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Abstract— Stochasticity plays important roles in regulation than the fold change the signal molecules. The discovery of
of biochemical reaction networks when the copy numbers of SF was based on extensive simulations using the Stochastic
mc_JIecuIar species are small. Studies based on Stoc_hastlc Simu-gimulation Algorithm (SSA). However, it was assumed that
lation Algorithm (SSA) has shown that a basic reaction system . . .
can display stochastic focusing (SF) by increasing the sensitivity enzyme moIeCl_JIes (_jo not experlence_ﬂuctuatlon prior to Fhe
of the network as a result of the signal noise. Although SSA has onset of alterations in the number of signal molecules, which
been widely used to study stochastic networks, it is ineffective models the changes in the environment. This assumption is
in examining rare events and this becomes a significant issue ynrealistic in low-copy enzymatic reactions. Milias-Argeitis

when the tails of probability distributions are relevant as is ; ; ; ;
the case of SF. Here we use the ACME method fo solve the et. al suggested a possible noise suppression mechanism for

exact solution of the discrete Chemical Master Equations and the same enzymatic reaction, when there is a small and

to study a network where SF was reported. We showed that the fluctuating number of active enzymes [5]. The underlying SF
level of SF depends on the degree of the fluctuations of signal phenomena was estimated by approximating the mean and
molecule. We discovered that signaling noise under certain standard deviation of the steady state probability landscape
conditions in the same reaction network can lead to a decrease ot polacyles. This approach, however, is problematic when
in the system sensitivities, thus the network can experience - . . -

stochastic defocusing. These results highlight the fundamental probability landscape exhibits multlstabl_llty, where the mean
role of stochasticity in biological reaction networks and the need Of the overall landscape does not describe the most probable

for exact computation of probability landscape of the molecules states of the system.
in the system.

. INTRODUCTION Although stochastic simulation algorithm has been widely

Understanding how biochemical reaction networks 1‘unclJS(Ed o stgd_y t_he behavpr of b|qchem|ca| reaction net-
orks [6], it is ineffective in examining rare events. For

tion is essential to investigate important cellular processe‘é’. . . e
Reaction networks are often stochastic due to random th _amplle, the convergence of su.ch simulations is difficult to
mal fluctuations, when the copy numbers of moleculd etermine [13], and the errors in the sampled steady state

species are small [1], [2]. For example, stochasticity playgrobablllty landscape are unknown. The discrete Chemical

critical roles in determining cellular fate, as in the example aster Equation (dCME) provides a gene_ral framewprk
; P PAr modeling of such networks [7], [8]. Solving dCME is

of stochastic switch between the lysogenic state and the Iyt ; . ) L ;

state in phage lambda [10] and the transition into and fro aIIengmg, since _amalyncal solution is .not possible and

competence in thiacillus subtilis [3]. computational solutions are challenged with the problem of
In an enzymatic reaction system with a few copy numbé?rge state space.

of enzyme molecules, the reactions of the system can exhibit

the behavior of stochastic focusing (SF) when responding Here we used the recently developed Accurate Chemical

to the fluctuating signal molecules [4]. SF is observetaster Equation (ACME) method [9]-[12] to study the

when the fold change of the product molecules is morphenomenon of stochastic focusing, which allows optimum

enumeration of the state space according to predefined error
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[I. MODELS AND METHODS [1l. RESULTS
A. Discrete Chemical Master Equation A. Stochastic Focusing (SF) in enzymatic reaction system

Consider a well-mixed biochemical system with constant Here we study a simple network of three molecular
volume and temperature containsmolecular speciesY;, species, where the degradation rate of théntermediate)
which participate inm reactions R, with reaction rate molecule is determined by the copy number of thésignal)
constantsr,. At time ¢, the microstate of the system molecule. The basic enzymatic reaction system is taken
is represented by the non-negative integer column vefrom [4]. The molecular species and reactions are shown

tor of copy numbers of each molecular specie$t) = below: s

(z1(t),22(t),- - , 2, (t))T, where” is the transpose. The A é] Ny N

general form for a reactiom?, (k = 1,2,---,m) with ka ka

Intrinsic ratery, 1s This network consists of three molecular species: enzyme
X1+ e Xn D Xy 4+ o X, S, intermediate/, and productP. Following Paulsonn et.

al [4], we take the synthesis rate S§fas ks = 10ky. After
which transitions the system from a microstateto ;. The  the system reaches the steady state, we shift the synthesis
difference betweer; andx; is the stoichiometry vectas,  (ate of S to ks = 5ky. Here we analyze how changes
of the reactionRy: sy = x; — &; = (s, 52k, snk)” = in the S molecule affects changes in the molecule by
(Chp—Cik, Chy,—Cak, =+, Cr—car)” € Z™. The stoichiom-  cajculating the sensitivity of the system, which is theaati
etry matrix S for all the reactions in the network is definedpetween the fold change iR molecule and the fold change
as:§ = (s1,82,°-,8m,) € Z"*™, where each column 5 g molecule. In contrast to previous work [4], the network
represents a single reaction. The raig(x;, x;) of reaction s modeled as a stochastic system both before and after
Ry that brings microstate frome; to x; is determined ghjfting the synthesis rate of the signaling molecSileFor
by the intrinsic rate constant, and the combination of 3 deterministic system, the sensitivity is expected to be

the reactants in the current microstate: Ax(wi,®;) = 1. When SF is observed, the sensitivity of the system is
Ap(xs) =i H ) greater than 1. When stochastic defocusing is observed, the
Cik sensitivity of the system is less than 1. Due to the nature of

I=1 ] . .
hThi state spacé 'S t.h? set of _aII pps_,s_|blle m(';r_OStatesthe network, the direction of change is always opposite in
that the system can visit from a given Initial condition OVeiyirection for § and P molecules, asS molecules catalyze

time : S N w(t)|a:(0), t. € (0,0)}. The probablllty.(')f the degradation of molecules, from whichP molecules are

each microstate at time is p(x(t)), and the probability synthesized.

distribution at timet over th_e whole state space Mt)_ — We first reproduced previously observed sensitivity [4] by

{(p((t)|(t) € S)}. p(t) is also called theprobability  g4\ing the ODE solution of the steady state of the system

landscapeof the netV\_/ork [10]. . . for the synthesis rate of as k; = 10k, and the dCME
The dCME of a microstate: = =(t) is defined as: solution of the steady state of system when the shifting of

dp(x) , , , the synthesis rate of to k, = 5k4. The corresponding ODE
at ;[A(w 2)p(a) - Al@, 2)p(@)] system is defined as following:
wherex’ # x. This equation can be further represented ir@ = ky—[S)kaq, % = k1 —[S][1ka, % = [Ikp—[P]ka.

matrix form: 28 — ATp(1) For anyz,, ; € S, where _ N
A € RISIXISI is called the transition rate matrix formed by The steady state solution of ODE and the probability

the collection of allA(z;, z;): Iandscape for thé gndP molecules beforg and after the
shift are shown in Fig. 1. Thex2fold change inS molecule
- Z Ap(wi, @), = =w;, results in 2.7% fold change in theP molecule. This gives
A=Az, z;)| = iy a sensitivity value of 1.38, which is similar to the value of
Ap(xi,x)), xi # ). ~1.40 observed in [4].

B. ACME Method 02 .

The ACME method has been recently developed to op- .. \i‘
timally enumerate state space of an arbitrary biological : :
network. It can be used to compute the probability landscape
of the dCME, for any given initial condition [9]-[12]. When
the network is an open systermg. containing synthesis i
and degradation reactions, reactions are partitioned into ~  NumberofSMolecules
mdependent.group.s. EaCh. group .shares Commo.n. molecy |gr. 1. The steady state probability landscape and ODE isokiof the
species and is equipped with a finite buffer for efficientestaty 24 p molecules.
enumeration, with the same limit of the total copy number
of species in the state space as that of the conventionalWe then examined the reaction system by modeling it
hypercube methods. Details can be found in [9]-[12].  stochastically both before and after the shift. The congbute
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TABLE |

THE REACTION SCHEMES THAT ARE USED FOR SYNTHESIS AND 0. Gy Sensitivity = 1.25
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k k ’ 0hs Sensitivity = 1.12
Ry:65 40 | Ry:85 40 o.le% 92\
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“T ok s Sensitivity = 1.06
. . - 0.1 % ;
time evolution and the steady state probability landscape f ?\ﬁm 83
the S and P molecules are shown in Fig. 2. The<2old e 0 B MR W & W
. . . i ols Sensitivity = 1.04
change inS molecule results in 2.36 fold change in the O A st A
P molecule. This gives a sensitivity value of 1.18, which is o = B BT
far less than the value ©f1L.40 observed when the system is Number of S molecules  Number of P molecules

assumed to be deterministic before the shift [4].
Fig. 3. Steady state probability landscape for molecSlesd P before and
after shift, under different reaction schemes for synthesid degradation

(@ of S molecule. The sensitivity of the system for each schemesis sthown.

oo

C. Stochastic Defocusing is observed whgmolecule is
synthesized under Silgl model

We then introduced the Scholgl model as the system
controlling the synthesis and the degradation of thie
molecule to understand the behavior of system when the
signal molecules exhibit bi-stability. We altered the mean
number ofS molecules by changing the reaction rates and
calculated how it affects th2 molecule. The reaction system
) that S molecule undergoes is modeled as the following:
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Fig. 2. Probability landscape of th¢and P molecules. (a) Time evolution
probability landscapes of th8 and the P molecules. (b) The steady-state k k
probability landscapes of and P molecules. R3: B = S, Ry:S = B.

We found that when the altered number of thienolecules
B. The sensitivity and the degree of the SF of the systemdgcreases 3.94 fold, the number of theP molecules
determined byS molecule distribution increases only 2.36 fold. This indicates that the system

. . experiences stochastic defocusing, its sensitivity isy onl
We further examined the reaction systems when the SyQ'g%/g 91 = 0.60 (Fig 4.) g y sy

thesis and the degradation rates of tBemolecules are
different to study SF under different signaling noise. We

calculated the steady-state probability landscape aind T T
P molecules, as well as the sensitivity of the system for 200 0%
each of different reaction schemes (Table 1): Ton 3"
We found that Schemes 3, 4, 7 and 8 do not lead to any £ g
increase in the sensitivity of the system, hence the SF is oo
not observed (Fig. 3). However, Schemes 1 and 5 exhibit o % w % o w % w
Number of S Molecules Number of P Molecules

strong SF, Schemes 2 and 6 exhibit moderate SF. These

results demonstrated that, in this network, the distréuti Fig. 4. Steady state probability landscape for molecufleand P. The
of the signal noise determines quantitatively the degree ofimber ofS molecules is determined by Scholgl model

stochastic focusing.



D. Noise induced bi-stability and stochastic focusing that calculates mean and standard deviation of the steady

We then expanded our investigation and studied the foptate distribution ofP molecule, as the mean behavior of

lowing reactions scheme for the synthesis and degradatiif System does not correspond to the high probabilitystate
of the S molecule: This observation is also not possible by SSA, as it cannot

. 3 capture the low probability events and the system will kkel
Ry :0-32S, Ry:25-%0. be stuck at the highest probability peak, when there is no
Stochastic Focusing.

The distribution of the” molecule is monostable. How- Overall, our results suggest that stochastic behavior such

ever, when the mean number of tisemolecule is altered
by changing the reaction rates, the distribution of tRe
molecule exhibits bi-stability (Fig. 5). In this case, the
reaction system experiences an enormous stochastic hgcus
with a sensitivity of 5.43 if the reaction system shifts te th
second peak. If the reaction system shifts to the first péak, t
system does not experience much stochastic focusing with
sensitivity of 1.08.

focusing and defocusing is dictated by multiple factors
including signal molecul&' distributions before and after the
alteration, the nature of these distributions (i.e, ddferdis-
{ributions for synthesis and degradation of signal molecul
monostable to bistable switches) and the number of stable
sg:ltes that the product moleculecan have.
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Fig. 5. Steady state probability landscape for molecleand P when
the distribution of P molecule experience a bistable behavior due to the (3]
shift in the mean number of molecules.

IV. CONCLUSION [4]

We studied the phenomenon of Stochastic Focusing based
on the results of exact calculation of the probability land-s
scape of the underlying enzymatic reaction system, where
signal molecules follow different noise distributions. We
showed that when the distribution of the number of thepg
signalling molecules in the system shift from a deter-
ministic process to a noisy Poissonian process, previousIV]
observed [4] stochastic focusing is at play. However, thegg)
assumption of system with a deterministic process befae th
shift is unrealistic as the low copy number of the molecules
leads to non-negligible stochasticity before the shifthie t [g
system. We showed that, in this case, stochastic focusing is
diminished. [10]

We also studied the phenomenon of SF under different
signalling molecule distributions. We showed that the leve
the SF greatly depends on the distribution of signal momcul[ll]
as SF is diminished under certain conditions. We also studie
system when the signal molecule follow a bi-stable Scholgl
model. We showed that the system can experience stro%‘lﬁ
Stochastic Defocusing with a sensitivity smaller than 1isTh
finding is the first discovery of the Stochastic Defocusing i3]
this enzymatic reaction system.

We also found that under certain distributions, shift in the
S molecule causes a monostable to bistable shift infhe
molecule. In this case, the sensitivity of the system, héinee
stochastic focusing, depends on which peak fhmolecule
is located. This finding cannot be observed by using methods

the Chicago Biomedical Consortium are gratefully acknowl-
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