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Abstract—In this study, we focus on the following question:
do genomic regions enriched in cancer variant mutations have
significantly different chromatin folding patterns? We utilize
publicly available Hi-C data to characterize chromatin folding
patterns in healthy (GM12878) and cancer (K562) cells based on
status of A/B compartmentalization and random vs non-random
chromatin physical interactions. We then perform statistical
testing to assess if chromatin folding patterns in cancer variant-
enriched loci are significantly different from non-enriched loci.
Our results indicate that loci with cancer variant status have
significantly altered (FDR < 0.05) chromatin folding patterns.

Index Terms—Chromatin folding, Hi-C, Nuclear organization,
Cancer

I. INTRODUCTION

Nuclear organization plays a fundamental role in genomic
regulation. To understand this organization, analysis of 3-
D chromatin structure is important as it allows insight into
important cellular processes such as DNA replication and gene
transcription [1].

Advances in experimental techniques, such as high-
throughput chromosome conformation capture (3C, 5C, Hi-
C) [2], [3], have increased our understanding of nuclear
organization by quantifying pairwise interaction frequencies
among genomic loci. Coarse-grained analysis of Hi-C interac-
tion data has revealed the presence of two primary genomic
compartments: 1) the A compartment associated with gene
rich regions undergoing active gene transcription; 2) the B
compartment associated with gene poor regions and relatively
inactive gene transcription [3]. Furthermore, genomic regions
with the same compartment status were found to preferentially
interact with each other [3].

In this study, we explore how cancer-associated mutations in
non-coding regions are related to nuclear organization. With
the rapid advent of cancer genome projects, many mutation
variants have been identified in different cancer types. Previous
studies on cancer-related variants in chromatin structure have
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focused on topologically associated domains (TADs) [4],
specifically, whether TAD boundaries are disrupted in cancer
cells [5]. The effects of cancer somatic mutation rates on
genomic A/B compartments has also been examined [15].

While most variants in tumor samples lie in non-coding
regions [8], to the best of our knowledge, their roles in
nuclear organization have not been elucidated. In this work, we
analyze publicly available Hi-C data from healthy GM12878
cells and cancerous K562 cells [17]. Both cell lines are of
haematopoietic origin and provide a basis for comparing how
chromatin folding patterns between cancer variant-enriched
loci may differ from non-variant loci. Our results indicate
that loci enriched in cancer variant mutations have statistically
different folding patterns.

II. METHOD

Genome Expression Omnibus
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Fig. 1: Overview of analysis pipeline
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In this paper, we develop a technique to assess whether
chromatin folding patterns in cancer mutation-enriched loci
are significantly different from those in non-mutated loci. At
a given locus, we define a chromatin folding state based
on two considerations: 1) whether it is within an A or B
compartment, and 2) whether it is enriched with non-random,
physical chromatin interactions. We are especially interested
in loci experiencing folding transitions - namely, the locus
folding state is altered when the locus transitions from a
healthy state to a cancerous state during oncogenesis.

As there are 4 different folding states depending on A/B
compartment status and random/non-random nature, there are
in turn 16 different folding state transitions a locus may
undergo when a cell progresses from healthy to cancerous.
Specifically, at a given locus, a folding state transition is
defined as the pairwise combination of the chromatin folding
state in the healthy cell along with the folding state in the
cancer cell. For a given transition type, we summarize all oc-
currences of this transition along a chromosome and consider
the chromatin transition pattern as the aggregated transition
counts of this type relative to all other 15 transition types.
We then stratify these chromatin transition patterns based
on cancer-variant status to determine if there is a significant
difference among mutated loci relative to non-mutated loci.
Fig. 1 summarizes our analysis pipeline.

A. Classification of A/B Compartments

Lieberman-Aiden et al divided the genome into A and
B compartments based on principal component analysis of
Hi-C pairwise interaction frequencies [3]. Clustering-based
compartment designation for the GM12878 cell line is avail-
able from data in [17]. As no such classification is publicly
available for the K562 cell line, we instead used JUICER
to classify genomic regions into A and B compartments for
both GM12878 and K562 cell lines [20]. Cross-examination
showed that JUICER can provide reliable A/B classification,
with a similarity of 81%, 90%, and 94% for chromosomes 1,
20, and 22, respectively, when compared with the clustering
A/B designations reported in [17].

B. Identification of Specific Physical Interactions

A significant challenge in interpreting data from chro-
mosome conformation capture studies such as Hi-C is the
presence of large amounts of non-specific (i.e. random) in-
teractions (∼77–87% according to [9]). These non-specific
interactions are likely due to the effects of polymer connec-
tivity, nuclear confinement, and excluded volume; often, these
interactions are of limited biological significance [6].

We followed the general approach of [6] with an 11
nanometer fiber model [21] to distinguish specific physical
interactions from non-specific interactions, see Fig. 2. Briefly,
we generated two random ensembles for GM12878 and K562,
each with 10,000 polymer chains consisting of 400 spherical
monomer nodes. Individual monomer nodes had a diameter
of approximately 40 nanometers and represented roughly 5
kilobases of DNA, the resolution of the Hi-C data; this equates
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Fig. 2: Polymer modeling procedure for identifying specific
(i.e. non-random) interactions in healthy (GM12878) and cancer
(K562) cells.

to each polymer chain representing a single locus consisting of
2 megabases of DNA. To model the effects of confinement and
volume exclusion, we constrained each polymer chain to reside
within a spherical nuclear volume and also to be self-avoiding.
Nuclear diameters for GM12878 and K562 were based on
measurements reported in [18] and [19] respectively; the
nuclear diameters were scaled to approximately 520 nm and
950 nm to preserve a constant base pair density relative to the
entire genome.

For each ensemble (GM12878 and K562), we used Bag of
Little Bootstraps [23] resampling - with 5,000 outer replicates
consisting of approximately 4,000 unique polymers per repli-
cate - to generate a null distribution over random chromatin
interactions; where, following [22], two chromatin nodes are
interacting if their Euclidean distance is ≤ 80 nanometers. We
assigned p-values to the observed Hi-C interaction frequen-
cies according to the proportion of same genomic-distance
interactions in the bootstrap null distribution that exceeded the
observed Hi-C value. After multiple test correction [24], we
call specific chromatin physical contacts as those with false
discovery rate (FDR) below a significance threshold α. To
account for uncertainty in the significance threshold, we used



two α values of 0.01 and 0.05.

C. Locus Enrichment of Specific Physical Interactions

Based on the chosen α significance threshold, we tabulated
the number of specific interactions assigned to each 5 KB
interval along the entire length of the chromosome. Note,
specific interactions are limited to within 2 MB of each 5
KB bin. We then labeled each 5 KB bin as specific if its
participation exceeded a threshold number of specific contacts.
To account for uncertainty in the precise threshold parameter,
we used multiple threshold counts. These correspond to the
50%, 75%, 90%, and 95% quantiles among the observed
distribution of specific interaction counts at each 5 KB locus.

D. Locus Enrichment of COSMIC Cancer Mutations

Using the COSMIC database [26], we mapped each cancer
variant mutation to its corresponding 5 KB bin to match the
resolution of the Hi-C data. We then labeled each 5 KB bin
(i.e. locus) as mutation-enriched if the number of mutations
exceeded a threshold count. For our study, we used several
thresholds to account for uncertainty. We used threshold counts
corresponding to the 1%, 5%, 10%, 25%, 50%, 75%, and 90%
quantiles among the observed distribution of mutation counts
at each 5 KB locus.

E. Contingency Table Analysis

For a given transition type at a chromosome, we examine
different choices of α (if a Hi-C contact pair is specific),
the threshold determining if a locus is enriched with non-
random physical interactions, and the threshold determining
if this locus is enriched in cancer-variants. We record i) the
counts of this transition type and ii) all other transition types,
and then stratify into a) counts from mutation-enriched loci
and b) counts from control (non-enriched) loci.

These counts are organized into a 2×2 contingency table.
With different α values and enrichment thresholds, we have
altogether 2×4×7 (α, quantiles for physical interactions in a
locus, and quantiles for cancer-variant enrichment) = 56 con-
tingency tables (see Fig. 3B for a representative contingency
table). We carry out this analysis for all 16 transition types
over 22 chromosomes (excluding 9 and Y chromosomes).

We then use a Fisher exact test to determine if there exists
significant association in the transition count to the cancer-
variant mutation status. To balance statistical power with the
pitfalls of a large number (16×1232) of dependent hypothesis
tests, we use false discovery rate correction for all tests on the
same chromosome following [25].

III. RESULTS AND DISCUSSION

Our main finding is that there exists significant differ-
ences between mutation-enriched loci and non-enriched loci
in preserving the chromatin folding state of B-compartment
and non-specific interactions. That is, at the level of FDR
<0.05, cancer-variant enriched loci are far less likely to
preserve this chromatin state of B-compartment (inactive gene
transcription) and enriched non-specific interactions. Fig. 3A

Transition Counts

Transition FrequenciesA B

Fig. 3: (A) Violin plot of (B, non-specific) self transition
frequency in Chr. 1; (B) Mosaic plot of a representative 2x2
contingency table

summarizes the distribution of transition frequencies from the
(B, non-specific) chromatin folding state in healthy GM12878
cells to the same (B, non-specific) chromatin folding state
in cancerous K562 cells on chromosome 1. We can see
clearly that the frequency at which cancer-variant enriched
loci on chromosome 1 preserving the same (B, non-specific)
chromatin folding state is markedly decreased compared to
non-mutation enriched loci. Our findings are consistent with
the hypothesis that during the process of oncogenesis, the
(B, non-specific) chromatin folding state is less likely to be
preserved in cancer mutated loci relative to non-mutated loci.

In light of this finding, we examined genomic regions
containing known oncogenes to see if their folding state may
undergo transitions from (B, non-specific) in healthy cells to
alternate chromatin folding states in cancerous cells. Our pre-
liminary results indicate that non-state preserving transitions
may indeed be occurring in oncogenic regions. For instance,
the oncogene ERBB4 [27], a membrane protein in the tyrosine
kinase family, is found to transition from (B, non-specific) in
healthy GM12878 cells to (A, specific) in cancerous K562
cells. Although this gene is not directly linked to oncogenesis
in chronic myeloid leukemia – the cancer present within K562
cells – this finding does serve to illustrate that genomic regions
associated with cancer drivers are more likely to exhibit altered
chromatin folding patterns.

One possible confounding effect is the cancerous K562 cell
line is a not a direct ancestor of the healthy GM12878 cell
line. Specifically, GM12878 cells are of lymphocytic lineage
whereas K562 cells are of granulocytic lineage; however,
both cell lines do share a common hematopoietic precursor.
Though we are limited based on the availability of public
Hi-C data sets, we feel that GM12878 and K562 cell lines
serve as reasonable surrogates for studying chromatin folding
alterations during oncogenesis.

IV. CONCLUSION

By combining biophysical modeling of chromatin folding
with statistical analysis of folding state transitions, we have
demonstrated the existence of significant alterations in the



folding patterns of cancer mutation-enriched loci relative to
non-enriched loci. Specifically, we found the self-transition
from the (B, non-specific) chromatin folding state is signifi-
cantly altered in cancer mutation-enriched loci. For chromo-
some 1, we found this particular self-transition frequency to
be markedly decreased. For future work, we will repeat this
analysis for other cancer types contingent on data availability;
additionally, we will delve into how alterations in chromatin
folding patterns may lead to oncogensis.
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