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ABSTRACT

Stochasticity plays important roles in many biological networks. A fundamental 
framework for studying the full stochasticity is the Discrete Chemical Master Equation 
(dCME). Under this framework, the combination of copy numbers of molecular spe-
cies defines the microstate of the molecular interactions in the network. The prob-
ability distribution over these microstates provide a full description of the properties 
of a stochastic molecular network. However, it is challenging to solve a dCME. In 
this chapter, we will first discuss how to derive approximation methods including 
Fokker-Planck equation and the chemical Langevin equation from the dCME. We
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1. INTRODUCTION

Molecular components in biological systems, such as proteins, DNA, RNAs, and 
substrates, are often interacting with each other in a complex reaction network to 
perform certain biological functions. These networks of interacting biomolecules 
are at the heart of the regulations of many critical cellular processes, from the 
regulation of gene expression (Arkin, Ross, & McAdams, 1998; Hasty, Pradines, 
Dolnik, & Collins, 2000; Levin, 2003; McAdams & Arkin, 1997; Ozbudak, Thattai, 
Kurtser, Grossman, & van Oudenaarden, 2002), signal transduction (Samoilov, 
Plyasunov, & Arkin, 2005), to the differentiation of stem cells (Ogawa, 1989). The 
biological networks are intrinsically stochastic due to thermal fluctuations (McCul-
lagh et al., 2009). The intrinsic stochasticity in these cellular processes originates 
from reactions involving small copy numbers of molecules. It frequently occur in 
a cell when molecular concentrations are in the range of 0.1 µM  to 1 nM (typi-
cally from about 10 to 100 copies in a cell) (Arkin et al., 1998). For example, the 
regulation of transcriptions depends on the binding of often a few proteins to a 
promoter site; the synthesis of protein peptides on ribosome involves a small copy 
number of molecules; and patterns of cell differentiation depend on initial small 
copy number events. In these biological processes, fluctuations due to the stochas-
tic behavior intrinsic in small copy number events play important roles.

The importance of stochasticity in cellular functions has been well recognized 
(Mettetal, Muzzey, Pedraza, Ozbudak, & van Oudenaarden, 2006; Ozbudak et al., 
2002; Paulsson & Ehrenberg, 2000; Volfson et al., 2006; Zhou, Chen, & Aihara, 
2005). Studies of network models show that stochasticity is important for magnifying 
signal, sharpening discrimination, and inducing multistability (Paulsson & Ehren-
berg, 2000). Understanding the stochastic nature and its consequences for cellular 
processes involving molecular species of small copy numbers in a network is an 
important problem. A fundamental framework for studying the full stochasticity is 
the discrete chemical master equation (dCME). Under this framework, the combi-
nation of copy numbers of molecular species defines the microscopic state of the 
molecular interactions in the network. By explicitly treating microscopic states of 

also discuss the widely used stochastic simulation method. After that, we focus on 
the direct solutions to the dCME. We first discuss the Finite State Projection (FSP) 
method, and then introduce the recently developed finite buffer method (fb-dCME) 
for directly solving both steady state and time-evolving probability landscape of 
dCME. We show the advantages of the fb-dCME method using two realistic gene 
regulatory networks.
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reactants, reactions can all be effectively modeled as transitions between microstates, 
with transition rates determined by the physical properties of the molecules and the 
cell environment. The reaction trajectories can be modeled in the framework of the 
dCME, which describes continuous time Markov chains (CTMC) equivalent to the 
Kolmogorov equation. The probability distribution or probability landscape over 
these microstates and its time-evolving behavior provide a full description of the 
properties of a stochastic molecular network.

However, it is challenging to solve a dCME that involves a nontrivial number 
of species. Analytical solutions of the chemical master equation exist only for very 
simple cases (Vellela & Qian, 2009). A widely used method is to carry out Monte 
Carlo simulations of the chemical master equation using the Stochastic Simulation 
Algorithm (SSA), also known as Gillespie’s algorithm (Gillespie, 1977). Although 
the SSA approach has found wide applications, it is ineffective in simulating rare 
events, as most of computing time is spent on following high-probability paths 
(Daigle, Roh, Gillespie, & Petzold, 2011; Roh, Daigle, Gillespie, & Petzold, 2011; 
Roh, Gillespie, & Petzold, 2010). A recently developed importance path sampling 
technique, the Adaptively Biased Sequential Importance Sampling (ABSIS) has 
been shown to significantly improve rare event sampling efficiency (Cao & Liang, 
2013). Alternatively, the chemical master equation can also be approximated us-
ing the Fokker-Planck equation (FPE) and the chemical Langevin equation (CLE) 
(Gillespie, 2000).

Direct solutions to the dCMEs can provide exact results, however complete 
identification and characterization of the state space is prerequisite, which can rap-
idly become intractable due to the explosion of the size of the discrete state space. 
Currently, the state space of a network cannot be fully characterized in general. The 
conventional hypercube approach predefines the maximum copy number of each 
reactant, and bound the state space by the product of the maximum numbers. How-
ever, the size of state spaces generated with the hypercube approach will quickly 
inflate to enormity, which makes it intrinsically inefficient as many unreachable 
states from an initial condition are included. An alternative approach is to gener-
ate states by carrying out stochastic simulations. One can simply follow explicitly 
simulated reaction events to whatever microstates the system reaches, such as the 
N-reachability approach used in Ref (Munsky & Khammash, 2006). However, this 
approach cannot guarantee that all reachable states are included, especially when 
the system contains rare transitions. Therefore, it cannot guarantee full character-
ization of rare events.

Munsky and Khammash developed the finite state projection (FSP) method to 
directly solve the time evolution of the dCME by using an absorbing state to truncate 
the state space generated by the N-reachability approach (Munsky & Khammash, 
2006; Munsky & Khammash, 2007). However, the absorbing state in the FSP method 
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makes it unable to solve the steady state probability landscape of dCME, which is 
of great importance in studying the behavior of reaction networks.

In this chapter, we first discuss the basic theoretical framework of the probability 
landscape of a stochastic network and the underlying discrete chemical master equa-
tion (dCME). We then discuss the connections between dCME and other modeling 
methods often used in studying stochastic biological networks. We further discuss the 
formulation of the continuous chemical master equation (cCME), which approximates 
the dCME, as well as its further simplifications in the form of Fokker-Planck and 
Langevin models. This is followed by a discussion of the approach of Monte Carlo 
simulations to study stochastic network, with the Gillespie’s stochastic simulation 
algorithm discussed in some details. We also discuss a few recent developments 
on rare event probability estimation using biased path sampling. After discussing 
the advantage and challenges to directly solve the dCME, we describe a recently 
developed approach to significantly reduce the size of the state space, and therefore 
efficiently solve the steady state and time evolution probability landscapes of the 
dCME, namely the finite buffer method for direct solution of dCME (Cao & Liang, 
2008; Cao, Lu, & Liang, 2010). We then describe two realistic gene regulatory 
networks to show the effectiveness of the fb-dCME method.

2. DISCRETE CHEMICAL MASTER EQUATION FRAMEWORK 
FOR MODELING STOCHASTIC NETWORKS

2.1 Discrete Chemical Master Equation (dCME)

Here we first describe the chemical master equation on a discrete state space. The 
dCME describes the gain and loss of probability associated with each microstate 
due to chemical reactions. The chemical reactions can be thought as jump processes 
that bring the system from one combination of copy number of molecular species 
(micro state) to a different combination of copy number of molecular species once 
a reaction occurs. The dCME describes the change of probability of different mi-
crostates connected by such jump processes due to reactions.

Molecular species and reactions: We assume a system with m  molecular spe-
cies � , , ,X X X

m1 2
…{ } , where Xi  is the i-th molecular species. There are n  chem-

ical reactions R = …( )R R Rn1 2
, , ,  that can happen in the system, and each has a 

rate constant r = ( )r r rn1 2
, , , . We denote the copy number of the -th molecular 

species as . The combination of the copy numbers at time t is a vector of nonnega-
tive integers and is denoted as x t x t x t x tm( ) = ( ) ( ) … ( )( )∈ +

1 2 0
, , ,  . We call 
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x t( )  the microstate of the system at time t . The probability for the system to be 
in state x t( )  is p tx,( ) . The collection of all possible microstates consists of the 
state space of the system: S x= ( ) →∞{ |t t } . Its size is denoted as S . The prob-
ability distribution over the state space S  at time is the probability landscape
p S, t( ) . The time-evolving and steady state probability landscape provides a full 

description of the properties of a stochastic molecular network (Ao, Kown, & Qian, 
2007; Cao & Liang, 2008; Cao et al., 2010; Kim & Wang, 2007; Schultz, Onuchic, 
& Wolynes, 2007).

Stoichiometry: A chemical reaction Rk  takes the general form:

� ,
, , , ,

’
,
’

,
’c X c X c X c X c X c X

k k m k m

r

k k m k m

k

1 1 2 2 1 1 2 2
+ +…+ → + +…+ 	 (1)

where rk  is the rate constant associated with reaction Rk . The reaction brings the 
system from the microstate x j  to xi . The difference between x j  and xi  is the 
stoichiometry vector sk  of reaction  R

k
:

s x x
k i j k k k k m k m k

c c c c c c= − = − − … −( )1 1 2 2,
'

, ,
'

, ,
'

,
, , , . 	 (2)

Here sk  can admit 0 entries if a molecular species does not participate in the 
reaction, so sk  has the same dimension as that of the microstate.

As an example, the reaction A B C+ →2  reduces the number of A and B by 1 
and 2, respectively, and increase the number of C by 1. Its stoichiometry vector has 
cA = −1, c cB C= − = +2 1, ,  and s = − − +( )1 2 1, , . If there are other molecular spe-
cies, their coefficients are all 0 for this reaction. By treating microscopic states of 
reactants explicitly, linear and nonlinear reactions, such as synthesis, degradation, 
dimeric binding, and multimerization, can all be modeled as transitions between 
microstates.

Reaction rate: The rate of the k -th reaction that transition the system from state 
x j  to state xi  is determined by the intrinsic reaction rate constant rk , and the 

available copy numbers of each reactant in the current state x j :

A A r
x
ck i j k j k

l

m
l

l k
x x x, ,

,

( ) = ( ) = 









=
∏
1

	 (3)
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assuming the convention 
0

0
1








 = . If the k -th reaction can lead the system from 

state x
j
 to state  x

i
, we have Ak i jx x,( ) > 0 , otherwise Ak i jx x,( ) = 0 . In most 

cases, only one reaction connects two microstates. However, since in principle more 
than one reaction may connect two states, we have the overall reaction rate that 
brings the system from x j  to xi  as:

A Ai j
R

k i j
k

x x x x
R

, , ,( ) = ( )
∈
∑ 	

where A i jx x,( )  represents the transition probability function per unit time from 

x j  to xi . Overall, we have the transition rate matrix: A x x= ( ){ }A i j, ,  where 

the diagonal elements are defined as: A Ai i
i j

i jx x x x, , .( ) = − ( )
≠
∑

Discrete Chemical Maser Equation. The discrete chemical master equation can 
then be written as:

dp t
dt

A p t A p t
x

x x x x x x
x x

,
, , , , .

( )
= ( ) ( ) − ( ) ( ) ′ ′ ′

′≠
∑ 	 (4)

Note here we regard the probability p tx,( )  of a microstate x is continuous in 
time, while the states are all discrete. We call this the discrete chemical master 
equation (dCME). The dCME in this form fully account for the probabilities of 
jumps between states, regardless whether the copy number components of x  and 
x '  are small or large. It gives a full account for the stochasticity due to small copy 

number events.
In matrix form, the dCME can be written as:

d t
dt

t
p S

Ap S
,

, ,( )
= ( ) 	 (5)

where A S S∈ ×  is the rate matrix formed by the collection of all A i jx x,( ) : 

A x x x x S= ( ){ } ∈A i j i j, , , ,  and p S, t( )  is the probability distribution vector 

of the dCME over the state space S  at time t . The dCME describes the gain and 
loss in probability associated with each microstate due to chemical reactions. These 
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chemical reactions can be regarded as jump processes upon firings of reactions, 
which bring the system from one combination of copy number of molecular species 
to a different combination of copy number of molecular species. The dCME fully 
accounts for the stochastic jumps between states, regardless whether the copy num-
bers xi  and x j  are small or large. The overall stochasticity due to small copy 
number events is therefore fully described. It provides a fundamental framework to 
study stochastic molecular networks (Gillespie, 1977; Van Kampen, 2007).

2.1.1 Continuous Chemical Master Equation

If we treat the state space as continuous, that is, we assume the amount of a mo-
lecular species xi  is measured by a real value (such as concentration) instead of a 
copy number, the micro-state x t( )  becomes a real-valued vector x t m( )∈ . We 
have the chemical master equation equivalent to Eqn. (4) on continuous state space 
as:

dp t
dt

A p t A p t d
x

x x x x x x x
,

, , , , ,
( )

= ( ) ( ) − ( ) ( ) ′ ′ ′ ′
∞

∫
0

	 (6)

where the kernel A x x, ′( )  represents the transition probability function per unit 
time from ′x  to x . The CME in this form is equivalent to the Chapman-Kolmogo-
rov equation frequently used to describe continuous Markov processes.

Remark. The continuous state space version of the CME requires a strong as-
sumption. It is only appropriate if one can assume that the difference in the amount 
of molecules in neighboring states is infinitesimally small, which is valid only if 
the copy number of the molecular species in the system are much larger than 1, 
and larger than the changes in the numbers of molecules when a reaction occurs. 
The continuous CME therefore cannot be used when the total amount of molecules 
involved is very small, for example, in systems of single or a handful of particles. 
In these cases, the discrete CME should be used, as it does not contain any intrinsic 
singularity difficulties.

2.1.2 Relationship to Law of Mass Action Equations

Based on the above definition of biological networks, we can now derive the deter-
ministic mass action equations from the discrete chemical master equation, which 
describe the time dynamics of the mean value of concentration of each molecular 
species. By multiplying the copy number of each molecular species xi  to both sides 
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of the Eqn. (4), and taking summation over all elements from zero to infinity, we 
can obtain the average concentration xi  of species Xi :

d x
dt

d x p t

dt

x A

i i

k

m

x x x
i k k

n

=
( )( )

=

−( )

∈

= =

∞

=

∞

=

∞

∑

∑ ∑∑ ∑

x S
x

x s

,

1 0 0 01 2

 pp t x A p tk
k

m

x x x
i k

n

x s x x−( )








 − ( ) ( )



= =

∞

=

∞

=

∞

∑ ∑∑ ∑, ,
1 0 0 01 2







	

(7)

After adjusting the indexes of the terms at the right hand side, we can obtain:

d x

dt
A p ti

k

m

x x x
ik k

n

= ( ) ( )











= =

∞

=

∞

=

∞

∑ ∑∑ ∑
1 0 0 01 2

� s x x,

. 	 (8)

As A A p tk kx x x( ) = ( ) ( ), , we therefore obtain the deterministic equation 
of the mean concentration of molecular species Xi  as:

d x
dt

Ai

k

m

ik k= ( )
=
∑
1

s x . 	 (9)

The same equation can be derived from all molecular species � , , ,X i n
i
= 1� . If 

we can assume the equality  A A
k k
x x( ) = ( ) , then the above equation can be 

used to accurately describe the average behavior of each molecular species 
X i ni , , ,=1 . However, equality  A A

k k
x x( ) = ( )  only holds when Ak x( )  

is a linear function of x . Whenever a reaction has two or more reactants, its reac-
tion rate Ak x( )  becomes a nonlinear function of x , therefore A Ak kx x( ) ≠ ( ) . 

According to van Kampen, a Taylor expansion of Ak x( )  can be used to approximate 

the Ak x( )  (Van Kampen, 2007):

A A Ak k kx x x x x( ) = ( ) + −( ) ( ) +1

2

2 ''
. 	 (10)

By truncating the second order and higher terms, we can approximate the mean 
reaction rates as:
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A Ak kx x( ) ≈ ( ) . 	 (11)

Therefore, we obtain the deterministic mass action equation as:

dx

dt
Ai

k

m

ik k
= ( )

=
∑
1

s x . 	 (12)

We can rewrite the equation in matrix form as:

′ = ( )x sA x , 	 (13)

where is the stoichiometry matr ix of the reaction network, and 
A x x xm( ) = ( ) ( )( )A A

T
1

, ,  is a vector of rate functions of all reactions in the 
network. The above mass action kinetic equations show the relationship between 
discrete chemical master equation and its corresponding deterministic equations. 
This is consistent with Kurtz and Keizer’s theoretical studies about the relationship 
between the stochastic and deterministic models of chemical reactions (Keizer, 
1977; Kurtz, 1972).

2.2 Approximations

2.2.1 Fokker-Planck Equation

Solving the CME requires knowledge of all details of the transition kernel � ,A x x′( ) , 
including both the state space and the transition rates between them. Currently, there 
exist no general analytical solution to the CME, except for the simplest problems 
(Schultz et al., 2007; Vellela & Qian, 2007). Solving the CME numerically is also 
challenging. Nevertheless, for systems of small and moderate size, there exists al-
gorithm that can enumerate optimally the state space, with A x x, ′( )  fully character-
ized, and the discrete CME can be solved numerically (Cao & Liang, 2008).

One can approximate CME with the Fokker-Planck Equation (FPE). Similar to 
the continuous CME, the FPE also describe the evolution of probabilities of system 
states over time, but with the transition kernel in the CME replaced by a differential 
operator of second order. Unlike the discrete CME, the states of the system are con-
tinuous macroscopic states, and FPE does not describe the discrete jump processes 
(Van Kampen, 2007). We follow the disposition of van Kampen (Van Kampen, 
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2007) and briefly describe how FPE is related to CME, focusing on the additional 
assumptions and approximations involved beyond those made for continuous CME.

2.2.1.1 Assumptions of Fokker-Planck Equation

The first assumption is that the jumps between states must be small, namely, the 
“before” and the “after” states are in a close neighborhood: x xj i− <  ,  where 
 ∈  is infinitesimal. Second, the transition probability varies slowly: 
A Ax x x x, , .′ ′( ) ≈ + +( )   Third, the probability p tx,( )  must also vary 
slowly: p t p tx x, , .( ) ≈ +( )  A consequence of these assumptions is that the 
transition kernel A x x, ′( )  is differentiable to a higher order.

With these assumptions, the first term in Eqn. (6) can be approximated, where 
the full detail of the transition kernel A x x, ′( )  from x '  to x  is needed. The goal 
is to replace A x x, ′( )  with its Taylor expansion centered around x . For this, we 
first reparameterize A x x, ′( )  as A x s;( ) , where s x x= − ' . Eqn. (6) can be re-
written as:

dp t
dt

A p t d p t A d
x

x s s x s s x x s s
,

; , , ; .
( )

= ∫ −( ) −( ) − ( ) ∫ −( ) 	 (14)

2.2.1.2 Kramers-Moyal Expansion

The first term of Eqn. (6) is then expanded around using Taylor expansion as:

A p t d A p t d
x

A d p t
i i

x s s x s s x s x s s x s s x−( ) −( ) = ( ) ( ) −
∂
∂

⋅ ( ) ⋅ (∫ ∫ ∑; , ; , ; , ))





+
∂

∂ ∂
⋅ ( ) ⋅ ( )





−
∂

∂

∫

∑ ∫

∑

1

2

1

3

2

2

3

i j i j

i j k

x x
A d p t

,

, ,

; ,

!

s x s s x

xx x x
A d p t

i j k∂ ∂
⋅ ( ) ⋅ ( )



 +∫ s x s s x3

, , 

	

(15)

Putting it back to Eqn. (6), and approximating by dropping higher than second 
order terms, we obtain the Fokker-Planck equation:

∂ ( )
∂

= −
∂
∂

⋅ ( ) ⋅ ( )



 +

∂
∂ ∂

⋅∑ ∫ ∑
p t
t x

A d p t
x x

A
i i i j i j

x
s x s s x s

,
; ,

,

1

2

2

2 xx s s x; ,( ) ⋅ ( )



∫ d p t 	

(16)
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Using a simpler notation, we have:

dp t

dt x
F p t

x x
G p t

i i i j i j

x
x x x x

,
, ,

,

( )
= −

∂
∂

( ) ( )



 +

∂
∂ ∂

( ) ( )∑ ∑
1
2

2




 , 	 (17)

Where F A dx s x s s( ) = ⋅ ( )∫ ;  and G A dx s x s s( ) = ⋅ ( )∫ 2
; .

2.2.2 Chemical Langevin Equation

When the macroscopic behavior of the system can be determined, a general ap-
proach to study stochastic dynamic network is to follow the Langevin equation by 
combining a deterministic term describing the macroscopic behavior of the network 
and a diffusion term describing the stochastic fluctuation.

From the dCME, we can derive the average behavior of the network using the 
Mayo expansion as:

d t
dt

d x p t
dt

d x p t
dtx

xx x x( )
=

⋅ ( )  =
⋅ ( ) ∑ ∑, ,

, 	 (18)

where x xt x p t
x

( ) = ⋅ ( )∑ ,  is the vector of expected mean value of the amount of 

molecular species. Van Kampen and others have shown that the following formula 
could be derived from the dCME for the mean amount of molecular species (Gil-
lespie, 2007; Melykuti, Burrage, & Zygalakis, 2010; Van Kampen, 2007):

d t
dt

s A
k

k k

x
x

R

( )
= ( )

∈
∑ , 	 (19)

where sk  and Ak x( )  are defined in Eqn. (2) and Eqn. (3). This gives the same 
expression as that of corresponding ordinary differential equations (ODE) of mass 
action kinetics of the same chemical reactions. The detailed derivation is shown in 
following sections.

Random fluctuations in the copy numbers of molecules occur because of the 
random jumps due to the spontaneous firing of reactions. Such reactions will intro-
duce changes to the copy number of molecular species, e.g., by the amount of sk  
of the k -th reaction. Assuming that the jump is small, namely, 
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x x s xt t t t
k

+( ) = ( )+ ≈ ( )∆  if reaction sk  occurs during an infinitesimally 
small time interval ∆t . This assumption would result in unchanged reaction rate:

A t t A t r
x

ck k k
l

n
l

lk

x x+( )( ) ≈ ( )( ) =










=
∏∆

1

. 	 (20)

With this assumption, the vector of the amount of molecular species x t t+( )∆  
at time t t+∆  can be written as:

x x x s
R

t t t n t
R

k k

k

+( ) = ( )+ ( ) ⋅
∈
∑∆ ∆, , 	 (21)

where n t
k
x,∆( )  is the number of reaction Rk  occurs during the period ∆t . Based 

on the assumption x xt t t+( ) = ( )∆ , the copy numbers of molecular species in 
Eqn. (21) do not change during ∆t , and the reaction rates also do not change dur-
ing ∆t . Therefore, all reactions occurring during ∆t  could be considered inde-
pendent of each other.

This assumption is valid only if the copy numbers in x t( )  are all large, so the 
stoichiometry coefficients ci  forming the jump vector sk  are all comparatively 
small. This assumption clearly breaks down when the copy number of molecular 
species is not significantly larger than the stoichiometry coefficients, and therefore 
cannot be used to describe systems of a handful of particles.

A reasonable model for the random variable n t
k
x,∆( )  is that of the Poisson 

distribution: n P
k k

~ λ( )  with λ
k k
A t t= ( )( ) ⋅x ∆ . With the additional assumption 

that ∆t  is sufficiently long such that a large number (>>1) of reactions occur dur-
ing ∆t , the Poisson distribution for the number of spontaneous reactions can be 
approximated by a Gaussian random variable (Gillespie, 2000). The approximation 
will be very accurate when λ

k
 is sufficiently large, e.g., λ

k
> 1000.  Therefore, we 

n ow  h ave  n N
k
~ ,µ σ2( ) ,  w i t h  µ σ λ= =2

k
,  o r  a l t e r n a t i ve ly, 

n N A t t A t t N
k k k k k
~ , , .λ λ+ ( ) = ( )( ) ⋅ + ( )( ) ⋅



 ( )

1
2

1
20 1 0 1x x∆ ”  With these as-

sumptions, the fluctuations of the amount of molecules follow m independent 
Gaussian processes, one for each reaction:
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(22)

This leads to the following equation:

∂ ( )
= ( )( ) ⋅ + ( )( )  ⋅ ⋅

∂
⋅

∈ ∈
∑ ∑

x
x s x s

R R
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dt
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We denote G t
t
N N

t
( ) =

∂
⋅ ( ) =

∂








1
0 1 0

1
1

2

, , ,  we have the Langevin equation:

∂ ( )
∂

= ( )( ) ⋅ + ( )( )  ⋅ ⋅ ( )
∈ ∈
∑ ∑

x
x s x s

R R

t
t

A t A t G t
R

k k
R

k k
k k

1

2 . 	 (24)

This is same as the chemical Langevin equation described by Gillespie (Gil-
lespie, 2000).

2.2.3 Accuracy of Chemical Fokker-Planck and Langevin Equation

As shown above, due to the second-order truncation in the Kramers-Moyal expan-
sion during the derivation of the Fokker-Planck and Langevin equation from the 
chemical master equation, the accuracy and error of these equations need to be 
clarified. Using the system-size expansion, Grima et al. (Grima, Thomas, & Straube, 
2011) have shown that the estimates for the mean and variance of concentrations 

using the chemical Fokker-Planck equation are accurate to order Ω
−
3
2  for reaction 

networks which do not obey detailed balance, and at least accurate to order Ω−2  for 
systems obeying detailed balance, where Ω  is the characteristic size of the system.

2.3 Monte-Carlo Simulation of the dCME

A widely used method to study stochastic networks is to carry out Monte Carlo 
simulations. By following the trajectories of reactions, one can gather statistics of 
reaction events at different time to gain understanding of the network behavior (Gil-
lespie, 1977). We discuss the underlying algorithm, called the stochastic simulation 
algorithm (SSA), which is also known as Gillespie’s algorithm.



Modeling Stochastic Gene Regulatory Networks Using Direct Solutions

93

Reaction probability: We denote the probability that after the last reaction at t, 
the next reaction, which happens to be the k -th reaction, occurs during an infini-
tesimally small time interval dt  after a time interval ∆t  of no reaction occurring 
to be:

p t t dt t R t dt
k

x x+ +( ) ( )



∆ ∆, , .| 	 (25)

If we divide the time interval ∆t  into H equal subintervals, and assume that the 
occurrence of reactions following a Poisson process, the probability that none of 
the n reactions have occurred during the time prior to the end of a small time inter-
val  = ∆t H/  is:

k

n

k
k

n

kA t A t
= =
∏ ∑− ( )( )  ≈ − ( )( ) 
1 1

1 1x x  . 	 (26)

As the probability of no reactions for each of the H intervals is the same, no 
reactions have occurred during ” t  is:

lim .
H

k

n

k

H A t tA t e
→∞

=

− ( )( )∑ − ( )( )  =
1

1 x x ” 	 (27)

As no reaction has occurred during ∆t , the microstate remains the same. There-
fore, the instantaneous state transition probability for reaction Rk  occurring during 
the infinitesimal interval t t t t dt+ + +



∆ ∆,  is A t t dt A t dt

k k
x x+( )



 = ( )( )∆ .  

We have:

p t t dt t R t A t e dt
k k

A t tx x x x
+ +( ) ( )



 = ( )




− ( )( )∆ ∆

∆
, , .| 	 (28)

Reaction trajectory. Let the microstate of the system at time t to be x t( ) . After 
time interval ∆t , reaction Rk  occurs at an infinitesimally small time interval dt  
at t t+∆ , and the system is brought to the state x t t dt+ +( )∆ . We assume the 

reactions are occurring instantaneously, i.e. dt→ 0 , so we use x t t+( )∆  to denote 
the new microstate after the reaction occurred in dt . We can observe the trajec-
tory of a sequence of such reactions. Starting from state x 0( )  at time t0 0= , after 
a series of time intervals ∆ ∆ ∆t t t

T0 1 1
, , ,� −( ) , the system reaches the state x tT( ) , 
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after traversing the sequence of states x x xt t tT0 1 1( ) ( ) ( )( )−, , , ,  with a reaction 

sequence R R Rk k kT0 1 1
, , ,

−
( )  occurring along the way. Let t t tT1 2

, , ,( )  be the 

sequence of time points when a reaction occurs. The trajectory of reactions can be 
denoted as:

x x x xt t R t R t Rk T k T kT T0 1 10 2 1
( ) ( ) ( ) ( )( )− − −
; , ; ; , ; , . 	

Alternatively, we can denote the time intervals by its increments 
∆ ∆ ∆t t t

T0 1 1
, , ,� −( ) .

Probability of a reaction trajectory. Assuming a Markovian process, namely, 
future reactions depends only on the current state but not on any past state, the 
probability associated with a time trajectory is:

π

π

x x x x

x

t t R t R t R

t

k T k T kT T0 1 1

1

0 2 1
( ) ( ) ( ) ( )
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


= ( )
− − −

; , ; ; , ; ,
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k k T T0 0 2 1 10 1
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(29)

In principle, the probability of starting from state x t0( )  and reaching state 
x tT( )  can then be obtained by integrating over all possible paths:

π πx x x xt x t t
T

t t R RT k kT

( ) ( )



 = ( ) (

− −
( ) ( )

∑|
0 0 1

0 1 0 1
∆ ∆, , , , ,

;
� �

)) ( ) ( )



− − −

, ; ; , ; ,R t R t R
k T k T kT T0 2 11
� x x 	

(30)

2.3.1 Stochastic Simulation Algorithm

If we can generate many independent samples of reaction trajectories that follow 
a proper probabilistic model starting from the same initial state, we can study the 
behavior of the stochastic network by analyzing these sample trajectories. The sto-
chastic simulation algorithm (SSA) or Gillespie’s algorithm was designed to perform 
such simulations (Gillespie, 1977). It is summarized in the Algorithm in Figure 1.

Generating random variables for selecting the time interval ∆t  and reaction 
Rk . A key component in Gillespie’s algorithm is to generate a pair of random 
variables ∆t k, .( )  The ∆t  will be the time interval until next reaction occurs, and 
the number k will specify the reaction Rk  that will actually occur next. We have: 
π π π∆ ∆ ∆t k t R t

k
, ,( ) = ( ) ⋅ ( )1 2

|  where π
1
∆t( )  is the probability that the next 
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reaction, regardless which specific ones, will occur in time interval 
t t t t dt+ + +



∆ ∆, ,  and π

2
( | )R t
k
∆  is the probability that the next reaction will 

be the k -th reaction. As π π
1
∆ ∆t i t

i

( ) = ( )∑ , ,  where π i t,∆( ) is the probabil-

ity that reaction Ri  occurs at time t t dt+ +∆ , we have π
π

π2
R t

k t

i tk

i

|∆
∆

∆
( ) = ( )

( )∑
,

,
.  

As we assume a model of Poisson process, we have:

π
1
∆

∆
t A t e

A t t( ) = ( )( ) − ( )( )x x
,and π

2
R t

A t

A t
k

k
|∆( ) =

( )( )
( )( )
x

x
. 	 (31)

That is, if we can generate a random variable ∆t  following π
1
∆t( ) , and an-

other random integer k according to π
2
R t
k
|∆( ),  the resulting pair ∆t k,( )  will 

follow the desired distribution π ∆t k,( ) .
Assume we can generate a random number r  following the uniform distribution 

r U~ , .0 1[ ]  A general approach to obtain a random variable ρ  that follows a 
distribution F is to calculate the transformation of r through the inverse function 
F − : ρ = ( )−F r . Since π

1
∆

∆
t e

A t t( ) = − ( )( )x
,  we can have:

∆t
A t r

=
( )( )
1 1

1x
ln ,where r U

1
0 1~ , .[ ] 	 (32)

Figure 1. Stochastic Simulation Algorithm
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To sample the next reaction R
k
, we can again first generate a uniformly distrib-

uted random number r U
2

0 1~ , .[ ]  We can then take the k -th reaction such that:

i

k

i
i

k

iA t r A t A t
=

−

=
∑ ∑( )( ) < ( )( ) ≤ ( )( )
1

1

2

1

x x x ,where A t A t
i

m

ix x( )( ) = ( )( )
=
∑
1

. 	

(33)

Another approach to generate a pair of random number ∆t k,( )  is to first calcu-
late the probability at time t t+∆  for a reaction Ri  to occur during an infinitesimal 
time interval t t t t dt+ + +



∆ ∆, ,  assuming that there were no changes between 

x t( )  and x t t+( )∆ , namely, there is no reaction occurred. We can generate a 

tentative reaction time ∆t
l
 for reaction Rl  as:

∆t
A t rl

l l

=
( )( )
1 1

x
ln ,where r Ul ~ , .0 1[ ] 	 (34)

From this set of random number pairs ∆t l
l
,( )  for all l m=1, , we select the 

pair of random numbers with the shortest ∆t , at which the next reaction Rk  would 
occur:

∆ ∆t t= ( )min , and k t
l l

= ( )arg min ∆ . 	 (35)

Remark. There are a number of issues in carrying out studies using stochastic 
simulation, as adequate sampling is challenging when the network becomes complex. 
There is no general guarantee that simulation can provide a full account of the 
network stochasticity, as it is difficult to determine whether simulations are exten-
sive enough for accurate statistics. It is also difficult to determine whether adequate 
sampling has been achieved for individual trajectory. In addition, it is often difficult 
to characterize rare events that may be biologically important, as simulations follow 
high probability paths. Much recent work has been focused on improving SSA, for 
example, by introducing data structure so the generation of the two random variables 
of ∆t  and reaction k is more efficient. In addition, an approach to speed up SSA 
is to find the best time step ∆t  such that the copy numbers of the molecular spe-
cies, hence the reaction rates, do not change much, so the simulation can leap forward 
with large time step (Cao, Gillespie, & Petzold, 2006).
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2.3.2 Biased Sampling for Rare Events

Recent interests in introducing bias in selection of the next reaction, and in altering 
the reaction rate showed promise in improved sampling of rare events (Daigle et al., 
2011; Kuwahara & Mura, 2008; Roh et al., 2011). The techniques of importance 
sampling and reweighting can improve sampling efficiency significantly. They have 
been widely used in equilibrium sampling where the condition of detailed balance 
holds (Torrie & Valleau, 1977). However, stochastic processes in reaction networks 
are generally not time reversible and the condition of detailed balance is not valid. 
Kuwahara and Mura developed the weighted SSA (wSSA) algorithm by applying 
the importance sampling technique to study stochastic reaction networks, in which 
each reaction rate is biased by a pre-determined constant, with the overall summa-
tion of reaction rates unchanged (Kuwahara & Mura, 2008). As the probability for 
reaction selection can be biased such that rare events are sampled more frequently 
while the time scale of the underlying reactions is maintained, significantly improved 
sampling efficiency for rare events was reported (Daigle et al., 2011; Kuwahara & 
Mura, 2008; Roh et al., 2011). However, the choice of bias constants strongly af-
fects the effectiveness of wSSA. When there are many reactions and the network 
is complex, the heuristic approach of determining bias constants by examining the 
reactions does not work (Kuwahara & Mura, 2008). As there is no general guidance 
in how bias constants should be chosen, poor choices may lead to estimations that 
are less accurate than the original SSA (Daigle et al., 2011).

Daigle et al. developed the doubly-weighted SSA (dwSSA) algorithm, in which a 
multilevel cross-entropy (CE) method is used iteratively to provide estimates of bias 
constants (Daigle et al., 2011). This is achieved by running long trial simulations 
until a fraction of the sampled trajectories reaches the target states (Daigle et al., 
2011). With this automated estimation, both reaction selection and the underlying 
time scale of reactions can be biased (Daigle et al., 2011).

A drawback of methods using constant biases such as wSSA and dwSSA is that 
the bias coefficients are global and state-independent, and are not influenced by the 
concentrations of molecules which evolve with time. As the apparent rate of a reac-
tion can vary dramatically depending on the copy number of molecules, the degree 
of bias for a reaction therefore need to be adjusted according to the available copy 
numbers of reactants. With globally fixed bias constants, a network with reactions 
of a wide range of rates will have over- and under-biased reactions, depending on the 
states of the system. As a result, estimated properties of a network will have large 
variance, making these methods unsuitable for complex networks (Roh et al., 2010).

Roh et al. developed a state-dependent biasing wSSA method (swSSA) (Roh et 
al., 2010). By empirically classifying reactions into groups of favored, disfavored, 
and neutral reactions, biases in selection probability for reactions in the first two 
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groups are calculated in a state-dependent fashion. The swSSA method can have 
better estimation accuracy and efficiency than the wSSA method (Roh et al., 2010), 
at the expense of about twice as many biasing parameters as that of the wSSA (Roh 
et al., 2010). Roh et al. further developed the state-dependent doubly weighted 
SSA method (sdwSSA), where reactions are further grouped into bins according 
to their selection probabilities, and are assigned different bias constants, which are 
automatically estimated using the cross-entropy method (Roh et al., 2011). How-
ever, the number of parameters to be estimated using sdwSSA is much larger than 
that of wSSA, dwSSA, and swSSA. For example, about 20 bias constants need to 
be estimated for a simple reversible isomerization system with only two reactions 
(Roh et al., 2011). Estimating a large number of bias constants needed for complex 
networks becomes difficult.

2.3.3 Adaptively Biased Sequential Importance 
Sampling for Rare Events (ABSIS)

To more efficiently sample rare events in biological networks, a novel biased sam-
pling method named adaptively biased sequential importance sampling (ABSIS) 
has been developed by adaptively adjusted bias of reactions based on look-ahead 
strategy. The method has shown that barrier-crossing can be engineered for efficient 
and accurate sampling of rare events (Cao & Liang, 2013). Based on the principle 
of sequential importance sampling, the ABSIS approach adopts the look-ahead 
strategy, a technique well-established in polymer and protein studies (Liang, Zhang, 
& Chen, 2002; Lin, Chen, & Liu, 2009; Meirovitch, 1982, 1988), to gather future 
information for design of bias parameters to enable effective barrier crossings (Liang 
et al., 2002; Lin et al., 2009; Liu, Chen, & Logvinenko, 2001; Meirovitch, 1982, 
1988). By enumerating short paths from the current state, bias coefficients are can 
be dynamically generated according to the need for barrier-crossing to effectively 
steer the sample paths towards the rare event destination. Unlike the dwSSA and 
sdwSSA methods, in which biases are fixed constants after parameter estimation, 
the biases in ABSIS for each reaction is dynamically determined based on exact 
calculation of the total probability of short κ-step forward- and backward-moving 
reaction paths, without the need of binning reaction rates. Reactions with higher 
probability of forward-moving are then encouraged, and reactions with higher 
probability of backward-moving are discouraged. Regardless of the number of re-
actions in the networks, the ABSIS only need to assign two bias parameters for the 
whole network: the degree to encourage forward-moving reactions and the degree 
to discourage backward-moving reactions, which both can be estimated through an 
efficient parameter estimation algorithm.
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3. DIRECT SOLUTIONS TO THE dCME

The discrete chemical master equation provides a fundamental framework for studying 
the full stochasticity of biological networks (Gillespie, 1977). Under the definition of 
biological networks, the combination of copy numbers of molecular species defines 
the microstate of the molecular interactions in the network. By treating microscopic 
states of molecular species explicitly, linear and nonlinear reactions (such as synthesis, 
degradation, dimeric binding, and multimerization) can all be effectively modeled 
as transitions between microstates, with transition rates determined by the physical 
properties of the molecules and the cell environment. The probability distribution 
or potential landscape (Ao et al., 2007; Cao & Liang, 2008; Cao et al., 2010) over 
these microstates and its time-evolving and steady state behavior provide a full 
description of the properties of a stochastic molecular network.

3.1 Finite State Projection (FSP) Method for 
Direct Solution of Time Evolution

As biological networks often involve synthesis reactions, such as protein synthesis, 
the size of the state space can be potentially infinite. The finite state projection 
(FSP) method is based on a truncated projection of the state space and uses nu-
merical techniques to compute direct solution to the dCME [29, 33]. Munsky and 
Khammash made two insightful observations. Denote two sets of indices of the 
microstates being chosen as J

1
 and J2 , and assume J J

1 2
⊆ . The truncated state 

spaces obtained by selecting states from J1  and J2  are SJ1  and SJ2 , and the cor-
responding rate matrices are AJ1  and AJ2 , respectively. The first observation is:

e eJ J

J

A A
2

1

1 0



 ≥ ≥ . 	 (36)

This assures that the time evolution probability distribution solved on the larger 
state space SJ2  is not smaller than that on SJ1 :

e eJ Jt

J J
t

J
A Ap S p S2

1
1

1

1
0 0



 ( ) ≥ ( ), , . 	 (37)

This inequality implies that by increasing the size of the selected subset of states, 
the approximation improves monotonically. The second observation is, if one obtains 
a truncated state space by selecting states contained in the index set J , and if 
1 0 1
T t

Je pAJ S ,( ) ≥ −  for  > 0 , then:
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e t et
J J

t
J

JA AJ p S p S p S, , , .0 0 1( ) ≤ ( ) ≤ ( ) + 	 (38)

That is, starting with the initial probability vector p SJ ,0( )  on the truncated 
state space, we can compute the probability vector in the truncated space as 
et J

JA p S ,0( )  at time t  using the truncated rate matrix AJ . If the inner-product of 
this vector with 1 is no less than 1− , the difference of this vector from the pro-
jected true vector p SJ t,( )  of the true probability p S, t( )  is also no more than 
1. This inequality guarantees that the approximation obtained with truncated state 
space will never exceed the actual solution, and its error is bounded by   (Munsky 
& Khammash, 2006).

These key observations led to the Finite State Projection algorithm, which it-
eratively adds more states to an initial truncated state space, until the approximation 
error is within a prescribed bound (Munsky & Khammash, 2006). The original 
Finite State Projection method was further extended (Munsky & Khammash, 2007), 
and it was recommended that the initial non-sparse probability vector p S,0( )  
should be determined by running a few steps of stochastic simulation discussed in 
a previous section.

Although the error due to state space truncation can be estimated (Munsky & 
Khammash, 2006), there are no systematic guidance and general strategy as to which 
states and how many of them should be incorporated to a finite projection to most 
effectively improve the approximation accuracy (Munsky & Khammash, 2006). 
Furthermore, the introduction of an absorption state where all truncated states are 
projected to will lead to accumulation of errors as time proceeds. As the absorbing 
state would eventually absorb all probability mass, the FSP method therefore is not 
appropriate for computing the steady state probabilistic landscape, as the approxima-
tion of the absorbing state will lead to errors that increase to 1 in the steady state.

3.2 Challenges to Direct Solutions: Enormous State Space

A complete identification and characterization of the space of the microstates is 
prerequisite to directly solve the dCME and obtain the full probability landscapes 
of a network. However, it is challenging to enumerate an optimal state space of a 
network.

A straight-forward method is to enumerate all microstates in the whole hyper-
cube space limited by the maximum copy numbers of reactants. The size of the state 
space enumerated using such a hyper-cube method is bounded by the product of the 
maximum copy numbers, which can be quickly inflated to enormity. For example, 
if there are 10 species, and each with a maximum of 30 molecules in the network, 
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without taking into consideration of the details of the network, the hyper-cube ap-
proach will generate a state space with 30 5 9 10

10 14= ×. states, which would easily 
exceed the memory capacity of most computers. However, the state space can be 
significantly reduced if detailed reaction schemes are considered during state space 
enumeration. There are many states that the system can never reach from a certain 
initial state. There are many states that no reaction can happen, therefore not 
needed. Alternatively, one can follow explicitly simulated reaction events by car-
rying out stochastic simulations. However, this approach cannot guarantee that all 
reachable states will be explored, therefore cannot guarantee full characterization 
of rare events. Moreover, it can be highly inefficient in enumerating microstate, 
because most of computing time will be spent on revisiting those high-probability 
states.

To address this challenging issue, Cao and Liang have developed a novel 
method, namely the finite buffer method (Cao & Liang, 2008), to significantly reduce 
the size of the state space of arbitrary biological network. The state space enu-
meration algorithm has been shown to be optimal in terms of time and space com-
plexity. The state space enumerated using the finite buffer method has been dra-
matically reduced comparing with the conventional hyper-cube approach (e.g. a 
reduction of factor 109  can be achieved in the MAPK network). Furthermore, the 
finite buffer method uses a reflective boundary, rather than the absorbing boundary 
state in the FSP method, therefore both time-evolving and steady state probability 
landscapes can be solved using the state space generated with the finite buffer 
method. Furthermore, the reflective boundary adopted in the finite buffer method 
allows the quantification for the truncation error in the steady state probability 
landscape (to be published).

3.3 State Space Enumeration and Transition 
Rate Matrix Construction

The technique of optimally enumerating microstates for a given initial condition 
now allows certain realistic systems to be studied using dCME, under the condition 
of finite buffer (Cao & Liang, 2008). Below we describe how microstates can be 
optimally enumerated. For a network with n  molecular species and m  reactions, 
we generate all microstates that the network can reach starting from a given initial 
condition, under the finite buffer constraint. We use a buffer queue of finite capac-
ity to represent a reservoir of molecular tokens. Each time when a synthesis reaction 
occurs, a buffer token is spent to generate the new molecule, and each time when a 
degradation reaction happens, a buffer token is released and deposited back to the 
buffer queue. Synthesis reaction is allowed to occur only if the buffer queue is not 
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exhausted. This is necessary due to the limitation of computing resources. As the 
microstate of a specific combination of copy numbers is x = ( )x xm1

, , , we add 
an additional virtual buffer species B  and its copy number b  to denote the number 
of currently available tokens in the buffer queue, namely, the number of net new 
molecules that can still be synthesized at current microstate. Therefore, the micro-
state vector of the network can be augmented as x = ( )x x bm1

, , ,  by adding the 
copy number of buffer token B . A synthesis reaction can only occur when b > 0  
in the finite buffer state enumeration algorithm.

Under these conditions, the set of all possible microstates that can be reached 
from an initial condition constitute the state space of the system. The set of allowed 
transitions is T = ( )Ti j, , in which ti j,  maps the microstate x j  to the microstate xi  
by one reaction. The initial state of the reaction system is given as: 
x 0 0 0 0 0

1 2( ) = ( ) ( ) ( ) ( )( )x x x bm, , , , , where xi 0( )  is the initial copy number 

of the i -th molecular species at time t = 0 , and b 0( )  is the predefined buffer 
capacity.

The finite buffer algorithm for enumerating the state space is summarized in the 
Algorithm in Figure 2. The state space and the reactions constitute a huge network 
with microstates as nodes and reactions as edges. The state space enumeration can 
then be projected to a network traversal problem. After initialization, the finite buf-
fer algorithm starts with the given initial microstate x 0( )  to generate all possible 
microstates with no consideration of reaction rates. Each reaction is examined in 
turn to determine if this reaction can occur from the current microstate. If so, and 
if the buffer is not used up, the state that this reaction leads to is generated. If the 
newly generated state has never been visited before, we declare it as a new state and 
add it to our collection of states for the state space. We repeat this process for all 
new states, with the aid of a stack data structure (Cormen, Leiserson, & Rivest, 
1990). This process terminates when all new states are exhausted (Cao & Liang, 
2008). Note that a queue data structure can also be used in place of the stack. Both 
data structure generate the exact same state space, but with different sequences, as 
using the stack corresponds to a depth-first search (DFS) of the network, while the 
queue corresponds to a breadth-first search (BFS) (Cormen et al., 1990).

Under the finite buffer constraint, the time complexity of this algorithm is opti-
mal. Since only unseen state will be pushed onto the stack, every state is pushed 
and popped at most once, and each state will be generated/visited at most twice 
before it is popped from the stack. As access to each state and to push/pop opera-
tions take O 1( )  time, the total time required for the stack operations is O Ω( ) , 
where Ω  is the state space. As the finite buffer algorithm examines all reactions for 
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each reached state, the complexity of total time required is O m Ω( ) , where m  is 

usually a modest constant (e.g. < 50). Based on the same argument, it is also easy 
to see that the algorithm is optimal in storage, as only valid states and valid transi-
tions are recorded. Using this algorithm, all states reachable from an initial condition 
within the finite buffer constraint will be accounted for, and no irrelevant states will 
be included. Furthermore, all possible transitions will be recorded, and no infea-
sible transitions will be attempted (Cao & Liang, 2008).

Figure 2. The finite buffer state space enumeration algorithm
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In the finite buffer algorithm, the reaction rates Ai j,{ }  between any two micro-
states x j  and xi  in the transition rate matrix A  for the dCME are computed fol-
lowing the same approach outlined in references (Gillespie, 1977; Munsky & 
Khammash, 2006; Schultz et al., 2007). We give further details in later sections on 
how this is done for two realistic networks. The transition rate matrix A  is highly 
sparse. We will also discuss numerical methods for finding the solutions to the 
dCME.

With this optimal method for dramatically reducing the state space and enumer-
ating the microstates of a finite system, numerical methods for solving large linear 
systems can be applied to efficiently solve the dCME. Realistic biological systems 
can now be directly studied, such as the decision network of phage lambda (Cao & 
Liang, 2008; Cao et al., 2010).

3.3.1 Open and Close Network, Buffer Capacity

The finite buffer method can be applied to efficiently enumerate state spaces for 
both open and closed networks. In closed networks, buffer queues are not neces-
sary for state space enumeration, only the initial state is required. In open networks, 
the capacity of the buffer queue introduced in the finite buffer method to limit the 
synthesis reactions actually put a restriction on the total mass of the network. That 
is, the state space enumerated using the finite buffer method consists of microstates 
that can be reached from the initial state and with total mass smaller than the limit 
of buffer capacity. Note that, by introducing a buffer queue to control the synthesis 
reaction, an open network is effectively transformed into a closed network, if con-
sidering the buffer queue as a virtual molecule.

3.3.2 State Space Enumeration as a Graph Traverse Problem

The state space and the transitions under a given initial condition can be considered 
as a directed graph G S T= ( ), , in which microstates are vertices, and allowed 
transitions between any two states are edges, i.e., reactions connecting two states. 
Two vertices x Sj ∈  and x Si ∈  are connected by a directed edge ti j, ∈T  if and 
only if x j  can be transformed to xi  through a reaction. As only states reachable 
from the specified initial state through one or more steps of reactions are concerned, 
the directed graph G  is a connected graph.

It can be shown that the finite buffer algorithm must generate a finite set of states 
when starting from an initial state with a specified buffer capacity. Our algorithm 
implicitly generates the graph G . Due to the finite set of reactions R  in the network, 
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G  will have a finite number of total child branches at any finite steps away from 
the initial state. Suppose the algorithm will not terminate in finite steps. Since each 
state is only visited no more than twice in the finite buffer algorithm, G  must have 
an unlimited depth. That is, there must exist an infinite path with all different mi-
crostate in the graph G  that starts from the initial state and extends to infinity. This 
is impossible for any initial condition, as each molecular species has a limited initial 
copy number, and the buffer capacity limits the number of new molecules that can 
be synthesized in open systems. Therefore, such infinite paths do not exist. The 
finite buffer algorithm therefore must terminate in finite steps to generate a finite 
state space.

3.4 Steady State Probability Landscape

The steady state probability landscape over the state space can be computed by 
directly solving the linear equation Aπ = 0 , where A  is the transition rate matrix 
constructed using the finite buffer method, and π  is the steady state probability 
distribution over the enumerated state space. The steady state probability distribu-
tion π  is a high-dimensional vector, it can be further projected to a lower dimen-
sional space of biological interest. A number of iterative numerical techniques can 
be applied to solve the equation, such as the Gauss-Seidel method (Golub & Van 
Loan, 1996) and the bi-conjugate gradient stabilized method (BiCGSTAB) (Saad, 
2003).

Alternatively, the transition rate matrix A  can be transformed into a probabil-
ity transition matrix M  following a uniformization step: M I A= + ∆t , where I  
is the identify matrix, and ∆t A

ii
≤ −( )1 / max  is the discrete time unit (Kachalo, 

Lu, & Liang, 2006; Stewart, 1994). Therefore, the steady state probability distribu-
tion can be equivalently obtained by solving the equation π π= M , which cor-
responds to the eigenvector of M  with respect to the eigenvalue . The Arnoldi 
method implemented in the software Arpack can be used to solve the eigenvalue-
eigenvector problem and compute the steady state distribution π  (Lehoucq, Sorensen, 
& Yang, 1998).

3.5 Time Evolving Probability Landscape

The time evolving probability landscape derived from the dCME can be expressed 
in the form of a matrix exponential: p pAt e t( ) = ( )0 , where p 0( )  is the initial 
probability landscape and A  is the transition rate matrix over the enumerated state 
space. Once p 0( )  is specified, p t( )  can be calculated using numerical methods 
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such as the Krylov subspace projection method, e.g., as implemented in the EX-
POKIT package by Sidje (Sidje, 1998). Other state-of-the-art numerical techniques 
can also be applied (Kazeev, Khammash, Nip, & Schwab, 2014).

3.6 Software Availability and Online Simulation Tools

A C++ language implementation for the finite buffer method software package has 
been made publicly available. One can download the source codes and executable 
binary programs from the URL http://tanto.bioe.uic.edu/dcme/. The software pack-
age includes four separate programs to perform the functions of (1) finite buffer 
state space enumeration, (2) transition matrix construction, (3) steady state prob-
ability landscape solution using the Successive Over Relaxation method, and (4) 
time evolution probability landscape solution using the EXPOKIT method (Sidje, 
1998), respectively. The website also includes simple examples to demonstrate the 
formats of input files.

For easier use of the tool, an online GUI simulation tool has been built recently 
for the finite buffer method at the nanoHUB computing grid. The online tool is also 
publicly available. One can open the URL https://nanohub.org/tools/fbsdcme in any 
Java supported browser, and click the “Lunch Tool” button to start the finite buffer 
software. To use the finite buffer software, one needs to input a SBML format reac-
tion network file and an initial condition file. The format for the initial condition 
file has been demonstrated in the finite buffer method website (http://tanto.bioe.
uic.edu/dcme/). In the SBML file of reaction network, the buffer species must be 
explicitly included in the species list, and also incorporated into the reactant list of 
all synthesis reactions and the product list of all degradation reactions.

4. EXAMPLES OF REALISTIC GENE REGULATORY NETWORKS

We now use two biological examples, namely the genetic toggle switch and the 
phage lambda lysogeny and lysis circuit, to show how stochastic gene regulatory 
networks can be modeled by directly solving the underlying discrete chemical master 
equation. We show how state spaces are enumerated and transition rate matrices 
are constructed using the finite buffer algorithm. We also show steady state and 
time evolving probability landscapes computed using the fb-dCME method, and 
we discuss interesting biological relevance. We show that the finite buffer dCME 
method can be used to answer important biological questions in stochastic gene 
regulatory networks.
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4.1 Genetic Toggle Switch

Toggle switch is one of the smallest genetic networks that can present bistability 
(Blake, KAErn, Cantor, & Collins, 2003; Schultz et al., 2007). It is a small network 
consisting of two genes, say, A and B. Single copies of gene A and gene B in the 
chromosome each encoding a protein product. The protein product of each gene 
represses the other gene: When two protein monomers associate, they bind to the 
appropriate operator site and repress the transcription of the other gene.

The molecular species and the network topology of a toggle switch model are 
shown in Figure 3. The reactions include: the synthesis and degradation of proteins 
A and B, with reaction constants denoted as s  and d , respectively; the binding and 
unbinding of the operator site of one gene by the protein products of the other gene 
at rate b  and u , respectively (Eqn. (39)). Here the reactions rates are chosen as: 
d s= −
1

1
, s s= −

100
1 , u s= −

0 1
1

. , b s= −0 00001 1. . The binding states of the two 
operator sites are “on-on/unbound-unbound”, “on-off/unbound-bound”, “off-on/
bound-unbound”, and “off-off/bound-bound”. The synthesis rates of both proteins 
A and B depend on the binding state of the operator sites (Cao & Liang, 2008; 
Schultz et al., 2007).

GeneA GeneA ProteinA
s

→ +  ,	

GeneB GeneB ProteinB
s

→ + ,	

ProteinA
d

→∅, ProteinB
d

→∅, 	

Figure 3. Genetic toggle switch
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2ProteinA GeneB BoundGeneB
b

+ →� , 	

2ProteinB GeneA BoundGeneA
b

+ →� , 	

BoundGeneB ProteinA GeneB
u

→ +2 , 	

BoundGeneA ProteinB GeneA
u

→ +2 . 	 (39)

4.1.1 State Space Enumeration

We first calculate the state spaces under the initial condition of 1 copy of unbound 
gene A, 1 copy of unbound gene B, 0 copies of bound gene A and bound gene B, 
and 1 copies of their protein products. We set the buffer size to different copies of 
total protein A and protein B combined that can be synthesized. When the buffer 
capacity is 20, the size of the state space is 764. At buffer capacity of 200, 400, and 
800 copies of proteins, the size increases to 79,604 states, 319,204 states, and 
1,278,404 states, respectively. A comparison of state space size between the finite 
buffer method and the conventional hypercube method is shown in Table 1. The 
finite buffer method has shown dramatic reductions in state space sizes. Moreover, 
the factor of reduction is increasing with the buffer capacity. In the following com-
puting results, we use the buffer capacity 300, and the finite buffer method generates 

Table 1. State space sizes of toggle switch network using different methods

Buffer Capacity Finite Buffer Method Hypercube Method Reduction Factor

 50   4 904,   1 5625 10
10

. ×   3 1862 10
6

. ×  

 100   19 804,   1 0 10
12

. ×   5 0495 10
7

. ×  

 200   79 604,   6 4 10
13

. ×   8 0398 10
8

. ×  

 300   179 404,   7 29 10
14

. ×   4 0635 10
9

. ×  

 400   319 204,   4 096 10
15

. ×   1 2832 10
10

. ×  
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a state space with 179,404 states. Therefore, the transition rate matrix A  is a 179,404 
dimensional sparse matrix.

4.1.2 Steady State Probability Landscape with Four Distinct Peaks

The exact probably landscape of the toggle switch model at steady state can be 
computed numerically. We choose the initial condition as: 1 copy of unbound gene 
A, 1 copy of unbound gene B, 0 copies of bound gene A and bound gene B, 0 cop-
ies of their protein products, and the buffer size for the total protein A and protein 
B combined to be b = 300 , meaning the total copy number of proteins A and B 
combined in the system cannot exceed 300  at any time. We can increase or decrease 
the buffer capacity to include or exclude states. We then enumerate the state space 
of the toggle switch using the finite buffer algorithm. The steady state probability 
landscape of the network can then be computed (Figure 4). The Figure 4 shows the 
steady state probability landscape projected on the 2D space of protein A and B 
copy numbers. With these chosen parameters, the toggle switch exhibits a clear 
multi-stability in the steady state probability landscape. The toggle switch shows 
four distinct macroscopic states, corresponding to the “ON/ON”, “ON/OFF”, “OFF/

Figure 4. Steady state probability landscape of toggle switch
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ON” and “OFF/OFF” configurations of the genetic circuits. Among them, the on/
off and off/on states are more prominent, and the on/on state has a low probability, 
and the off/off state is severely unstable showing a very narrow and spiky peak (Cao 
& Liang, 2008). This result has important biological implications in cancer biology 
(Shiraishi, Matsuyama, & Kitano, 2010) and stem cell biology (Bu et al., 2013).

4.1.3 Time Evolving Probability Landscapes

Using the same state space and transition rate matrix, we can also directly compute 
the exact time-evolving probably landscape of the toggle switch at different time 
points. Starting from the uniform distribution, the time-evolving probability land-
scape is computed using the EXPOKIT package with 0.01 second time interval. 
Figure 5 shows the snapshots of the time-evolving probability landscape at 6 dif-
ferent time points: t = 0 , 0 5. , 1, 2 , 4 , and 25  seconds, respectively. The time-
evolving probability landscapes have shown complex behavior of probability mass 
flows on the projected A-B 2D plane. At the very beginning, the probability of all 
states are equal ( t = 0 ), and then a multi-layered peak arises in the center of the 
plane ( t = 0 5. ), which is quickly separated into four thick peaks ( t =1). Gradu-
ally, the four thick peaks form the four different macroscopic states ( t = 2 , 4 , and 
25 ), and eventually converge to the steady state probability landscape ( t = 25 ). 
Interestingly, the relative heights of the four peaks are changing during the time 
evolution. For example, four peaks have nearly same probabilities at about t = 2 , 

Figure 5. Time evolving probability landscapes of toggle switch starting from uni-
form distribution
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but the probability of the off/off state becomes a few folds higher than the other 
three peaks at t s= 4 , and eventually the probabilities of the on/off and off/on states 
take most of the probability mass. The dynamic evolution of the landscape over 
time may be important in explaining biological behaviors of genetic circuits.

4.2 Phage Lambda Lysogeny-Lysis Epigenetic Switch

Bacteriophage lambda is a virus that infects E. coli cells. Of central importance is 
the molecular circuitry that controls phage lambda to choose between two produc-
tive modes of development, namely, the lysogenic phase and the lytic phase. In the 
lysogenic phase, phage lambda represses its developmental function, integrates its 
DNA into the chromosome of the host E. coli bacterium, and is replicated in cell 
cycles for potentially many generations. When threatening DNA damage occurs, 
for example, when UV irradiation increases, phage lambda switches from the epi-
genetic state of lysogeny to the lytic phase and undergoes massive replications in a 
single cell cycle, releases 50 100~  progeny phages upon lysis of the E. coli cell. 
This switching process is called prophage induction (Ptashne, 2004).

The molecular network that controls the choice between these two different 
physiological states has been studied extensively (Anderson & Yang, 2008; Arkin 
et al., 1998; Aurell, Brown, Johanson, & Sneppen, 2002; Jacob & Monod, 1961; 
Johnson et al., 1981; Little, Shepley, & Wert, 1999; Ptashne, 2004; Ptashne et al., 
1976; Shea & Ackers, 1985). All of the major molecular components of the network 
have been identified, binding constants and reaction rates characterized, and there 
is a good experimental understanding of the general mechanism of the molecular 
switch (Ptashne, 2004). Theoretical studies have also contributed to the illumination 
of the central role of stochasticity (Arkin et al., 1998) and the stability of lysogen 
against spontaneous switching (Aurell et al., 2002; Zhu, Yin, Hood, & Ao, 2004).

To study how lysogeny is maintained and how it transitions to the lytic state, one 
can use a simplified stochastic model for the molecular regulatory network that 
controls the epigenetic switch in phage lambda (Figure 6) (Cao et al., 2010). Using 
a total of 54 biochemical reactions involving 13 molecular species, this model ex-
plicitly includes key components, essential reactions, and cooperativities of the 
phage lambda decision circuitry. The effects of UV irradiation can be modeled by 
increasing the CI degradation rates kd  due to the response of the SOS system. This 
epigenetic network model can reach around 1.7 million microstates. The steady state 
probability associated with each of these microstates can be computed from dCME 
after the microstates are enumerated using the finite buffer algorithm (Cao et al., 
2010).
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4.2.1 Steady State Probability Landscapes Can Help to Reveal 
Control Mechanisms

Figure 7 (row 1) shows the probability landscape of the phage lambda at five dif-
ferent UV irradiation conditions, each modeled with a different CI degradation rate 
kd . Although there are 13 molecular species, the landscapes can be projected to 
the 2-dimensional subspace and record the total copy numbers of CI2 dimer and 
Cro2 dimer molecules. With a high copy number of CI2 repressor, the lysogenic 
phase of the phage lambda is maintained, whereas a high copy number of Cro2 
protein signifies the lytic phase (Johnson et al., 1981). A clear picture of the land-
scape in lysogeny, at the start of transition, during mid-transition, at the end of 
transition, and in lysis can be seen (Figure 7).

The stochastic network models can also be used to aid in understanding of the 
mechanism of how the decision network works. It is well known that cooperativity 
among proteins play important roles. After removing all cooperativities between 
neighboring proteins in the model, phage lambda cannot enter lysogeny regardless 
the dosage of the UV irradiation. However, when the cooperativity ∆G

12
 between 

two CI dimers when binding to operator sites OR1 and OR2 are restored, the lysog-
eny is largely restored (Figure 7, row 2). In contrast, if all other cooperativities are 
restored except �∆G

12
, phage lambda still lacks the ability to enter the lysogeny 

phase (Figure 7, row 3). These calculations suggest that the cooperativity ∆G
12

 
plays key roles in maintaining the stability of the circuit.

Figure 6. Phage lambda lysogeny-lysis genetic circuit
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An important property of biological stochastic network is its robustness against 
changes in the molecular components of the epigenetic network. Experimental stud-
ies showed that when the ordering of operator sites are changed, mutants of phage 
lambda have markedly different tolerance to UV irradiation. Calculations from 
solving the dCME model showed that the wild-type lysogeny has a high threshold 
towards lysis, and is overall insensitive to small fluctuation of UV dosage, if it is 
below certain threshold (Figure 8a). That is, the switching network of phage lambda 
is very stable and is strongly buffered with a high threshold against fluctuations 
in CI degradation rate due to environmental changes in UV irradiation. This high 
threshold against environmental fluctuations is important for the self-perpetuating 
nature of the epigenetic state of E. coli cells, allowing lysogeny to be passed on to 
its offspring. Once the degradation rate of CI reaches a threshold, phage lambda 
switches very efficiently to the lytic phase, and this efficiency is not built at the 
expense of stability against random fluctuation. Wild type phage lambda therefore 
can integrate signaling in the form of different CI degradation rates and can distin-
guish a true signal above the high threshold from random noise fluctuating below 
this threshold.

Figure 7. The probability landscape of the epigenetic circuits of lysogeny mainte-
nance in phage lambda
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In contrast, all mutant variants exhibit the behavior of a hair trigger, and require 
much less UV irradiation for the onset of lysis induction (Figure 8b-e). In addition, 
they are “leaky”, and respond in a graded fashion towards increase UV irradiation, 
instead of the well-behaved threshold behavior observed in wild type phage lamb-
da. In the case of mutant 1-2-3, the mutant phage lambda cannot enter lysogenic 
state. These results are in full agreement with experimental findings (Cao et al., 
2010; Little et al., 1999).

4.2.2 Time Evolving Probability Landscapes

The time-evolving probability landscape is computed using the EXPOKIT package 
starting from the uniform distribution. Figure 9 shows the snapshots of the time-
evolving probability landscape at 4 different time points at: t = 10 , 200 , 1000 , 
and 200 000,  second, respectively. The CI degradation rate is fixed as k sd =

−
0 0025

1
. . 

The time-evolving probability landscapes have shown the behavior of probability 
mass flows on the projected CI-Cro plane. The probability mass first flows towards 
the state CI=0, Cro=0, and forms a peak there at about t s=1000 . However, two 
stable peaks are eventually formed separately, and the landscape converges to the 
steady state probability landscape ( t s> 200 000, ).

5. DISCUSSIONS

In this chapter, we have discussed the significance of the discrete chemical master 
equation (dCME) as a theoretical framework for modeling nonlinear, biochemical 
reaction networks (Gillespie, 1977). This formulation provides a foundation to 
study stochastic phenomena in biological networks. Its role is analogous to that of 
the Schrödinger equation in quantum mechanics (Beard & Qian, 2008). Develop-

Figure 8. Instability, shallow threshold, and switching inefficiency of the network 
against fluctuation in UV irradiation in mutant phage lambda
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ing computational solutions to the dCME has important implications, just as the 
development of computational techniques for solving the Schrödinger equation for 
systems with many atoms is (Kohanoff, 2006; Kohn, Sham, & others, 1965). By 
computing the time-evolving probability landscape of cellular stochastic networks, 
we may gain understanding of the possible mechanisms of cellular states, as well as 
the inheritable phenotypes with a distributive epigenetic code, in which the network 
architecture and its landscape dictate the physiological meta-states of the cell under 
different conditions (Ptashne, 2007; Zhu et al., 2004).

Solving a given dCME, however, is a computationally challenging task at the pres-
ent time. We have outlined several key difficulties, as well as some of the progresses 
that have been made so far. The finite buffer algorithm allows direct numerical solu-
tion to the dCME for both steady state and time-evolving probability landscapes. It 
can be applied to study stochasticity of systems with a handful of particles, as well 
as larger networks arising from very realistic biological problem, such as that of the 
lysogeny-lysis control circuit of the phage lambda (Cao et al., 2010). As an exact 
method, the finite buffer method can also be used to study model systems of finite 

Figure 9. Time evolving probability landscapes of phage lambda genetic circuit at 
different time points
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size to gain insight into stochastic behavior of networks. The stochastic simulation 
algorithm offers the approach of studying the stochastic network through simula-
tions (Gillespie, 1977). The formulation of stochastic differential equation such as 
the Langevin equation allows exploration of more complex stochastic systems, at 
the expense of less rigorous assumptions and perhaps more errors.

An important task is to integrate different stochastic methods for efficient com-
putational solution of complex stochastic networks at large scale, with controlled 
accuracy. For example, one may apply the finite buffer algorithm to solve dCME 
directly for certain critical parts of the network, where rare events need to be as-
sessed very accurately. Other parts of the network where general stochastic behavior 
needs to be determined can be studied using the Langevin equation. In addition, one 
may also wish to apply the stochastic simulation algorithm to certain parts of the 
network to probe their behavior. Furthermore, one may wish to apply ordinary dif-
ferential equation (ODE) models to study parts of the system where copy numbers 
of molecules are large and there are little stochastic effects.

A great challenge is to develop a general strategy so the best methods can be ap-
plied to specific parts of the network and the results integrated to provide an overall 
picture of the stochastic dynamic behavior of the network. It would be desirable that 
the resulting errors due to approximations of varying degree are bounded within a 
tolerance level, while maintaining necessary computing speed and resource require-
ment. A further challenge is to develop such hybrid methods to compute the overall 
spatio-temporal stochastic dynamic properties of different cellular compartments, 
multi-cellular tissue, with consideration of different spatial distribution or gradient 
of molecules such as oxygen, nutrient, morphogens, and other signaling factors, all 
with stochasticity appropriately considered.
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