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Abstract— Missense SNPs are key factors contributing to-
wards many Mendelian disorders and complex diseases. Iden-
tifying whether a single amino acid substitution will lead
to pathological effects is important for interpreting personal
genome and for precision medicine. In this study, we describe
a novel method for predicting whether a missense SNP likely
brings about pathological effects. Our approach integrates
sequence information, biophysical properties, and topological
properties of protein structures. In our test dataset consisting
of 500 deleterious variants and 500 neutral, our method achieves
an accuracy of 0.823. The ROC curve of model has an AUC
of 0.910. Our methods outperforms two well known methods,
and is comparable with the widely used Polyphen-2 method,
while requiring a much smaller amount (approximately 25%) of
training data. Our method can be used to aid in distinguishing
driver and passenger mutations in cancer and in assessing
missense mutations assocaited with rare diseases. It can also
be used to identifying mutations in rare disease where only
limited patient exome data exsit.

I. INTRODUCTION
In cells, proteins carry out essential functions such as

DNA replication, signal transduction, metabolic catalysis,
and molecular transport. Missense mutations may affect
protein function and lead to a pathological phenotype [1]. A
well-known missense variant is the V600E/K substitution in
the BRAF gene. This variant has been confirmed as the driver
mutation in several cancer types [2]. The mutated B-Raf
protein deregulates activation of the downstream MEK/ERK
effectors, contributing to uncontrolled cellular growth [3].
Several FDA-approved drugs, including Vemurafenib [4] and
Dabrafenib [5], have already been developed that target the
effects of this mutation.

In general, an effective prediction tool that can identify
deleterious missense SNPs can help to discriminate driver
mutation from passenger mutations in heterogeneous cancer
genome data. It can also help to identify residues essential
for maintaining enzyme function. Several pathological SNP
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prediction tools based on sequence analysis have already
been developed. The Polyphen-2 method is based on multiple
sequence alignment and limited protein structural informa-
tion [6]. The FATHMM method builds a hidden Markov
model based on profiles of protein families [7]. The CHASM
method combines sequence information, clinical data, and
predictive values to identify cancer driver mutations [8].
The PMUT method is a neural network classifier based on
sequence conservation information and predicted physico-
chemical properties [9]. A more recent study named RAP-
SODY utilizes sequence features and elastic network models
from the corresponding protein’s 3-D stuctural coordinates
to determine functional significant missense variants [10].

However, these methods requires large training dataset,
which may not be applicable for ceratin rare diseases. In
this study, we describe a method for predicting whether a
missense SNP likely brings about pathological effects. Our
approach integrates sequence information, biophysical prop-
erties, and topological descriptors of protein structures. Our
method outperformes several methods, including FATHMM
and PMUT. With a much smallar training dataset (˜25%)
the performance of our method is comparable with that
of Polyphen-2, indicating that our method can be useful
in identifying mutations in rare disease where only limited
patient exome data exsit.

II. METHODS

To avoid overfitting, we choose the random forest clas-
sifier [11] to estimate the effect by a missense variant, as
many other machine learning methods tend to overfit easily.
This part provides description of our method, including the
features implemented and model setting, Figure 1 provides
an overview of our method.

A. Model Design

The random forest classifier is used to predict whether
a missense variant will lead to pathological effect, when
presented with the set of input features of the residue of
interest. As an ensemble learning method, random forest will
generate plenty of decision trees, and the predicted class is
labelled by the majority votes.

We use the “randomForest” R package [12]. We choose
stratified resampling to overcome potential biases brought
by slightly imbalanced nature of the dataset. As the result,
the training dataset contains an equal number of positive
(deleterious) and negative (neutral) variants to each tree in
the random forest. We set the random forest consisting 2,000
individual trees.
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Fig. 1. Prediction of deleterious missense SNP using random forest.

B. Data Collection

We use the HumDiv dataset from Polyphen-2 as the
gold-standard. HumDiv contains a collection of deleterious
missense mutations causing Mendelian diseases from the
UniProtKB database. HumDiv also contains neutral variants
obtained from multiple sequence alignment of human pro-
teins with related mammalian homologs, where the human-
specific mutated sites not in UniProtKB are assumed to be
neutral [6].

C. Structure Retrieval and Residue Mapping

While there have been drastic improvement in techniques
such as X-ray, NMR and cryo-EM for determining pro-
tein structures, many human proteins still have no known
structures. Furthermore, sequence isoforms and experimental
artifacts complicate the mapping between sequence and
structure.

In this study, we use two sequence alignment steps to
map protein sequence to the corresponding structures at the
residue-level. We first use BLASTP [13] for local alignment
to query a sequence against the whole PDB database [14] and
obtain candidate structures. We then use CLUSTALW [15]
to generate pairwise alignments between the initial query
sequence and the set of potential candidates. If the two-way
sequence identity is above 80% after CLUSTAL alignment,
the candidate structure is selected, and residue-level mapping
information derived. If there are multiple potential candi-
dates, we select the candidate with highest sequence identity,
with random selection in the case of ties.

After this mapping process, our dataset consists of 2,106
deleterious mutations and 2,345 neutral mutations from 240
proteins. This dataset is only approximately 25% of the
original HumDiv training dataset used in Polyphen-2 [6].
This more stringent selection procedure will help mitigate
bias that would otherwise be present when using structures
with lower sequence identity.

D. Substitution Score

In previous studies, amino acid substitution matrices, site-
specific conversation scores, and hidden Markov probability
models are the most widely-used features [6]–[8], [10], [16].
In our study, we simply use the substitution score from the
BLOSUM62 matrix [17].

E. Function Annotation

Many proteins interacts with other proteins or ligand
molecules to catalyze biochemical reactions. We assume that
the functional sites or regions where such interactions occur
are more likely to be intolerant to substitution. For functional
features, we extract wild-type residue functional annotations
from UniProt [18].

Specifically, we incorporate two classes of functional fea-
tures: functional sites and functional regions. Functional sites
are categorical features based on the annotations of active
site, binding site, glycosilation site, metal ion-binding site,
initiator methionine, and splice variant. Functional regions
are also categorical features based on the annotations of
short sequence motif, topological domain, signal peptide,
nucleotide phosphate-binding region, lipid moiety-binding
region, calcium-binding region, transmembrane region, in-
tramembrane region, and zinc finger region.

F. Change of Side-chain Charge

Side-chain charge may contribute to the formation or
disruption of disulfide bonds, salt bridgse, metal-ion bonding,
and hydrogen bonding. We assign basic residues His, Arg,
and Lys a positive charge (+1). We assign acid residues Asp
and Glu a negative charge (–1). All other residues are neutral
(0).

Changes in side-chain charge may disrupt electrostatic
equilibrium and influence enzyme behavior. At each residue
substitution, we tally the change of side-chain charge be-
tween mutant and wild types, with possible values in the
range of { -2, -1, 0, 1, 2.}.

G. Protein Secondary Structure

We also incorporate information on the secondary struc-
ture associated with the wild-type residue. Protein secondary
structure such as α-helices and β -sheets have characteristic
patterns of hydrogen bonds among the backbone atoms. We
use the DSSP [19] method to assign a residue to one of the
following secondary structure categories: α-helix, 310-helix,
π-helix, β -sheet, hydrogen-bonded turn, or loop.

H. Solvent Accessibility and Geometric Location

Solvent accessible (SA) surface area quantifies the amount
of atomic surface exposed to solvent. This important prop-
erty can convey information regarding hydrophobic versus
hydrophilic trends. We use the CASTp [20] method for
calculating the SA of the wild-type residue.

In addition to SA, CASTp also provides topological in-
formation and regional location of each wild-type residue.
Specifically, CASTp classifies location of residues into three
types of locations: buried, pocket, and surface. Buried



residues are at the hydrophobic core of the protein with no
SA. Pocket residues are located on solvent accessible con-
cavities within the protein. All other residues are considered
to be located on the surface. Our model uses SA as a numeric
feature and regional location as a categorical feature.

I. Contact Profile

Quantifying the surrounding environment of a residue
based on Euclidean distance is a well-known approach in
structural bioinformatics research, for instance, in prediction
of free energy changes from point mutation [21]. The Mu-
tation3D method detects hotspot region for cancer mutation
based on bootstrap sampling of Euclidean distance [22].

In this study, we calculate a three-layer nearby-residue
composition by the star-operator derived from the simplicies
obtained from the weighted Delanuay triangulation of the
protein structure. An alpha shape is also used to trim the
original Delanuay triangulation. In our model, each layer is
represented as a 20 element integer vector consisting of the
number of residues of each each type present within that
layer.

We adopt a breadth-first search (BFS) algorithm to ientify
residues within three layers by Delaunay edges. For the wild-
type residue of interest, we iteratively find the surrounding
residues which share edges with it, which is classified as
the first layer. Then for each residue in the first layer, we
detect the nearby residues connected to it to obtain residue
information on second layer, excluding residue of interest
and other residues in the same layer. The same procedure is
applied for identifying residues in the third layer.

For comparison, we also built a conventional three-layer
feature set based on Euclidean distance from residues within
3, 4, and 5 Å respectively. We found the star-shape model
provides an 2% improvement in accuracy.

III. RESULTS AND DISCUSSION

A. Performance

We build a test dataset consisting of 500 deleterious
variants and 500 neutral mutations from HumDiv through
random selection without replacement from mutations not
used in the training set. We use the default threshold prob-
ability of 0.5 as the threshold to distinguish deleterious and
neutral mutation.

Overall, our methods perform well in distinguishing dele-
terious variants from neutral variants, with an accuracy of
0.822, a recall value of 0.820, and a precision value of
0.823 (Table I). The AUC of our method is 0.910, as
shown in the ROC curve 2. High AUC value indicates that
our model give good performance with different choices of
threshold.

We also compare our performance with several lead-
ing methods in predicting pathological missense mutations,
including FATHMM [7], Polyphen-2 [6], and PMUT [9].
Table I provides detailed performance information.

FATHMM [7] has the highest recall, but gives many false
positives, with a very poor specificity of 0.346 compared to
0.824 of our method. That is, FATHMM cannot recoginze
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Fig. 2. Receiver operating characteristic (ROC) curve.

neutral variant reliably. Given the heterogeneous nature of
cancer exome data, neutral mutations will constitute most
proportion of observed variants. Therefore, FATHMM is
unlikely to be able to predict driver mutations reliably.

Although PMUT [9] exhibits balanced performance on
identifying deleterious and neutral mutations, our method
outperforms PMUT signifantly in all measures (Table I).

Polyphen-2 is a well-established method [6] and has the
best overall performance, although the difference with our
method is small (0.910 in AUC for our method and 0.941
for Polyphen-2). However, our training data is only about
25% of Polyphen-2 (240 vs. 978 proteins).

Overall, our method out-performas several existing meth-
ods, and have comparable performance with the leading
method of Polyphen-2, while requiring a much smaller
training data set. These results suggest that our method can
be useful in identifying mutations in rare disease carried by
small poplution, where the exome data is more limited.

TABLE I

Our model FATHMM PMUT Polyphen-2
Accuracy 0.822 0.624 0.727 0.877

Recall 0.820 0.901 0.752 0.893
Precision 0.823 0.579 0.716 0.866

Specificity 0.824 0.346 0.702 0.862
F1 Score 0.821 0.705 0.734 0.879

B. Discussion

While our model can discriminates pathological missense
mutations from neutral mutations as shown in the ROC curve
(figure 2), and compares well with other methods, there
are several aspects our model can be further improved. For
example, it is likely that once more human protein structures
are available and our stringently derived training data is
significantly enlarged, our method will likely perform better.
Below we discuss two additional aspects where our method
can be imrpoved.

Recent studies have found that epigenetic modifications
also impact phenotype [23], [24]. A variant of FATHMM,
called FATHMM-XF, shows improved performance over the
base model by incorporating epigenetic data such as histone
modification, open chromatin, methylation, and transcription
factor binding sites [24]. Incorporating such epigenetic data



will likely further improve our prediction of pathological
effects of missense mutations.

Currently, our model predicts pathological effect from mis-
sense SNPs only. However, other non-synonymous mutation
in exon regions may also be pathological. For example,
excessive trinucleotide (CAG) repeats in the HTT gene
can lead to Huntingtion’s disease [25]. Future extension in
considering mutated protein fragments may help to predict
effects from insertion and deletion.

IV. CONCLUSION
By integrating features based on sequence, structural,

and topological properties of proteins, we have developed
a method that can be applied to any missense SNP with
known structure. Our method achieves an accuracy of 0.822
in predicting deleterious effects, at a precision value of 0.823.
The AUC of the ROC curve of our model is 0.910, suggesting
that our model has stong discriminative performance under
many different classification thresholds. Furthermore, our
method is applicable with reduced training data, and may be
useful for predicting effects of missense mutations related to
rare diseases.
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