrix
AN ,N of the boundary group GN is different between the two state spaces. From the

construction of the aggregated dCME matrix Ã, columns of the full matrices Ã
(N+1)

over Ω̃(N+1) and Ã
N
over Ω̃ N all sum to 0 (see Eq. 1). We use A(N )

i, j to denote the

block sub-matrix of the group GN for the state space Ω̃(N ) and use A(N+1)
i, j to denote

the corresponding block sub-matrix for the state space Ω̃(N+1). From the N th line of
the truncated version of Eq. (1), we have 1T A(N+1)

N−1,N + 1T A(N+1)
N ,N + 1T A(N+1)

N+1,N = 0

for Ω̃(N+1) and 1T A(N )
N−1,N +1T A(N )

N ,N = 0 for Ω̃(N ). Since A(N )
N−1,N = A(N+1)

N−1,N , we
have the following property

1T A(N+1)
N ,N = 1T A(N )

N ,N − 1T A(N+1)
N+1,N , (41)

We also have

1T A(N+1)
N+1,N+1 = −1T A(N+1)

N ,N+1. (42)

From Eq. (1), we have for the steady-state probability of the state group GN over
the state space Ω̃(N ) as:

1T A(N )
N ,N−1π

(N )
N−1 + 1T A(N )

N ,N π
(N )
N = 0, (43)

FromEq. (39), we have for the steady-state probability of the state group GN and GN+1
over the state space Ω̃(N+1) as:

1T A(N+1)
N ,N−1π

(N+1)
N−1 + 1T A(N+1)

N ,N π
(N+1)
N + 1T A(N+1)

N ,N+1π
(N+1)
N+1 = 0, (44)
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and

1T A(N+1)
N+1,N π

(N+1)
N + 1T A(N+1)

N+1,N+1π
(N+1)
N+1 = 0, (45)

respectively.
As A(N+1)

N ,N−1 = A(N )
N ,N−1, we subtract Eq. (44) from Eq. (43), and obtain:

1T AN ,N−1�π N−1 + 1T A(N )
N ,N π

(N )
N − 1T A(N+1)

N ,N π
(N+1)
N − 1T A(N+1)

N ,N+1π
(N+1)
N+1 = 0.

It can be rewritten by applying the matrix property of Eq. (41) as:

1T AN ,N−1�π N−1+1T A(N )
N ,N �π N +1T A(N+1)

N+1,N π
(N+1)
N −1T A(N+1)

N ,N+1π
(N+1)
N+1 =0.

By using the matrix property in Eq. (42), we can further rewrite it as:

1T AN ,N−1�π N−1 + 1T A(N )
N ,N �π N + 1T A(N+1)

N+1,N π
(N+1)
N

+1T A(N+1)
N+1,N+1π

(N+1)
N+1 = 0.

FromEq. (45), the last two terms sum to 0. Therefore, we obtain the (N +1)st equation
of the steady-state probability difference as:

1T AN ,N−1�π N−1 + 1T A(N )
N ,N �π N = 0.

Taken together, we have the set of equations for steady-state probability differences
for all N + 1 blocks as:

1T A0,0�π0 + 1T A0,1�π1 = 0,

1T Ai,i−1�π i−1 + 1T Ai,i�π i + 1T Ai,i+1�π i+1 = 0, for i = 1, . . . , N − 1,

1T AN ,N−1�π N−1 + 1T AN ,N �π N = 0, (46)

where all block sub-matrices are identical between those over the state spaces Ω̃(N )

and Ω̃(N+1). We therefore obtain the set of equations of differences in steady-state
probability equivalent to Eq. (1):

1T Ai,i−1�π i−1 = 1T Ai−1,i�π i , for i = 1, . . . , N , (47)

which produces the same steady-state solution as that of Eq. (1) after scaling by a
constant. As probability vector solution to Eq. (1) has nonnegative elements, this
equivalence implies that all elements in each �π i have the same sign. As the total
steady-state probability mass in both state spaces sum up to 1,

N∑

i=1

π̃
(N )
i =

N+1∑

i=1

π̃
(N+1)
i = 1,
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we therefore know that the total probability differences is nonnegative:

N∑

i=1

�π̃i =
N∑

i=1

π̃
(N )
i −

N∑

i=1

π̃
(N+1)
i = 1 −

(
1 − π̃

(N+1)
N+1

)
= π̃

(N+1)
N+1 ≥ 0.

Therefore, the probability difference of each individual Gi between two state spaces
must be nonnegative:

�π̃i = π̃
(N )
i − π̃

(N+1)
i ≥ 0, i = 0, 1, . . . , N .

This can be generalized. As N increases to infinity, we have:

π̃
(N )
i ≥ π̃

(N+1)
i ≥ · · · ≥ π̃

(∞)
i , i = 0, 1, . . . , N .

Proof of Theorem 3

Proof For convenience, we use M = Ni to denote the maximum net copy number
in the truncated i th MEG. We first aggregate the state space Ω(I j ) into infinitely
many groups {G0,G1 · · · ,GM ,GM+1, . . .} according to the net copy number in the i th

MEG. We then reconstruct the permuted matrix Ã
(I j ) according to this aggregation.

We have:

Ã
(I j ) =

⎛

⎜
⎜
⎝

A
(I j )

g,h A
(I j )

g,l

A
(I j )

k,h A
(I j )

k,l

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

A
(I j )

1,1 A
(I j )

1,2

A
(I j )

2,1 A
(I j )

2,2

⎞

⎟
⎟
⎠ , for 0 ≤ g, h ≤ M,

and k, l ≥ M + 1, (48)

where the subscripts m and n of each block matrix A
(I j )
m,n indicate the actual net copy

numbers of the corresponding aggregated states of the i th MEG. Next, we further
partition the matrix into four blocks by truncating the i th MEG at the maximum copy

number of M . Specifically, A
(I j )

1,1 in the right-hand side of Eq. (48) is the northwest

corner sub-matrix of Ã
(I j ), which contains all transitions between microstates in the

state space Ω(Ii, j ):

A
(I j )

1,1 =
(
A

(I j )

g,h

)
= {Axm ,xn }, xm, xn ∈ Ω(Ii, j ), and 0 ≤ g, h ≤ M. (49)

A
(I j )

1,2 is the northeast corner sub-matrix of Ã
(I j ), which contains all transitions from

microstates in state space Ω(I j )/Ω(Ii, j ) to microstates in state space Ω(Ii, j ):

A
(I j )

1,2 =
(
A

(I j )

g,l

)
= {Axm ,xn }, xm ∈ Ω(Ii, j ), xn ∈ Ω(I j )/Ω(Ii, j ),

and 0 ≤ g ≤ M, l ≥ M + 1. (50)
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A
(I j )

2,1 is the southwest corner sub-matrix of Ã
(I j ), which contains all transitions from

microstates in state space Ω(Ii, j ) to microstates in state space Ω(I j )/Ω(Ii, j ):

A
(I j )

2,1 =
(
A

(I j )

k,h

)
= {Axm ,xn }, xm ∈ Ω(I j )/Ω(Ii, j ), xn ∈ Ω(Ii, j ),

and 0 ≤ h ≤ M, k ≥ M + 1, (51)

and A
(I j )

2,2 is the southeast corner sub-matrix of Ã
(I j ), which contains all transitions

between microstates in state space Ω(I j )/Ω(Ii, j ):

A
(I j )

2,2 =
(
A

(I j )

k,l

)
= {Axm ,xn }, with xm and xn ∈ Ω(I j )/Ω(Ii, j ),

and k, l ≥ M + 1. (52)

We now truncate the state space at the maximum copy number M of the i th
MEG. A matrix A(Ii, j ) on the truncated state space Ω(Ii, j ) using the same partition
{G0,G1, . . . ,GM } can be constructed as:

Ã
(Ii, j ) =

(
A

(Ii, j )

g,h

)
, and 0 ≤ g, h ≤ M. (53)

Similar to the matrix Ã in Eq. (6), both matrices Ã
(Ii, j ) and Ã

(I j ) are tridiagonal

matrix with A
(Ii, j )
m,n = 0 and A

(I j )
m,n = 0 for any |m − n| > 1.

Matrix Ã
(Ii, j ) and sub-matrix A

(I j )

1,1 reside on the same state spaceΩ(Ii, j ) and have

exactly the same permutation, i.e., thematrix element A
(Ii, j )

xm ,xn
∈ Ã

(Ii, j ) and A
(I j )

xm ,xn
∈

A
(I j )

1,1 describes the same transitions between microstates xm, xn ∈ Ω(Ii, j ) ⊂ Ω(I j ).

Only diagonal elements in A
(Ii, j )

M,M have different rates. By construction, GM and GM+1
are the only two aggregated groups that are involved in transition between states across

the boundary of Ω(Ii, j ). The sub-matrix A
(I j )

M+1,M is the only nonzero sub-matrix in

A
(I j )

2,1 , which forms the reflection boundary and is involved in synthesis reactions from
microstates in group GM to microstates in GM+1. As a property of the rate matrix, we
have

1T A
(I j )

M−1,M + 1T A
(I j )

M,M + 1T A
(I j )

M+1,M = 0T , (54)

and

1T A
(Ii, j )

M−1,M + 1T A
(Ii, j )

M,M = 0T . (55)

Since A
(I j )

M−1,M = A
(Ii, j )

M−1,M , we have from Eq. (55) 1T A
(Ii, j )

M,M = −1T A
(Ii, j )

M−1,M =
−1T A

(Ii, j )

M−1,M . With Eq. (54), we further have

1T A
(Ii, j )

M,M = 1T A
(I j )

M,M + 1T A
(I j )

M+1,M .
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By construction, the only differences between the sub-matrix A
(Ii, j )

M,M and A
(I j )

M,M are in
the diagonal elements. Therefore, we have

A
(Ii, j )

M,M = A
(I j )

M,M + diag
(
1T A

(I j )

M+1,M

)
.

That is:

Ã
(Ii, j ) = A

(I j )

1,1 + diag
(
1T A

(I j )

2,1

)
.

For convenience, we use the notation R
(I j )

2,1 = diag(1T A
(I j )

2,1 ), and have Ã
(Ii, j ) =

A
(I j )

1,1 + R
(I j )

2,1 . We partition the steady-state vector π (I j ) accordingly into two sub-

vectors: π (I j ) = (π
(I j )

1 ,π
(I j )

2 ), where π
(I j )

1 corresponds to states in Ω(Ii, j ), and

π
(I j )

2 corresponds to states in Ω(I j )/Ω(Ii, j ). As Ã
(I j )

π (I j ) = 0, we have:

A
(I j )

1,1 π
(I j )

1 + A
(I j )

1,2 π
(I j )

2 = 0,

therefore

[
Ã

(Ii, j ) − R
(I j )

2,1

]
π

(I j )

1 + A
(I j )

1,2 π
(I j )

2 = 0.

Hence, we have:

Ã
(Ii, j )

π
(I j )

1 = R
(I j )

2,1 π
(I j )

1 − A
(I j )

1,2 π
(I j )

2 . (56)

As all off-diagonal entries of transition ratematrix Ã
(I j ) are nonnegative,we know that

A
(I j )

1,2 ≥ 0, and R
(I j )

2,1 ≥ 0. Sinceπ (I j ) = (π
(I j )

1 ,π
(I j )

2 ) is the steady-state distribution

of the rate matrix Ã
(I j ) with π

(I j )

1 ≥ 0 and π
(I j )

2 ≥ 0, we have A
(I j )

1,2 π
(I j )

2 ≥ 0, and

R
(I j )

2,1 π
(I j )

1 ≥ 0. As all columns of matrix Ã
(Ii, j ) sum to zero, i.e., 1T Ã

(Ii, j ) = 0T ,

we have:

1T R
(I j )

2,1 π
(I j )

1 − 1T A
(I j )

1,2 π
(I j )

2 = 1T Ã
(Ii, j )

π
(I j )

1 = 0T .

Therefore, we have:

1T R
(I j )

2,1 π
(I j )

1 = 1T A
(I j )

1,2 π
(I j )

2 .

As all entries in vector R
(I j )

2,1 π
(I j )

1 and A
(I j )

1,2 π
(I j )

2 are nonnegative, we have the fol-
lowing equality of 1-norms, i.e., the summation of absolute values of vector elements:

∥
∥
∥R

(I j )

2,1 π
(I j )

1

∥
∥
∥
1

= 1T R
(I j )

2,1 π
(I j )

1 = 1T A
(I j )

1,2 π
(I j )

2 =
∥
∥
∥A

(I j )

1,2 π
(I j )

2

∥
∥
∥
1
. (57)
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From Minkowski inequality of vector norm and Eq. (56), we have:

∥
∥
∥ Ã

(Ii, j )
π

(I j )

1

∥
∥
∥
1
=
∥
∥
∥R

(I j )

2,1 π
(I j )

1 −A
(I j )

1,2 π
(I j )

2

∥
∥
∥
1

≤
∥
∥
∥R

(I j )

2,1 π
(I j )

1

∥
∥
∥
1
+
∥
∥
∥A

(I j )

1,2 π
(I j )

2

∥
∥
∥
1
.

(58)

From Eq. (57), we have:

∥
∥
∥ Ã

(Ii, j )
π

(I j )

1

∥
∥
∥
1

≤ 2
∥
∥
∥R

(I j )

2,1 π
(I j )

1

∥
∥
∥
1
. (59)

Nowwe show that the normof ‖R(I j )

2,1 π
(I j )

1 ‖1 converges to zerowhen themaximum

copy number M of the i th MEG goes to infinity. In the block tridiagonal matrix Ã
(I j ),

only the boundary block A
(I j )

M+1,M contains nonzero elements in sub-matrix A
(I j )

2,1 , and

all other blocks in A
(I j )

2,1 contain only zero entries. From Cauchy–Schwarz inequality,
we have:

∥
∥
∥R

(I j )

2,1 π
(I j )

1

∥
∥
∥
1

=
∥
∥
∥
[
diag

(
1T A

(I j )

M+1,M

)] [
π

(I j )

1 (GM )
]∥
∥
∥
1

≤
∥
∥
∥diag(1T A

(I j )

M+1,M )

∥
∥
∥
1
·
∥
∥
∥π

(I j )

1 (GM )

∥
∥
∥
1
,

where π
(I j )

1 (GM ) is the sub-vector corresponding to the state partition GM . Further-

more, according to Lemma 2 and Eq. (13) after replacing the subscript i in π̃
(∞)
i with

M and taking into consideration of the equivalence of the infinite space Ω(I j ) and
Ω(∞) in regard to truncation at Ii , we have the probability of the boundary block

GM :
∥
∥
∥π

(I j )

1 (GM )

∥
∥
∥
1

→ 0 when M → ∞. When synthesis reactions are concentra-

tion independent (zero-order reactions) as usually the case (Nelson 2015), the norm

‖diag(1T A
(I j )

M+1,M )‖1 is a constant representing the total synthesis rates over states

in GM . We have: ‖R(I j )

2,1 π
(I j )

1 ‖1 → 0 when M → ∞. Therefore, with Eq. (59), we
have:

lim
M→∞

∥
∥
∥ Ã

(Ii, j )
π

(I j )

1

∥
∥
∥
1

= 0.

Hence,

lim
M→∞ Ã

(Ii, j )
π

(I j )

1 = 0.

That is, when the maximum copy number limit of the i th MEG is sufficiently large,

both π (Ii, j ) and π
(I j )

1 are the steady-state solutions of Ã
(Ii, j ) y = 0. According to

Perron–Frobenius theorem for the transition rate matrix of continuous-time Markov
chains (Meyer 2000), the dCME governed by Ã

(Ii, j ) has a globally unique stationary
distribution. In addition, by construction of the matrix, via enumeration of the state
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space, matrix Ã
(Ii, j ) is irreducible, as all microstates in the state space can be reached

from the initial state. Therefore, thematrix Ã
(Ii, j ) has only one zero eigenvalue (Meyer

2000), both π (Ii, j ) and π
(I j )

1 are eigenvectors corresponding to the eigenvalue 0.

Therefore, we have the relationship π (Ii, j ) = cπ
(I j )

1 , where c is an arbitrary real

number. As both vectors are nonnegative, and 1T π
(I j )

1 ≤ 1 = 1T π (Ii, j ), there must

exist an ε = 1 − 1T π
(I j )

1 ≥ 0, such that π (Ii, j ) = (1 + ε)π
(I j )

1 . According to

Lemma 2, 1T π
(I j )

1 → 1, when the maximum copy number limit of the i th MEG goes
to infinity. Therefore, we have ε → 0 when M → ∞. Therefore, we have shown

both π (Ii, j ) ≥ π
(I j )

1 and π (Ii, j ) → π
(I j )

1 component-wise, when the maximum copy
number limit of the i th MEG goes to infinity.
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