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Abstract— Stochasticity plays important roles in regulation
of biochemical reaction networks when the copy numbers of
molecular species are small. Studies based on Stochastic Simu-
lation Algorithm (SSA) has shown that a basic reaction system
can display stochastic focusing (SF) by increasing the sensitivity
of the network as a result of the signal noise. Although SSA has
been widely used to study stochastic networks, it is ineffective
in examining rare events and this becomes a significant issue
when the tails of probability distributions are relevant as is
the case of SF. Here we use the ACME method to solve the
exact solution of the discrete Chemical Master Equations and
to study a network where SF was reported. We showed that the
level of SF depends on the degree of the fluctuations of signal
molecule. We discovered that signaling noise under certain
conditions in the same reaction network can lead to a decrease
in the system sensitivities, thus the network can experience
stochastic defocusing. These results highlight the fundamental
role of stochasticity in biological reaction networks and the need
for exact computation of probability landscape of the molecules
in the system.

I. INTRODUCTION

Understanding how biochemical reaction networks func-
tion is essential to investigate important cellular processes.
Reaction networks are often stochastic due to random ther-
mal fluctuations, when the copy numbers of molecular
species are small [1], [2]. For example, stochasticity plays
critical roles in determining cellular fate, as in the examples
of stochastic switch between the lysogenic state and the lytic
state in phage lambda [10] and the transition into and from
competence in theBacillus subtilis [3].

In an enzymatic reaction system with a few copy number
of enzyme molecules, the reactions of the system can exhibit
the behavior of stochastic focusing (SF) when responding
to the fluctuating signal molecules [4]. SF is observed
when the fold change of the product molecules is more
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than the fold change the signal molecules. The discovery of
SF was based on extensive simulations using the Stochastic
Simulation Algorithm (SSA). However, it was assumed that
enzyme molecules do not experience fluctuation prior to the
onset of alterations in the number of signal molecules, which
models the changes in the environment. This assumption is
unrealistic in low-copy enzymatic reactions. Milias-Argeitis
et. al suggested a possible noise suppression mechanism for
the same enzymatic reaction, when there is a small and
fluctuating number of active enzymes [5]. The underlying SF
phenomena was estimated by approximating the mean and
standard deviation of the steady state probability landscape
of molecules. This approach, however, is problematic when
probability landscape exhibits multistability, where the mean
of the overall landscape does not describe the most probable
states of the system.

Although stochastic simulation algorithm has been widely
used to study the behavior of biochemical reaction net-
works [6], it is ineffective in examining rare events. For
example, the convergence of such simulations is difficult to
determine [13], and the errors in the sampled steady state
probability landscape are unknown. The discrete Chemical
Master Equation (dCME) provides a general framework
for modeling of such networks [7], [8]. Solving dCME is
challenging, since analytical solution is not possible and
computational solutions are challenged with the problem of
large state space.

Here we used the recently developed Accurate Chemical
Master Equation (ACME) method [9]–[12] to study the
phenomenon of stochastic focusing, which allows optimum
enumeration of the state space according to predefined error
tolerance, and can directly calculate the solution of the
dCME for the enzymatic reaction system described in [4].
We investigated the behavior of the reaction system under
different distributions of noise of the signaling molecules.
Our results showed that the phenomenon of SF is diminished
if the birth and death of signaling molecule follows a Poison
process both before and after changing the conditions instead
of following a Poisson process only after changing the condi-
tions. Furthermore, we used a bi-stable Shlögl model for the
synthesis and degradation of signaling molecule and report
the discovery the phenomenon of stochastic defocusing in
the same system under certain conditions.



II. M ODELS AND METHODS

A. Discrete Chemical Master Equation

Consider a well-mixed biochemical system with constant
volume and temperature containsn molecular speciesXi,
which participate inm reactionsRk with reaction rate
constantsrk. At time t, the microstate of the system
is represented by the non-negative integer column vec-
tor of copy numbers of each molecular species:x(t) =
(x1(t), x2(t), · · · , xn(t))

T , where T is the transpose. The
general form for a reactionRk (k = 1, 2, · · · ,m) with
intrinsic raterk is

c1kX1 + · · ·+ cnkXn
rk→ c′1kX1 + · · ·+ c′nkXn,

which transitions the system from a microstatexi to xj . The
difference betweenxi andxj is the stoichiometry vectorsk
of the reactionRk: sk = xj − xi = (s1k, s2k, · · · , snk)T =
(c′1k−c1k, c

′
2k−c2k, · · · , c′nk−cnk)

T ∈ Z
n. The stoichiom-

etry matrixS for all the reactions in the network is defined
as: S = (s1, s2, · · · , sm) ∈ Z

n×m, where each column
represents a single reaction. The rateAk(xi,xj) of reaction
Rk that brings microstate fromxi to xj is determined
by the intrinsic rate constantrk and the combination of
the reactants in the current microstatexi: Ak(xi,xj) =

Ak(xi) = rk
n
∏

l=1

(

xl

clk

)

.

The state spaceS is the set of all possible microstates
that the system can visit from a given initial condition over
time t: S = {x(t)|x(0), t ∈ (0, θ)}. The probability of
each microstate at timet is p(x(t)), and the probability
distribution at timet over the whole state space isp(t) =
{(p(x(t))|x(t) ∈ S)}. p(t) is also called theprobability
landscapeof the network [10].

The dCME of a microstatex = x(t) is defined as:

dp(x)

dt
=

∑

x′

[A(x′,x)p(x′)−A(x,x′)p(x)]

wherex′ 6= x. This equation can be further represented in
matrix form: dp(t)

dt
= ATp(t) For anyxi, xj ∈ S, where

A ∈ R
|S|×|S| is called the transition rate matrix formed by

the collection of allA(xi,xj):

A = ‖A(xi,xj)‖ =











−
∑

x′∈S,

x′ 6=xi

Ak(xi,x
′), xi = xj ,

Ak(xi,xj), xi 6= xj .

B. ACME Method

The ACME method has been recently developed to op-
timally enumerate state space of an arbitrary biological
network. It can be used to compute the probability landscape
of the dCME, for any given initial condition [9]–[12]. When
the network is an open system,i.e., containing synthesis
and degradation reactions, reactions are partitioned into
independent groups. Each group shares common molecular
species and is equipped with a finite buffer for efficient state
enumeration, with the same limit of the total copy number
of species in the state space as that of the conventional
hypercube methods. Details can be found in [9]–[12].

III. R ESULTS

A. Stochastic Focusing (SF) in enzymatic reaction system

Here we study a simple network of three molecular
species, where the degradation rate of theI (intermediate)
molecule is determined by the copy number of theS (signal)
molecule. The basic enzymatic reaction system is taken
from [4]. The molecular species and reactions are shown
below:

∅
ks

⇆
kd

S, ∅
ka[S]

⇆
kd

I
kp

−→ P
kt−→ ∅

This network consists of three molecular species: enzyme
S, intermediateI, and productP . Following Paulsonn et.
al [4], we take the synthesis rate ofS as ks = 10kd. After
the system reaches the steady state, we shift the synthesis
rate of S to ks = 5kd. Here we analyze how changes
in the S molecule affects changes in theP molecule by
calculating the sensitivity of the system, which is the ratio
between the fold change inP molecule and the fold change
in S molecule. In contrast to previous work [4], the network
is modeled as a stochastic system both before and after
shifting the synthesis rate of the signaling moleculeS. For
a deterministic system, the sensitivity is expected to be
1. When SF is observed, the sensitivity of the system is
greater than 1. When stochastic defocusing is observed, the
sensitivity of the system is less than 1. Due to the nature of
the network, the direction of change is always opposite in
direction for S andP molecules, asS molecules catalyze
the degradation ofI molecules, from whichP molecules are
synthesized.

We first reproduced previously observed sensitivity [4] by
solving the ODE solution of the steady state of the system
for the synthesis rate ofS as ks = 10kd and the dCME
solution of the steady state of system when the shifting of
the synthesis rate ofS to ks = 5kd. The corresponding ODE
system is defined as following:

d[S]

dt
= ks−[S]kd,

d[I]

dt
= k1−[S][I]ka,

d[P ]

dt
= [I]kp−[P ]ka.

The steady state solution of ODE and the probability
landscape for theS andP molecules before and after the
shift are shown in Fig. 1. The 2× fold change inS molecule
results in 2.75× fold change in theP molecule. This gives
a sensitivity value of 1.38, which is similar to the value of
∼1.40 observed in [4].
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Fig. 1. The steady state probability landscape and ODE solutions of the
S andP molecules.

We then examined the reaction system by modeling it
stochastically both before and after the shift. The computed



TABLE I

THE REACTION SCHEMES THAT ARE USED FOR SYNTHESIS AND

DEGRADATION OFS MOLECULE

Scheme 1: Scheme 2:

R1 : ∅
ks
→ 2S R1 : ∅

ks
→ S

R2 : S
kd
→ ∅ R2 : 3S

kd
→ ∅

Scheme 3: Scheme 4:

R1 : ∅
ks
→ S R1 : ∅

ks
→ S

R2 : 5S
kd
→ ∅ R2 : 7S

kd
→ ∅

Scheme 5: Scheme 6:

R1 : ∅
ks
→ S R1 : ∅

ks
→ S

R2 : 2S
kd
→ ∅ R2 : 4S

kd
→ ∅

Scheme 7: Scheme 8:

R1 : ∅
ks
→ S R1 : ∅

ks
→ S

R2 : 6S
kd
→ ∅ R2 : 8S

kd
→ ∅

time evolution and the steady state probability landscape for
the S andP molecules are shown in Fig. 2. The 2× fold
change inS molecule results in 2.35× fold change in the
P molecule. This gives a sensitivity value of 1.18, which is
far less than the value of∼1.40 observed when the system is
assumed to be deterministic before the shift [4].
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Fig. 2. Probability landscape of theS andP molecules. (a) Time evolution
probability landscapes of theS and theP molecules. (b) The steady-state
probability landscapes ofS andP molecules.

B. The sensitivity and the degree of the SF of the system is
determined byS molecule distribution

We further examined the reaction systems when the syn-
thesis and the degradation rates of theS molecules are
different to study SF under different signaling noise. We
calculated the steady-state probability landscape ofS and
P molecules, as well as the sensitivity of the system for
each of different reaction schemes (Table 1):

We found that Schemes 3, 4, 7 and 8 do not lead to any
increase in the sensitivity of the system, hence the SF is
not observed (Fig. 3). However, Schemes 1 and 5 exhibit
strong SF, Schemes 2 and 6 exhibit moderate SF. These
results demonstrated that, in this network, the distribution
of the signal noise determines quantitatively the degree of
stochastic focusing.

Sensitivity = 1.25

Sensitivity = 1.17

Sensitivity = 1.08

Sensitivity = 1.05

Sensitivity = 1.22

Sensitivity = 1.12

Sensitivity = 1.06

Sensitivity = 1.04

P
ro

b
a

b
ili

ty

Number of S molecules Number of P molecules

Fig. 3. Steady state probability landscape for moleculesS andP before and
after shift, under different reaction schemes for synthesis and degradation
of S molecule. The sensitivity of the system for each scheme is also shown.

C. Stochastic Defocusing is observed whenS molecule is
synthesized under Schölgl model

We then introduced the Schölgl model as the system
controlling the synthesis and the degradation of theS
molecule to understand the behavior of system when the
signal molecules exhibit bi-stability. We altered the mean
number ofS molecules by changing the reaction rates and
calculated how it affects theP molecule. The reaction system
thatS molecule undergoes is modeled as the following:

R1 : A+ 2S
k1→ 3S, R2 : 3S

k2→ A+ 2S,

R3 : B
k3→ S, R4 : S

k4→ B.

We found that when the altered number of theS molecules
decreases 3.91× fold, the number of theP molecules
increases only 2.35× fold. This indicates that the system
experiences stochastic defocusing, its sensitivity is only
2.35/3.91 = 0.60 (Fig 4.).
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Fig. 4. Steady state probability landscape for moleculesS and P . The
number ofS molecules is determined by Schölgl model



D. Noise induced bi-stability and stochastic focusing

We then expanded our investigation and studied the fol-
lowing reactions scheme for the synthesis and degradation
of theS molecule:

R1 : ∅
ks→ 2S, R2 : 2S

kd→ ∅.

The distribution of theP molecule is monostable. How-
ever, when the mean number of theS molecule is altered
by changing the reaction rates, the distribution of theP
molecule exhibits bi-stability (Fig. 5). In this case, the
reaction system experiences an enormous stochastic focusing
with a sensitivity of 5.43 if the reaction system shifts to the
second peak. If the reaction system shifts to the first peak, the
system does not experience much stochastic focusing with a
sensitivity of 1.08.
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Fig. 5. Steady state probability landscape for moleculesS andP when
the distribution ofP molecule experience a bistable behavior due to the
shift in the mean number ofS molecules.

IV. CONCLUSION

We studied the phenomenon of Stochastic Focusing based
on the results of exact calculation of the probability land-
scape of the underlying enzymatic reaction system, where
signal molecules follow different noise distributions. We
showed that when the distribution of the number of the
signalling molecules in the system shift from a deter-
ministic process to a noisy Poissonian process, previously
observed [4] stochastic focusing is at play. However, the
assumption of system with a deterministic process before the
shift is unrealistic as the low copy number of the molecules
leads to non-negligible stochasticity before the shift in the
system. We showed that, in this case, stochastic focusing is
diminished.

We also studied the phenomenon of SF under different
signalling molecule distributions. We showed that the level of
the SF greatly depends on the distribution of signal molecule,
as SF is diminished under certain conditions. We also studied
system when the signal molecule follow a bi-stable Schölgl
model. We showed that the system can experience strong
Stochastic Defocusing with a sensitivity smaller than 1. This
finding is the first discovery of the Stochastic Defocusing in
this enzymatic reaction system.

We also found that under certain distributions, shift in the
S molecule causes a monostable to bistable shift in theP
molecule. In this case, the sensitivity of the system, hencethe
stochastic focusing, depends on which peak theP molecule
is located. This finding cannot be observed by using methods

that calculates mean and standard deviation of the steady
state distribution ofP molecule, as the mean behavior of
the system does not correspond to the high probability states.
This observation is also not possible by SSA, as it cannot
capture the low probability events and the system will likely
be stuck at the highest probability peak, when there is no
Stochastic Focusing.

Overall, our results suggest that stochastic behavior such
focusing and defocusing is dictated by multiple factors
including signal moleculeS distributions before and after the
alteration, the nature of these distributions (i.e, different dis-
tributions for synthesis and degradation of signal molecule,
monostable to bistable switches) and the number of stable
states that the product moleculeP can have.
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