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Probability flux and velocity in stochastic reaction networks can help characterizing dynamic changes in
probability landscapes of these networks. Here we study the behavior of three different models of probability
flux, namely, the discrete flux model, the Fokker-Planck model, and a new continuum model of the Liou-
ville flux. We compare these fluxes which are formulated based on, respectively, chemical master equation,
stochastic differential equation, and ordinary differential equation. We examine similarities and differences
among these models at the nonequilibrium steady state for the toggle switch network under different binding
and unbinding conditions. Our results show that at strong stochastic condition of weak promoter binding,
continuum models of Fokker-Planck and Liouville fluxes deviate significantly from the discrete flux model.
Furthermore, we report the discovery of stochastic oscillation in the toggle-switch system occurring at weak
binding conditions, a phenomenon only captured by the discrete flux model.
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Networks of chemical reactions can depict how inter-
actions among molecules of DNA, RNA, and protein reg-
ulate gene expression. These networks, called gene reg-
ulatory networks, play important roles in biological pro-
cesses such as cell fate determination1,2, signal transduc-
tion3,4, and metabolic regulations5? . When genes, tran-
scription factors, signaling molecules, and regulatory pro-
teins are in small quantities, stochasticity plays impor-
tant roles6–8. Characterizing the probability surfaces of
molecules of gene regulatory networks can help to under-
stand their behavior.
The general stochastic process dictated by chemical

reactions has two complementary representations, one in
the form of reaction path or reaction trajectory, another
in the form of time-evolving probability density function.
The microstates of chemical reaction system are integer
vectors of copy numbers of different types of molecules.
Specifically, the Stochastic Chemical Kinetics (SCK) pro-
cesses of reactions can be described either by trajectories
of reaction paths, which follow a random-time changed
integral equations of Poisson process9,10, or by the time-
evolving probability density function governed by the dis-
crete Chemical Master Equation11–13.
The Stochastic Simulation Algorithm (SSA) and re-

lated methods10,14–17 can be used to generate trajecto-
ries of reaction paths following the random time changed
Poisson integral equation. A number of methods has also
been developed that can be used to compute the time-
evolving probability density function18–22. Among these,
the ACME method constructs an explicit state space op-
timally enumerated on a n-simplex and can be used to
compute the time-evolving probability density function

a)Electronic mail: jliang@uic.edu.

for a large number of networks, with truncation errors a
priori bounded21,22.

When the microstates of reaction system are approxi-
mated as vectors in continuous space, the corresponding
continuous stochastic processes can be represented either
by reaction trajectories following stochastic differential
equations (SDEs) such as the chemical Langevin equa-
tion15, or by time-evolving probability density governed
by Fokker-Planck Equation23–28.
Ordinary differential equations models, under further

simplifying assumptions of large copy numbers in large
volume, can describe changes in mean concentrations of
the molecular species, although stochasticity is not taken
into account29,30.
Furthermore, it is also essential to characterize the

probability flux in reaction systems for understanding
the biochemistry of living things23,24,31–36. Probabil-
ity flux and velocity field can help to infer the mech-
anisms of network functions such as switching between
cellular states31,32, and to identify barriers and check-
points between cellular states27. Furthermore, flux and
velocity fields of probability can characterize the depar-
ture of non-equilibrium steady state from equilibrium,
aiding in understanding of the non-linear behavior of
these networks28,35,37. Computing probability fluxes and
velocity fields has also found applications in studies of
stem cell differentiation38, cell cycle27, and cancer devel-
opment39,40.
Among early studies of probability fluxes, Hill ex-

amined reaction fluxes of discrete-state continuous-time
Markov model, and introduced various forms of fluxes,
including one-way transition flux, net flux, cycle fluxes,
and operational flux41. This and many subsequent im-
portant studies are based on a view centered on reactions,
where states correspond to specific nodes on diagrams of
kinetic reactions, representing various forms of molecu-
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lar species. We regard these models of fluxes as that of
Lagrangian fluxes. An alternative view is to center on mi-
crostates in the state space, which are integer vectors of
copy numbers. With this viewpoint, one examines fluxes
resulting from firing of different chemical reactions, which
flow into and out of individual fixed microstate. We re-
gard such models of fluxes as Eulerian fluxes.

The universal discrete flux model based on Chemical
Stochastic Kinetics was developed in a previous study for
arbitrary stochstic networks of chemical reactions36, with
the Eulerian fluxes formulated based on discrete calculus
defined for Chemical Stochastic Kinetics. Relationships
between discrete Eulerian fluxes and reaction-based dis-
crete Lagrangian fluxes were also given. This model en-
ables the construction of global flow-maps of fluxes in all
directions at every microstate, while satisfying the dis-
crete version of the continuity equation. It can also be
used to tag the probability fluxes of outflow and inflow
as reactions proceeds36.

While different models have been used to analyze gene
regulatory networks, it is important to understand their
applicability and limitations. For analysis of probabil-
ity distribution of microstates, models based on ordi-
nary differential equations generally are not applicable
to stochastic systems, for example, those with low copy
numbers of molecules or with large differences in reac-
tion rates30,42–44. Models based on continuum approxi-
mations of the discrete Markov jump processes also have
limitations: Fokker-Planck models may fail to capture
the presence of multistability arising from slow switching
between the ON and the OFF states45. Moreover, when
systems are far from equilibrium, the probability land-
scape constructed using models based on continuum ap-
proximations is also of inadequate accuracy46. In general,
the applicability and validity of these models for a specific
network needs to be investigated individually13,30,43–49.

Assessing the applicability and limitations of different
models in the analysis of probability flux and velocity is
more challenging. In this work, we study the applica-
bility and the limitations of three classes of flux models.
The first is the universal discrete flux models based on
the original Stochastic Chemical Kinetic model36. This
model overcome limitations in previous discrete models
of probability flux and velocity in31,50–53, such as restric-
tions to analysis of single reactional trajectories50,51, to
partial flux functions31,52, or to single-species reactions53.

Our second class of models are diffusion approxima-
tions of the Stochastic Chemical Kinetics, which can be
represented either by the Chemical Langevin Equation
for its stochastic trajectories15, or by the Fokker-Planck
equation for its time-evolving probability density23–28.
The Fokker-Planck model we study are derived from the
Kramers-Moyal expansion of the discrete Chemical Mas-
ter Equation following reference23. Our third class of
models is a novel probability flux model called the Li-
ouville flux model that is the deterministic limit of the
stochastic stochastic kinetic models. It is based on
chemical rate equations and ordinary differential equa-

tions (ODEs). Although deterministic models of flux
based on ODEs are generally not applicable to gene regu-
latory networks, the Liouville flux model treats the prob-
ability flux with precomputed probability distribution at
individual states. It can be directly compared with the
universal discrete flux and Fokker-Planck flux.
We examine the behavior of the probability fluxes us-

ing the toggle switch system. We study the steady state
fluxes under two conditions, i) when the binding rates of
the transcription factors to promoters of genes are much
higher than the unbinding rates, under which the system
exhibiting three stable states, and ii) when the unbinding
rates are of the same magnitude as binding rates, under
which the system is strongly stochastic and exhibits four
stable states. Our results show that fluxes computed
with these three different models all have similar behav-
ior under the first condition, but exhibit markedly differ-
ent behaviors under the second condition. Furthermore,
we show that the universal discrete stochastic flux can
uncover oscillating behavior of the toggle switch system
at the non-equilibrium steady state, while Fokker-Planck
and Liouville models fail to capture this highly stochastic
phenomenon.
Our paper is organized as follows. We first introduce

the three flux models and give closed-forms of the differ-
ences among these models. We then examine details of
the differences in probability fluxes in the toggle switch
network under the two conditions.

I. MODELS AND METHODS

A. Model of Biochemical Reactions Networks

We consider a well-mixed system of reactions with con-
stant volume and temperature. It has nmolecular species
Xi, i = 1, . . . , n, which participate in m reactions Rk,
k = 1, . . . ,m. The microstate x(t) of the system at time
t is a column vector of copy numbers of the molecular
species: x(t) ≡ (x1(t), x2(t), . . . , xn(t))

T ∈ Z
n
+, where all

values are non-negative integers. A reaction Rk takes the
general form of

Rk : c1kX1 + · · ·+ cnk
Xn

rk−→ c′1kX1 + · · ·+ c′nk
Xn,

so that Rk brings the system from a microstate x to
x+ sk, where the stoichiometry vector sk is defined as:

sk ≡ (s1k, . . . , s
n
k ) ≡ (c′1k − c1k , . . . , c

′
nk

− cnk
), (1)

which gives the unit vector of the discrete increment of
reaction Rk. sk also defines the direction of Rk.

B. Discrete Chemical Master Equation (dCME)

The discrete Chemical Master Equation (dCME) con-
sists of a set of linear ordinary differential equations de-
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scribing the changes of probability over time at each mis-
crostate of a reaction system2,10,19,54. Denote the prob-
ability of the system to be at a particular microstate
x at time t as p(x, t) ∈ R[0,1]. Denote the proba-
bility surface or landscape over the state space Ω as
p(t) = {p(x(t)|x(t) ∈ Ω)}. The dCME at an arbitrary
microstate x = x(t) can be written in the general form
as:

∂p(x, t)

∂t
=

m
∑

k=1

[Ak(x− sk)p(x− sk, t)−Ak(x)p(x, t)],

(2)
x − sk, x ∈ Ω. Here the reaction propensity Ak(x) is
determined by the product of the intrinsic reaction rate
rk and the combinations of copies of relevant reactants

at the current microstate x: Ak(x) = rk
n
∏

l=1

(

xl

clk

)

.

For computing the probability distribution, we em-
ploy the recently developed ACME method21,22 to solve
the dCME underlying the stochastic network and obtain
its exact time-evolving probability surfaces.This elimi-
nates potential problems arising from inadequate sam-
pling, where rare events of low probability are difficult to
quantify using techniques such as the stochastic simula-
tions algorithm (SSA)10,16,17,55.

C. Continuum Approximations of dCME

1. Deterministic Equation from Law of Mass Action

Deterministic model of reactions describes the time-
evolving mean value or concentration 〈Xi〉 of each molec-
ular species Xi. The ordinary differential equations can
be written generically at 〈X〉 = (〈X1〉, . . . , 〈Xn〉) as

d〈X〉

dt
= F(〈X〉). (3)

Here the functions

F(〈X〉) ≡(F1(〈X1〉, . . . , 〈Xn〉),

. . . , Fn(〈X1〉, . . . , 〈Xn〉))
(4)

characterize how the the vector of molecular concentra-
tions 〈X〉 changes with time.
A standard approach for such a characterization is

based on chemical rate equations56. Here the rate of
a chemical reaction is directly proportional to the prod-
uct of the activities or concentrations of the reactants.
Therefore, functions Fi(〈X〉) in Eqn.(4) can be written,
as:

Fi(〈X〉) =
m
∑

k=1

sgn(sik)rk〈X1〉
|c1k | · · · · · 〈Xn〉

|cnk
|
, (5)

where sik are the components of stoichiometry vector sk
and rk the intrinsic reaction rate of reaction Rk.

The Law of Mass Action can be derived from dCME
(Eqn. (2)) using the theory of moment-closure approxi-
mations at high copy numbers42,57–59.

2. Approximation Model of Fokker-Planck Equation

The continuous diffusion approximation in the form of
a Fokker-Planck model can be derived from the discrete
Chemical Master Equation under the assumptions of i)
small jumps between states due to firing of reactions,
namely, |sk/V | < ǫ, where ǫ −→ 0, ii) slow changes of
the probability, namely, |p(x) − p(x + sk/V )| < δ where
δ −→ 0 for reaction Rk, whose stoichiometry is sk and the
system volume is V . With these assumptions, the tran-
sition kernel Ak(x− sk/V )p(x− sk/V, t) is differentiable
to a high degree.
The model of the Fokker-Planck equation considered

in this work is derived from the multivariate Taylor ex-
pansion or the Kramers-Moyal expansion of the dCME23:

∂p(x, t)

∂t
=

m
∑

k=1

[Ak(x−
sk

V
)p(x−

sk

V
, t)−Ak(x)p(x, t)]

≈
m
∑

k=1

[Ak(x)p(x, t) −
sk

V
∇xAk(x)p(x, t)

+
sk · sTk
2V 2

∇2
xAk(x)p(x, t) −Ak(x)p(x, t)]

=

m
∑

k=1

[−
sk

V
∇xAk(x)p(x, t)

+
sk · sTk
2V 2

∇2
x
Ak(x)p(x, t)].

(6)

In Fokker-Planck models, terms higher than two are
neglected23.

D. Continuity Equation of Probability.

The evolution of the probability landscape can be
viewed as a process of movement of probability mass
in the state space. The total probability mass is con-
served at any time and sums up to one. This is captured
by the continuity equation for probability60,61. It is de-
fined on a set of average molecular mass concentrations
〈X〉 = (〈X1〉, ..., 〈Xn〉) ∈ R

n
+:

∂p(〈X〉, t)

∂t
+∇〈X〉J(〈X〉, t) = 0, (7)

which defines J(〈X〉, t), the vector of probability flux,
namely, the flow of probability in the direction of each
species.
As the velocity of the probability is related to the flux

by the relationship v(〈X〉, t) = J(〈X〉, t)/p(〈X〉, t), the
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continuity equation can also be written for velocity as:

∂p(〈X〉, t)

∂t
+∇〈X〉v(〈X〉, t)p(〈X〉, t) = 0. (8)

Similar to Eqn.(7), a discrete version of the continuity
equation,

∂p(x, t)

∂t
+∇d · Jr(x, t) = 0, (9)

holds for the total reactional flux defined in36.

E. Models of Probability Flux

1. Liouville Flux Model

Here we introduce a Liouville flux model based on the
ordinary differential equations for mean concentrations of
molecules from mass action. It is a set of forward differ-
ential equation, in which the increment in the mean con-
centration of molecular specie over time ∂〈X〉/∂t, given
∂t → 0, defines the Liouville velocity vL(〈X〉, t) of reac-
tional mass of the average molecular concentration 〈X〉:

vL(〈X〉, t) = F(〈X〉, t),

where the components of F(〈X〉, t) are defined by
Eqn.(5).
To compare with other flux models, we now restrict

the values of the function vL = vL(〈X〉, t) to the discrete
state space Ω, where the probability values are computed
using the ACME method21,22. We use the notation vL ≡
vL(x, t).
The Liouville flux is defined in the discrete subset Ω of

the continuous space U as:

JL(x, t) ≡ vL(x, t)p(x, t). (10)

2. Fokker-Planck Flux Model

We rewrite the right hand side of Eqn.(6) by taking
the operator ∇x(·) outside the parenthesis:

∂p(x, t)

∂t
= −∇x

m
∑

k=1

sk

V
[Ak(x)p(x, t)

−
sk

T

2V
∇xAk(x)p(x, t)].

From Eqn.(7), the flux for the Fokker-Planck model
JFP (x, t) can be written as follows:

JFP (x, t) ≡
m
∑

k=1

sk

V
[Ak(x)p(x, t) −

sk
T

2V
∇xAk(x)p(x, t)].

(11)

The Fokker-Plank flux Eqn.(11) has two components:

the drift term of
m
∑

k=1

skAk(x)p(x, t)/V and the diffusion

term of
m
∑

k=1

sks
T
k∇xAk(x)p(x, t)/(2V

2). The drift term

is driven by chemical reactions occurring at x. The dif-
fusion term approximates linearly the stochastic fluctua-
tions of the system.

3. Universal Discrete Flux Model

A model of discrete flux was recently introduced in ref-
erence36. As it can account for both reactional flux and
species flux, we call it the universal discrete flux model.
Briefly, we define an unambiguous order of ascending re-
lationship “ ≺′′ over all microstates, and have them or-
dered as x0 ≺ x1 ≺ . . . ≺ x|Ω|36. The single-reactional
flux of probability Jk(x, t) ∈ R for reaction Rk is:

Jk(x, t) ≡

{

Ak(x)p(x, t), x ≺ x+ sk,
Ak(x− sk)p(x− sk, t), x ≺ x− sk.

Jk(x, t) depicts the change in p(x, t) at the state x due
to one firing of reaction Rk. If x ≺ x + sk, Jk(x, t)
describes the outflux at x due to one firing of reaction
Rk. If x ≺ x − sk, Jk(x, t) describes the influx to x due
to one firing of reaction Rk.

The total reactional flux or r-flux Jr(x, t), which de-
scribes the probability flux at a microstate x at time t,
is defined as36: Jr(x, t) ≡ (J1(x, t), · · · , Jm(x, t)) ∈ R

m.
Intuitively, the r-flux Jr(x, t) is the vector of rate change
of the probability mass at x in directions of all reactions.
Jr(x, t) satisfies the discrete continuity equation Eqn. (9).
Details can be found in36.

The total species flux, or s-flux, Js(x, t) ∈ R
n is the

sum of the stoichiometry projections of m single-reaction
species flux vectors at a microstate x ∈ R

n:

Js(x, t) =

m
∑

k = 1

skJk(x, t) ∈ R
n. (12)

F. Differences between flux models

We now compare the three flux models and define an-
alytically their differences.

1. Difference between Discrete Flux and Fokker-Planck
Flux

The difference between the universal discrete flux of
Eqn. (12) and the Fokker-Planck flux of Eqn. (11) at
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V = 1 is:

Js(x, t) − JFP (x, t)

=
∑

k: x≺
x+sk

sk[Ak(x)p(x, t) −Ak(x)p(x, t)

+
sk

2
∇xAk(x)p(x, t)]

+
∑

k: x≺
x−sk

[skAk(x− sk)p(x− sk, t)

−Ak(x)p(x, t) +
sk

2
∇xAk(x)p(x, t)]

=
∑

k: x≺
x+sk

sk

[

1

2
sk∇xAk(x)p(x, t)

]

+
∑

k: x≺
x−sk

sk [Ak(x− sk)p(x− sk, t)

−Ak(x)p(x, t) +
sk

2
∇xAk(x)p(x, t)].

(13)

For reactions generating discrete flux out-flowing from
x to x + sk, the values of the discrete flux and
Fokker-Planck flux differ only in the diffusion term
sk [sk∇xAk(x)p(x, t)] /2 of the Fokker-Planck flux. For
reactions generating flux flowing-in from x− sk to x, the
discrete flux and Fokker-Planck flux differs in both the
diffusion term and the drift term.

We examine the difference further by taking the linear
Taylor expansion: Ak(x−sk)p(x−sk, t) ≈ Ak(x)p(x, t)−
sk∇xAk(x)p(x, t). While the gradient of the flux defines
the change of the probability with time from the conti-
nuity equation, we now skip the second-order term of the
Taylor expansion. Eqn. (13) now becomes:

Js(x, t)− JFP (x, t)

=
∑

k: x≺
x+sk

sk

[

1

2
sk∇xAk(x)p(x, t)

]

+
∑

k: x≺
x−sk

sk [Ak(x)p(x, t) − sk∇xAk(x)p(x, t)

−Ak(x)p(x, t) +
1

2
sk∇xAk(x)p(x, t)]

=
∑

k: x≺
x+sk

sk

[

1

2
sk∇xAk(x)p(x, t)

]

−
∑

k: x≺
x−sk

sk

[

1

2
sk∇xAk(x)p(x, t)

]

.

Hence, the drift terms for both fluxes are the same and
equal to Ak(x)p(x, t). The difference in these two flux
models resides only in the noise encoded by the diffusion
term.

2. Difference between Liouville Flux and Fokker-Planck
Flux

The difference between the Fokker-Planck flux from
Eqn. (11) and the Liouville flux from Eqn. (10), given
V = 1, is:

JFP (x, t) − JL(x, t) =
∑

k

[sk(Ak(x)p(x, t)

−
1

2
sk∇xAk(x)p(x, t))]− F(x, t)p(x, t).

(14)

In this case, difference exists in both the drift term and
the diffusion terms.

However, for the special case when there is only one
type of reactant and |sk| = 1, we have F(x, t)p(x, t) =
skAk(x)p(x, t). In this case, the drift terms of the two
fluxes are the same.

Moreover in the limiting case of large concentrations,

we have F(x, t) =
m
∑

k

skAk(x)p(x, t). Therefore, the dif-

ference between Fokker-Planck flux and Liouville flux is
only in diffusion term, which is generally of the order of
1
2V .

3. Difference between Discrete Flux and Liouville Flux

The difference between the discrete universal flux
(Eqn. (12)) and the Liouville flux (Eqn. (10)) is:

Js(x, t) − JL(x, t) =
∑

k: x≺
x+sk

[skAk(x)p(x, t) − F(x, t)p(x, t)]

+
∑

k: x≺
x−sk

[skAk(x− sk)p(x− sk, t)− F(x, t)p(x, t)].

(15)

We consider the special case of reactions involving only
a single molecules species of reactants with |sk| = 1. We
have F(x, t)p(x, t) = skAk(x)p(x, t). For reactions with
probability flux flowing from x to x+sk (x−sk ≺ x) both
fluxes are the same. For reactions with probability flux
flowing from x− sk to x, we can examine this difference
by taking the linear terms of the Taylor expansion of
Ak(x−sk)p(x−sk, t) ≈ Ak(x)p(x, t)−sk∇xAk(x)p(x, t).
Eqn. (15) now becomes:

Js(x, t)− JL(x, t)

=
∑

k: x≺
x−sk

[skAk(x− sk)p(x− sk, t)− F(x, t)p(x, t)]

=
∑

k: x≺
x−sk

[sk(Ak(x)p(x, t) − sk∇xAk(x)p(x, t)

− F(x, t)p(x, t)].

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
24

82
3



6

In this case, under the assuption F(x, t)p(x, t) =
skAk(x)p(x, t), the drift terms are the same. The fluxes
differ only in the diffusion term sk∇xAk(x)p(x, t).

II. RESULTS

A. The Multistable Toggle Switch Model

1. Network and reactions

The toggle switch network consists of two genes whose
protein products mutually inhibit each other. This
network plays important roles in molecular decision-
making and is widely found in nature62–66. Tog-
gle switch has been studied extensively, with its sta-
bility, dynamics, switching mechanisms, and most-
probable paths analyzed through outlfow probability
fluxes31, quasi-potential landscapes reconstruction67, as
well as weighted-ensemble trajectory simulations using
the string-method32. In this study, we employ a detailed
model of toggle switch19,68, where the binding and un-
binding reactions are explicitly modeled. This is differ-
ent from the simplified model used in several other stud-
ies62,69,70.
There are six molecular species in our model: genes

Gx and Gy, which express proteins PX and PY , as well

as protein-DNA complexes Gx and Gy, with protein PY

bound on gene Gx and protein PX bound on gene Gy,
respectively (Figure 1). The dimer of protein product PX

of gene Gx inhibits the activity of gene Gy and the dimer
of protein product PY of gene Gy inhibits the activity of
gene Gx.

FIG. 1. Schematic representation of the toggle switch genetic
network.

The molecular reactions of the network are listed be-
low:

R1 : Gx
sX→ Gx + PX , R2 : Gy

sY→ Gy + PY ,

R3 : PX
dX→ ∅, R4 : PY

dY→ ∅,

R5 : 2PX +Gy

by
→ Gy, R6 : 2PY +Gx

bx→ Gx,

R7 : Gy

uy

→ 2PX +Gy, R8 : Gx
ux→ 2PY +Gx.

(16)

The microstate of the system is defined as an ordered

quadruplet (X,Y, x, y) of copy numbers of PX , PY , Gx,
and Gy , respectively. The copy numbers of bound genes

Gx and Gy are denoted as x and y. Correspondingly,
x = 1−x and y = 1−y, as there is only one copy of each
of genes x and y in this system. The binding states of the
two operator sites are denoted as “On-On” when x = 1
and y = 1, “On-Off” when x = 1 and y = 0, “Off-On”
when x = 0 and y = 1, and “Off-Off”, when x = 0 and
y = 0.
There are a number of stochastic processes encoded in

this network. The synthesis of proteins PX and PY from
gene Gx and gene Gy are represented by reactions R1 and
R2, respectively, with the rates of sx = sy. The degrada-
tion of proteins PX and PY are represented by reactions
R3 and R4, respectively, with the rates dx = dy. Reaction
R5 represents the binding of two copies of protein PX to
the promoter site of Gy to form a protein-DNA complex

Gy, with rate by. Reaction R7 represents the unbinding

of the complex Gy, at a rate of uy. Similarly, reaction
R6 represents the binding of two copies of protein PY to
the promoter site of Gx to form a protein-DNA complex
Gx, with rate bx. Reaction R8 represents the unbinding
of the complex Gx at a rate of ux.
Here we consider the scenario where gene regulation

is much slower than protein synthesis and degradation.
In eukaryotic cells, epigenetics processes such as histone
modification and DNA methylation can reduce the bind-
ing rates of transcription factors to their targeting DNA
sites. Recent findings in the genetic switch of bacterio-
phage λ showed that slower binding and unbinding also
occur in bacterials cells71. In the regime of slow bind-
ing and unbinding reactions, where by and bx (reactions
R5 and R6) and uy and ux (reactions R7 and R8) are
smaller than synthesis rates sx and sy (reactions R1 and
R2), there are up to four peaks of probability over cer-
tain regions of protein copy numbers, in which one of
the two genes is expressed and the other gene repressed,
as well as two genes being either expressed or repressed
simultaneously, as reported in19.
A well-known phenomenon in genetic switches such as

the toggle switch system is the extreme stability of the
“On-Off” or the “Off-On” states: it is exceedingly rare
for the system to switch from one of these two stable
states to the other, even in the presence of perturba-
tions66,72. In this study, we show that the toggle switch
can switch frequently between these two stable states
without external perturbations. Further, these switching
events can turn the toggle switch into an stochastically
oscillating system.

2. Fluxes in the Toggle Switch Network

For the universal discrete flux, we first impose an as-
cending order on the microstates in the direction of the
increasing copies of X . At a fixed value of X , we then
order the states in increasing copy number of Y . Subse-
quently, we order the states in increasing copy number
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7

of x, and lastly, in the order of increasing copy number
of y. Following Eqn. (12), components of the universal
discrete stochastic fluxes at the microstate (X,Y, x, y) in
the directions of X and Y are:

Js(X,Y, x, y)X = sXxp(X,Y, x, y)

− dX(X + 1)p(X + 1, Y, x, y)

+ 2uy(1− y)p(X,Y, x, y)

− by(1− y)(X + 1)(X + 2)p(X + 2, Y, x, 1− y),

Js(X,Y, x, y)Y = sY yp(X,Y, x, y)

− dY (Y + 1)p(X,Y + 1, x, y)

+ 2ux(1− x)p(X,Y, x, y)

− bx(1− x)(Y + 1)(Y + 2)p(X,Y + 2, 1− x, y).

Following Eqn. (10), the Liouville flux at the mi-
crostate (X,Y, x, y) is:

JL(X,Y,x, y)X = p(X,Y, x, y)

× (sXx− dxX + uy(1− y)− byX
2y),

JL(X,Y,x, y)Y = p(X,Y, x, y)

× (sY y − dyY + ux(1− x)− bxY
2x).

Following Eqn. (11), the Fokker-Planck flux for V = 1
at the microstate (X,Y, x, y) is:

JFP (X,Y,x, y)X = sXx− dXX + 2uy(1− y)

− byX(X − 1)y)p(X,Y, x, y)

+
1

2
∇X [sXx+ dXX + 2uy(1 − y)

+ 2byX(X − 1)y)p(X,Y, x, y)],

JFP (X,Y,x, y)Y = sY y − dY Y + 2ux(1 − x)

− bxY (Y − 1)x)p(X,Y, x, y)

+
1

2
∇Y [sY y + dY Y + 2ux(1− x)

+ 2bxY (Y − 1)x)p(X,Y, x, y)].

B. Probability flux and velocity in toggle switch with
strong promoter binding

We first consider the system with strong promoter
binding. The binding rates are set to bx = by = 1×10−2,
the synthesis rates sx = sy = 50, the degradation rates
dx = dy = 1, and unbinding rates ux = uy = 0.1. At the
steady state, there are three probability peaks located
at (X, Y ) = (0, 0), (50, 0), (0, 50), corresponding to the
states of the genesGx andGy of “Off-Off” (x = 0, y = 0),
“On-Off” (x = 1, y = 0), and “Off-On” (x = 0, y = 1)
(Figure 2A, 2D and 2G).

The steady state probability distribution of reactions
R1, R3 given x = 1 (Eqn. (16)), which are birth-and-
death processes, is the Poisson distribution with the max-
imum at its expected value of X = sX/dX = 5073.
Similarly, the steady state probability distribution for
the birth-and-death process of reactions (R2, R4) given
y = 1, (Eqn. (16)), is the Poisson distribution with the
maximum at its expected value of Y = sY /dY = 50.
When the binding reaction has a higher propensity than
unbinding, the genetic state “On-On” (x = 1, y = 1)
disappears. With the multiplication factor of the copy
number of molecules, this occurs even when by is an or-
der of magnitude smaller than uy.
From computed p(X,Y, x, y), we show its projection

to the plane of (X,Y ) in Figure 2, namely, we show
p(X,Y ) = p(X,Y, 0, 0) + p(X,Y, 1, 0) + p(X,Y, 0, 1) +
p(X,Y, 1, 1). Similarly, Js(X,Y ), JL(X,Y ), JFP (X,Y ),
vs(X,Y ), vL(X,Y ), and vFP (X,Y ) are shown as pro-
jected in Figure 2.
The steady-state probability surfaces in − log p(x, t) is

shown in Figure 2A, 2D and 2G, with high probability
regions in red, and regions where probability is close to
zero in white. The trajectories of the flux field at the
steady state are shown in blue for the universal discrete
flux field Js(x, t) in Figure 2A– 2C, for the Liouville flux
field JL(x, t) in Figure 2D– 2F, and for the Fokker-Planck
flux field JFP (x, t) in Figure 2G– 2I. In Figures 2B, 2E
and 2H, regions with large absolute values of flux are
shown in purple, and regions with small absolute values of
flux are shown in turquoise blue. In Figures 2C, 2F and
2I, regions with large absolute values of flux are shown
in turquoise blue regions with small absolute values of
velocity are shown in purple.

1. Universal Discrete Stochastic Flux and Velocity fields

The heatmaps of the universal discrete probability flux
in log |Js(x, t)| and velocity in log |vs(x, t)| (Figure 2B
and Figure 2C, respectively) show that locations with
larger flux values also have higher probability. The states
“Off-Off”, “On-Off”, and “Off-On” can be regarded as
attractors of the probability flux. The flux lines con-
verge to the regions of states near “On-Off” and “Off-
On”, after first reaching the state “Off-Off”. Figure 2C
of log |vs(X,Y )| shows that the velocity has larger val-
ues at locations where the flux trajectories are close to
be straight lines (purple regions, Figure 2C), but drops
significantly when the trajectories make turns (turquoise
regions, Figure 2C).

2. Liouville Flux for the Toggle Switch Network

In Liouville flux, larger values are associated with
higher probabilities (Figure 2D – 2E). The states “On-
Off” and “Off-On” are the sinks. The flux and veloc-
ity lines converge to the states “On-Off” and “Off-On”,
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Discrete flux

Liouville flux 

Fokker-Planck flux

On-Off

On-Off

On-Off

Off-Off

Off-Off

Off-Off

Off-On

Off-On

Off-On

FIG. 2. The probability surfaces, fluxes, and velocities of the toggle switch system with strong promoter binding (b = 1×10−2)
at the steady state. Probability value is given by the color scale, and the fluxes/velocities are shown in blue solid lines. The
discrete stochastic flux model with probability surface in − log(p(x, y)) (A), flux in log |Js(x, y)| (B), and velocity in log |vs(x, y)|
(C); the Liouville flux model with probability surface in − log(p(x, y)) (D), flux in log |JL(x, y)| (E), and velocity in log |vL(x, y)|
(F); and the Fokker-Planck flux model with probability surface in − log(p(x, y)) (G), flux in log |JFP (x, y)| (H), and velocity
in log |vFP (x, y)| (I).

after first reaching towards the state “Off-Off”. These
patterns are the same as that of the universal discrete
flux (Figure 2A). Detailed examination shows that the
flux sinks are located at the states (X = 50, Y = 0)
and (X = 0, Y = 50). These are local maxima of the
probability surface. The absolute value of velocity func-
tion log |vL(X,Y )| shows that the probability velocity
has larger values at locations where the flux trajectories
are close to be straight lines (purple regions, Figure 2F),
but drops significantly when the trajectories make turns
(turquoise regions, Figure 2F).

While Liouville flux trajectories and the universal dis-
crete flux trajectories depict overall similar behavior of
the system. The flux lines converge to the states “Off-
On” and “On-Off” after going through the state “Off-
Off”, an intermediate attractor of the flux, there are sig-
nificant differences. The sinks at “Off-On” and “On-Off”
are single states of (X = 50, Y = 0) and (X = 0, Y = 50)
in Liouville flux (Figure 2F), but they are regions consist-
ing of states in discrete flux close to (X = 50, Y = 0) and
(X = 0, Y = 50), where the flux trajectories fluctuate
(Figure 2C). The flux trajectories for the Liouville flux
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start at the source located at (+∞,+∞). This is differ-
ent from the discrete flux, where the trajectories starting
from the states with sufficiently large copy numbers con-
verge to a sink at (+∞,+∞), although these states have
very small probability mass.

3. Fokker-Planck flux for the Toggle Switch Network

In the heat map of the Fokker-Planck probability flux,
larger values are associated with higher probabilities
(Figure 2G – 2I). The states “Off-Off”, “On-Off”, and
“Off-On” are attractors of the flux. The velocity and flux
lines converges to the states “On-Off” and “Off-On”, af-
ter first reaching the state “Off-Off”. These are the same
as the Liouville flux and similar to the discrete flux (Fig-
ure 2A and 2D). Flux sinks are located at the states
“On-Off” and “Off-On”, represented by a single states
(X = 50, Y = 0) and (X = 0, Y = 50) as in the case of
Liouville flux. These two states correspond to the max-
ima of the Poisson distribution of the birth-and-death
process (Eqn. (16)) of reactions (R1, R3) given x = 1,
and (R2, R4) given y = 1, respectively. The absolute
value of velocity function log |vL(X,Y )| shows that the
velocity has larger values at locations where the flux tra-
jectories are close to be straight lines (purple regions on
Figure 2F), but drops significantly when the trajectories
make turns (turquoise regions on Figure 2I).
There are significant differences between the Fokker-

Planck flux and the discrete stochastic flux. The states
“Off-On” and “On-Off” are single states with (X =
50, Y = 0) and (X = 0, Y = 50) in Fokker-Planck flux
(Figure 2F)), but they involve sets of the states close
to (X = 50, Y = 0) and (X = 0, Y = 50) in discrete
flux (Figure 2C).The source of the flux for the Fokker-
Planck flux is located at (+∞,+∞) at the infinity. This
is again different from the universal discrete stochastic
flux, where a sink is at (+∞,+∞).
The Liouville flux trajectories and the Fokker-Planck

trajectories depict similar behavior, but with some dif-
ferences. Starting from the same initial locations, for
instance, (X = 70, Y = 40) or (X = 40, Y = 70), the Li-
ouville trajectories first tend to reach the state “Off-Off”
and then converge to the states “On-Off” or “Off-On”. In
contrast, the Fokker-Planck flux starting from the same
states tends to converge to the “Off-On” or the “On-Off”
directly.

4. Flux in Different Genetic States

While previous discussions are based on projections in
the (X, Y ) plane with different genetic states of (x, y)
marginalized, we now examined fluxes in each of the spe-
cific genetic states of genes x and y, namely, the “Off-Off”
state at the gene copy number of (x = 0, y = 0) (Fig-
ure 3A, 3D, 3G), the “On-Off” state at (x = 1, y = 0)
(Figure 3B, 3E, 3H), and the “On-On” state at (x =

1, y = 1) (Figure 3C, 3F, 3I). We neglect the case of
(x = 0, y = 1) as it is symmetric to that of (x = 1, y = 0).

At the “Off-Off” state (x = 0, y = 0), we observe the
existence of a sink at (X = 0, Y = 0) for all three mod-
els of fluxes (Figure 3A, 3D, and 3G). This is expected,
as it is the state where both genes are bound, and the
probability distribution has a peak. The Fokker-Planck
and the Liouville flux trajectories converge to the state
(X = 0, Y = 0) (Figure 3D) following straight lines
evenly spread out in the X–Y plane, whereas the dis-
crete flux trajectories bend toward the axes of X = 0
and Y = 0.

At the “On-Off” state (x = 1, y = 0), we observe the
existence of the flux sink at (X = 50, Y = 0) for the
Liouville and Fokker-Planck models (Figure 3E and 3H).
The discrete stochastic flux trajectories converge to an
area consisting states near (X = 50, Y = 0) (Figure 3B).

At the“On-On” state, where X ∈ [40, 60] and Y ∈
[40, 60], both genes are unbound and there is overall a
small amount of probability mass associated with this
genetic state. The three flux models give markedly differ-
ent results, with sinks located at very different locations.
The Liouville flux has the sink at (X = 39, Y = 39) (Fig-
ure 3F). There are three sinks for the Fokker-Planck flux
(Figure 3I). The discrete flux appears to have the sink at
(+∞,+∞) (Figure 3C).

It is informative to examine the behavior of the sys-
tem with high copy number of PX and PY in the
regime where the law of mass action applies. We
can obtain that critical points for each of the four ge-
netic states. For the “On-On” state, we have 〈X〉 =

(−dX +
√

d2X + 4sXby)/(2by) ≈ 37, 〈Y 〉 = (−dY +
√

d2Y + 4sY bx)/(2bx) ≈ 37. For the “On-Off” state, we
have 〈X〉 = (sX + uy)/dX ≈ 50, 〈Y 〉 = 0. For the “Off-
On” state, we have 〈X〉 = 0, 〈Y 〉 = (sY + ux)/dY ≈ 50.
For the “Off-Off” state, we have 〈X〉 = (ux)/dX ≈ 0,
〈Y 〉 = uy/dY ≈ 0. The eigenvalues for all four critical
points are negative, indicating that all four are sinks. At
the states “On-On” and “Off-Off”, the eigenvalues are
equal and matrices are multiples of the unit matrix, then
flux lines form a star.74

These critical points are exactly where the sinks of Li-
ouville flux located. The sink (X = 0, Y = 0) at the state
“Off-Off” exists for all flux models. The sink at (X =
50, Y = 0)/(X = 0, Y = 50) for the “On-Off”/“Off-On”
state exists for the Liouville and Fokker-Planck mod-
els. In contrast, the discrete flux lines converge to a
broader set of states near the peak (X = 50, Y = 0)
((X = 0, Y = 50)). For the “On-On” state, the Liouville
flux converges to the sink at (X ≈ 37, Y ≈ 37), while
there are multiple sinks for Fokker-Planck flux. The dis-
crete flux does not converge to a single sink.
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Discrete flux

Liouville flux

Fokker-Planck flux

FIG. 3. Fluxes of the toggle switch system described at strong promoter binding of b = 1 × 10−2. The “Off-Off”gene state
(x = 0, y = 0): (A) heat map of − log p(X,Y, 0, 0) and flux lines of Js(X,Y, 0, 0), (D) heat map of − log p(X,Y, 0, 0) and
flux lines of JL(X,Y, 0, 0), and (G) heat map of − log p(X,Y, 0, 0) and flux lines of JFP (X,Y, 0, 0); The “On-Off”gene state
(x = 1, y = 0): (B) heat map of − log p(X,Y, 1, 0) and flux lines of Js(X,Y, 1, 0), (E) heat map of − log p(X,Y, 1, 0) and
flux lines of JL(X,Y, 1, 0), and (H) heat map of − log p(X,Y, 1, 0) and flux lines of JFP (X,Y, 1, 0); The “On-On”gene state
(x = 1, y = 1): (C) heat map of − log p(X,Y, 1, 1) and flux lines for Js(X,Y, 1, 1), (F) heat map of − log p(X,Y, 1, 1) and flux
lines for JL(X,Y, 1, 1), (I) heat map of − log p(X,Y, 1, 1) and flux lines for JFP (X,Y, 1, 1).

C. Flux and velocity fields in the toggle switch with weak
promoter binding from three methods

We now consider the system with weak promoter bind-
ing. The binding rates are bx = by = 1 × 10−4, the
synthesis rates sx = sy = 50, the degradation rates
dx = dy = 1, and unbinding rates ux = uy = 0.1.
At the steady state, there are four probability peaks
located at (X,Y ) = (0, 0), (50, 0), (0, 50),and (50, 50),

corresponding to the states of genes Gx and Gy of “Off-
Off” (x = 0, y = 0), “On-Off” (x = 1, y = 0), “Off-
On” (x = 0, y = 1), and “On-On” (x = 1, y = 1)
(Figure 4A, 4D and 4G). The steady state probabil-
ity distribution for the birth-and-death process of reac-
tions (R1, R3) of Eqn. (16), given x = 1, is the Poisson
distribution with the maximum at its expected value of
X = sX/dX = 5073. Similarly, the steady state proba-
bility distribution for the birth-and-death process of re-
actions (R2, R4) given y = 1, is the Poisson distribution
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with the maximum at its expected value of Y = sY /dY =
50. From computed p(X,Y, x, y), we show p(X,Y ),
Js(X,Y ), JL(X,Y ), JFP (X,Y ), vs(X,Y ), vL(X,Y ),
and vFP (X,Y ) projected on the plane of (X,Y ) in Fig-
ure 4.
The steady-state probability surfacse in − log p(x, t) is

shown in Figure 4A, 4D and 4G, where high probability
regions are in red, and regions where probability is close
to zero in white. The trajectories of the flux field at the
steady state are shown in blue for the universal discrete
flux field Js(x, t) in Figure 4A– 4C, for the Liouville flux
field JL(x, t) in Figure 4D– 4F, and for the Fokker-Planck
flux field JFP (x, t) in Figure 4G– 4I. In Figure 4B, 4E
and 4H, regions with large absolute values of flux are
shown in purple, and regions with low absolute values
of flux are shown in turquoise blue. In Figure 4C, 4F
and 4I, regions with large absolute values of velocity
are shown in turquoise blue. In Figure 4B, 4E and 4I,
regions with small absolute values of velocity are shown
in purple.

1. Universal Discrete Stochastic Flux and Velocity fields

The heatmaps of the universal discrete probability flux
in log |Js(x, t)| and velocity in log |vs(x, t)| are shown in
Figure 4B and Figure 4C, respectively. We note that lo-
cations with larger flux values also have higher probabil-
ity. Unlike the previous case of strong promoter binding,
we observe the presence of stochastic oscillations around
both “On-Off” and “Off-On” states. In addition to the
oscillations between the states “Off-On” (“On-Off”) and
“On-On”, the system also fluctuates from the state “On-
On” to “Off-Off”, and then to “Off-On”/“On-Off”. Fig-
ure 4C of log |vs(X,Y )| shows that the velocity drops
significantly when the trajectories make turns (turquoise
regions, Figure 4C).
There are more states with large flux values compared

to the condition of strong promoter binding, i.e., there
are more purple regions of higher probability mass in Fig-
ure 4B than in Figure 2B. With more distributed proba-
bility mass and the observation of oscillations, the steady
state of the toggle switch system with weak promoter
binding is overall markedly less stable than that with
strong promoter binding.

2. Liouville Flux

In the heat map of Liouville flux, larger values are
associated with higher probabilities (Figure 4D – 4E).
The states “Off-Off”, “On-Off”, “Off-On” and “On-On”
are the attractors of the flux. While stochastic discrete
flux exhibits strong oscillations, Liouville flux trajectories
converge to the probability peak at the “On-On” state
after travelling through peaks at “On-Off”, “Off-On”,
and “Off-Off” states. The source of the flux is at both
infinity and at the state (X = 35, Y = 35). The sink is

located at the states (X = 49, Y = 49). The absolute
values of velocity function log |vL(X,Y )| are larger at
locations where the flux trajectories are close to straight
lines (purple regions, Figure 4F), but drop significantly
when the trajectories make turns (turquoise regions on
Figure 4F).

The Liouville flux trajectories and the universal dis-
crete flux trajectories exhibit significantly different be-
havior. Due to fast unbinding relative to binding at this
condition of prominent stochasticity, the toggle switch
system constantly alternate between the bounded and
unbounded states for genes x and y. However, this phe-
nomena is not captured by the Liouville flux.

3. Fokker-Planck Flux for the Toggle Switch Network

In the heat map of the Fokker-Planck probability
flux, larger values are associated with higher probabil-
ities (Figure 4G– 4I). The states “Off-Off”, “On-Off”,
“Off-On” and “On-On” are the attractors of the flux.
While stochastic discrete flux exhibits strong oscillations,
Fokker-Planck flux trajectories, as Liouville flux, con-
verge to the probability peak at the “On-On” state af-
ter travelling through peaks at “On-Off”, “Off-On”, and
“Off-Off” states. The source of the flux is at both in-
finity and at the state (X = 30, Y = 30). The sink is
located at the states (X = 50, Y = 50). The absolute
value of velocity function log |vL(X,Y )| are larger at lo-
cations where the flux trajectories are close to straight
lines (purple regions on Figure 4I), but drop significantly
when the trajectories make turns (turquoise regions on
Figure 4I).

The Liouville flux trajectories and the Fokker-Planck
trajectories depict almost identical behavior of the sys-
tem. There are some small differences. The sink for the
gene state (x = 1, y = 1) for the Liouville flux is at
(X = 49, Y = 49), which is different for the sink for the
Fokker-Planck flux, which is at (X = 50, Y = 50) (Fig-
ure 4G – 4I). There are significant differences between
the Fokker-Planck flux and the discrete stochastic flux.
Whereas stochastic discrete flux exhibits oscillations,
Fokker-Planck flux trajectories converge to the system
probability peak at the state “On-On” (X = 50, Y = 50)

4. Flux in Different Genetic States

We now examined the fluxes in each of the specific ge-
netic states. At the “Off-Off” state (x = 0, y = 0) (Fig-
ure 5A, 5D, 5G), we observe the existence of the sink at
(X = 0, Y = 0) for all three models of fluxes. This is ex-
pected, as it is the state where both genes are bound, and
the probability peak is located at (X = 0, Y = 0). The
Fokker-Planck and the Liouville flux trajectories con-
verge to this state (X = 0, Y = 0) following straight
lines, which are evenly spread off in the X − Y plane,
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Discrete flux

Liouville flux 

Fokker-Planck flux

Off-On

On-OffOff-Off

On-On

Off-On

Off-Off On-Off

On-On

Off-Off On-Off

On-On
Off-On

FIG. 4. The probability surfaces, fluxes, and velocities of the toggle switch system with weak promoter binding (b = 1×10−4) at
the steady state. Probability value is given by the color scale, and the fluxes/velocities are shown in blue solid lines. The discrete
stochastic flux model with probability surface in − log(p(x, y)) (A), flux in log |Js(x, y)| (B), and velocity in log |vs(x, y)| (C);
the Liouville flux model with probability surface in − log(p(x, y)) (D), flux in log |JL(x, y)| (E), and velocity in log |vL(x, y)|
(F); and the Fokker-Planck flux model with probability surface in − log(p(x, y)) (G), flux in log |JFP (x, y)| (H), and velocity
in log |vFP (x, y)| (I).

whereas the discrete flux trajectories bend toward the
axes of X = 0 and Y = 0.

At the “On-Off” state (x = 1, y = 0) (Figure 5B, 5E,
5H), we observe the existence of a flux sink at (X =
50, Y = 0) for the Liouville and Fokker-Planck models
(Figure 5D and 5E). The discrete stochastic flux trajec-
tories converge to an area of states near (X = 50, Y = 0).

At the “On-On” state where both genes are unbound
(Figure 5C, 5F, and 5I), the three flux models give
markedly different results, with sinks at different loca-
tions. The Liouville flux has the sink at (X = 50, Y = 50)

(Figure 5F), and the Fokker-Planck flux has the sink at
(X = 49, Y = 49) (Figure 5I). The discrete flux appears
to have a sink at (+∞,+∞) (Figure 5C).

It is informative to examine the condition of high copy
numbers of PX and PY , where the law of mass action
applies. We can obtain the critical points for each of
the four genetic states. For the state “Off-Off”, we have
〈X〉 = ux/dX ≈ 0, 〈Y 〉 = uy/dY ≈ 0. For the state
“On-Off”, we have 〈X〉 = (sX + uy)/dX ≈ 50, 〈Y 〉 =
0. For the state “Off-On”, we have 〈X〉 = 0, 〈Y 〉 =
(sY + ux)/dY ≈ 50. For the state “On-On”, we have
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〈X〉 = (−dX+
√

d2X + 4sXby)/(2by) ≈ 50, 〈Y 〉 = (−dY +
√

d2Y + 4sY bx)/(2bx) ≈ 50. The eigenvalues at all four
critical points are negative, indicating that they are sinks.
At the states “On-On” and “Off-Off”, the eigenvalues are
equal and matrices are multiples of the unit matrix, then
flux lines form a star.74

These critical points are where the sinks of Liouville
and Fokker-Planck fluxes located. The sink (X = 0, Y =
0) at the state “Off-Off” exists for all flux models. For
the “On-Off”/“Off-On” state, the sink at (X = 50, Y =
0)/(X = 0, Y = 50) exists for the Liouville and Fokker-
Planck fluxes, while the discrete flux lines converge to a
set of the states near (X = 50, Y = 0) ((X = 0, Y = 50)).
For the “On-On” state, the Liouville and Fokker-Planck
fluxes converge to (X = 50, Y = 50) and (X = 49, Y =
49), respectively. The discrete stochastic flux does not
converge to any sink.

III. STOCHASTIC FLUCTUATION AND
OSCILLATIONS IN TOGGLE SWITCH

A. Strong promoter binding

With strong promoter binding (b = 1×10−2), the three
flux models are overall similar, but with important differ-
ences in details. Discrete flux trajectories exhibit small
fluctuations around the “On-Off”peak at (X = 50, Y =
0) (and symmetrically at (X = 0, Y = 50), Figure 6A).
While changes in Y are just a handful copies of molecule,
the amount of molecules of X fluctuates more signifi-
cantly (Figure 6A).
To gain better understanding of the observed fluctua-

tions, we examine reaction trajectories sampled using the
SSA algorithm from the initial state of (X = 50, Y =
0, x = 1, y = 0), where the “On-Off” peak is located.
Figure 6B shows how trajectories of copy numbers of pro-
tein PX (red lines) and protein PY (black lines) fluctuate.
PX fluctuates around X = 50. This is due to stochas-
ticity in the synthesis and the degradation of PX at the
genetic state of x = 1. The trajectories of copy number
of protein PY (black lines) also fluctuate around Y = 0,
but with overall much smaller magnitude. This is be-
cause gene Gy occasionally becomes unbound (X > 0),
upon which PY is synthesized. However, since promoter
binding is strong and at this condition PX is in much
larger amount then PY , gene Gy rapidly becomes inhib-
ited by PX again.
The fluctuations observed in reaction trajectories are

well explained by the flux lines shown in Figure 6A, which
form closed, x-axis-oriented horizontal ellipses around
the state (X = 50, Y = 0) (Figure 6A). The major axis
of the ellipse corresponds to the stochastic fluctuations
with larger magnitude in copies of PX , and the minor
axis to fluctuation with smaller magnitude in copies of
PY .
While the behavior of stochastic fluctuation observed

in reaction trajectories are well captured in the flowmap

computed discrete stochastic flux, these fluctuations,
however, are not captured by either the Liouville flux
(Figure 6C) or the Fokker-Planck flux (Figure 6D), where
both converge to a single state (X = 50, Y = 0) (and
symmetrically to (X = 0, Y = 50)).

B. Weak promoter binding

With weak promoter binding (b = 1 × 10−4), there
are significant differences between the discrete flux and
fluxes based on continuum approximations. The dis-
crete flux lines (Figure 4A) exhibit strong oscillations
between (X = 50, Y = 50) and (X = 50, Y = 0),
and symmetrically between (X = 50, Y = 50) and
(X = 0, Y = 50). Furthermore, probability flux also
flows from (X = 50, Y = 50) to (X = 0, Y = 0), then to
(X = 50, Y = 0), and back to (X = 50, Y = 50). Sym-
metric oscillatory pattern is also seen, where flux lines
flow back to (X = 50, Y = 50) via (X = 0, Y = 0)
and (X = 0, Y = 50). In addition, occasionally os-
cillation can be seen between (X = 50, Y = 0) and
(X = 0, Y = 50) via the state of (X = 50, Y = 50).
To gain better understanding of the stochastic oscilla-

tions uncovered from the discrete flux model, we exam-
ine reaction trajectories sampled from the initial state of
(X = 50, Y = 0, x = 1, y = 0), where the “On-Off” peak
is located. Figure 6F shows trajectories of copy number
of protein PX (red lines) and protein PY (black line). PX

fluctuates with small magnitude around X = 50. This
is due to stochasticity in PX synthesis and degradation
at x = 1. This is similar to the fluctuation in PX shown
in Figure 6B where promoter binding is fast. PY exhibit
similar fluctuation around Y = 50.
However, there is significant oscillation in PY (black

line) of larger magnitude between Y = 50 and Y = 0.
This is due to stochastic switching between the gene state
of y = 1 and y = 0. Similarly, PX (red) also oscillates
between X = 50 and X = 0 due to switching between
x = 1 and x = 0. Unlike that of strong promoter bind-
ing (Figure 6B), trajectory of PY (blackline) exhibit no
fluctuations around Y = 0 (Figure 6F). This is because
when gene Gy becomes unbound (y = 1), the system has
sufficient time to transit from (Y = 0) to (Y = 50) before
gene Gy becomes bound again (y = 0), as promoter bind-
ing of PX to Gy is slow. Furthermore, the durations of si-
multaneous high copies of PX and PY (X = 50, Y = 50)
are relatively short.
The oscillations observed in reaction trajectories are

well-explained by the flowmap of the discrete flux (Fig-
ure 6E and Figure 4A). The closed vertical ellipses with
foci at states (X = 50, Y = 0) and (X = 50, Y = 50) cor-
respond to the larger stochastic fluctuations in Y (black-
line) and smaller magnitute fluctuations in X (redline)
(Figure 6F). Shown in Figure 4A but not in Figure 6E for
clarity, the closed horizontal ellipses with foci at states
(X = 0, Y = 50) and (X = 50, Y = 50) correspond
to the larger stochastic fluctuations in X (redline) and
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Discrete flux

Liouville flux

Fokker-Planck flux

FIG. 5. Fluxes of the toggle switch system described at weak promoter binding of b = 1 × 10−4. The “Off-Off”gene state
(x = 0, y = 0): (A) heat map of − log p(X,Y, 0, 0) and flux lines of Js(X,Y, 0, 0), (D) heat map of − log p(X,Y, 0, 0) and
flux lines of JL(X,Y, 0, 0), and (G) heat map of − log p(X,Y, 0, 0) and flux lines of JFP (X,Y, 0, 0); The “On-Off”gene state
(x = 1, y = 0): (B) heat map of − log p(X,Y, 1, 0) and flux lines of Js(X,Y, 1, 0), (E) heat map of − log p(X,Y, 1, 0) and
flux lines of JL(X,Y, 1, 0), and (H) heat map of − log p(X,Y, 1, 0) and flux lines of JFP (X,Y, 1, 0); The “On-On”gene state
(x = 1, y = 1): (C) heat map of − log p(X,Y, 1, 1) and flux lines for Js(X,Y, 1, 1), (F) heat map of − log p(X,Y, 1, 1) and flux
lines for JL(X,Y, 1, 1), (I) heat map of − log p(X,Y, 1, 1) and flux lines for JFP (X,Y, 1, 1).

smaller magnitute fluctuations in Y (blackline). Further-
more, corresponding to the shorter durations in trajecto-
ries when both PX and PY are high at 50 (Figure 6F),
the state (X = 50, Y = 50) indeed is a transient state in
the flow maps of the discrete flux (Figure 4A– 4C).

Overall, the behavior of stochastic oscillations and fluc-
tuations observed in reaction trajectories are well cap-
tured in the computed discrete stochastic flux. These os-
cillating behaviors, however, are not captured by either
the Liouville flux (Figure 6C) or the Fokker-Planck flux

(Figure 6D), where in either case the system converges
to a single state of (X = 50, Y = 50).

IV. CONCLUSION

In this work, we studied three different models of prob-
ability flux, one directly based on the discrete chemical
master equation (dCME), and two based on continuum
approximation of the dCME. While continuum probabil-
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(F)

(E)

(G)

(H)

(B)

FIG. 6. The flow maps and trajectories of the probabil-
ity fluxes of the toggle switch system near the state “On-
Off”, with strong promoter binding (b = 1 × 10−2) shown
in log |Js(x, y)| (A), log |JL(x, y)| (C), log |JFP (x, y)| (D);
and with weak promoter binding (b = 1 × 10−4) shown
in log |Js(x, y)| (E), log |JL(x, y)| (G), log |JFP (x, y)| (H).
Sampled Gillespie trajectories starting from the state (X =
50, Y = 0, x = 1, y = 0) are shown for strong binding (B)
and for weak binding (F).

ity flux in stochastic models has been mostly based on
Fokker-Planck formulations, we introduce here the Li-
ouville flux based on mass-action kinetics. Using the
toggle-switch system, we constructed global flow maps
of probability flux at the non-equlibrium steady state for
all three models.

Under the conditions when the rates of transcription
factor to promoter binding are much faster than the un-
binding rates, all three flux models show overall simi-
lar patterns, but with some important differences: the
flux lines of the continuum models flow to single-states
for both the “On-Off” and “Off-On” states (Figure 6C
and 6D), while the flux lines of the discrete model form
ellipses (Figure 6A), with better correspondence to the

exhibited fluctuations of uneven magnitude in the two
proteins as seen in SSA-generated reaction trajectories
(Figure 6B). In region of large copy numbers of proteins,
flux lines of the discrete model converge to infinity (Fig-
ure 2, 4), whereas the flux lines of continuum models
converge to the sinks at “Off-Off”, “On-Off” or “Off-
On” states. States with large copy numbers have very
low probability for the toggle switch system, and the be-
havior of the system in these states is not representative
to the overall system behavior. Furthermore, examina-
tion of details of the flow maps at different genetic states
reveal significant differences among these three models
for the (1, 1) genetic state: the discrete flux flows to infi-
nite, the Liouville flux flows to one sink, and the Fokker-
Planck flux flows to three sinks.
Under the highly stochastic condition of slow promoter

binding, the differences between the discrete and the
continuum flux models are more prominent. The dis-
crete flux model reveals the existence of stochastic oscil-
lations, where flux lines form ellipses, with the “On-On”
and “On-Off” states as foci, which are consistent with
SSA-generated reaction trajectories. In contrast, both
Fokker-Planck and Liouville fluxes converge to the “On-
On” state and do not exhibit oscillatory behavior.
Over all, our results show that fluxes computed with

these three differenting models can exhibit significantly
different results. Although the Fokker-Planck flux model
and the discrete flux model have been shown to have
similar behavior in several well-studied networks, includ-
ing the Schnakenberg system23,36, this work reveals that
there can be significant differences between them. Using
the universal discrete stochastic flux model, we uncov-
ered strong oscillating behavior of the toggle switch at
the non-equilibrium steady state, which is due to strong
fluctuations between binding and unbinding events. In
contrast, Fokker-Planck and Liouville models fail to cap-
ture this phenomenon. Simulated stochastic trajectories
fully confirmed findings obtained using the universal dis-
crete models.
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