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Abstract— Gene regulatory networks depict the interactions
among genes, proteins, and other components of the cell. These
interactions are stochastic when large differences in reaction
rates and small copy number of molecules are involved. Discrete
Chemical Master Equation (dCME) provides a general frame-
work for understanding the stochastic nature of these networks.
Here we used the Accurate Chemical Master Equation method
to directly compute the exact steady state probability landscape
of the feed-forward loop motif (FFL). FFL is one of the
most abundant gene regulatory networks motifs where the
regulation is carried out from the top nodes to the bottom
ones. We examine the behavior of stochastic FFLs under
different conditions of various regulation intensities. Under the
conditions with slow promoter binding, we show how FFL can
exhibit different multistabilities in their landscapes. We also
study the sensitivities of regulations of FFLs and introduce a
new definition of stochastic sensitivity to characterize how FFLs
respond in their probability distributions at the steady state to
perturbations of system parameters. We show how change in
gene expression under FFL regulations are sensitive to system
parameters, including the state of multistability in FFLs.

I. INTRODUCTION

Gene regulatory networks play central roles in defining
molecular content and cellular phenotypes. Modeling gene
regulatory networks remains challenging due to the com-
plexity of their stochastic nature. Although gene regulatory
networks in a cell might consist of dozens of genes, along
with their proteins products, their functions are usually
defined by smaller subnetworks, called network motifs. These
network motif are small functional building blocks of gene
regulatory networks. They occur much more frequently in
real biological networks compared to random subgraphs [1].

Feed-forward loop (FFL) is one of the most prevalent
motifs in nature [1]. Regulation in feed-forward loop is
carried out from the top nodes towards the bottom ones. FFL
are found to have wide presence in yeast [2], in bacteria [3],
[4], and are also widely observed in mammals [5], [6], [7].
They are of very simple architecture, but can have a variety
of functionalities.

There are many studies on the time-evolving functional
characteristics of FFLs, using deterministic models. The
behaviors for these models, for instance, in signal-processing,
pulse generation, signal transduction, and “fold-change”
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detection, are well known. However, stochastic behaviors
of FFLs, which occurs when copy numbers of molecules
involved are small, are largely unknown [8]. Here we employ
the recently developed ACME method [9], [10] to compute
the exact time-evolving probability landscapes of FFLs by
solving the underlying discrete Chemical Master Equation
(dCME). This eliminates potential problems arising from
inadequate sampling, where rare events of low probability are
difficult to quantify using techniques such as the stochastic
simulations algorithm (SSA) [11].

We examine the parameters sensitivity of FFLs, a measure
of system behavior in response to perturbations of its parame-
ters. It characterizes how changes in the network parameters
can affect the network output, for example, at the steady
state. Sensitivity analysis helps to understand how network
output is sensitive to input, and models parameters, and has
been widely used as a measure of robustness. Sensitivity of
FFLs to parameters was examined in detail previously [12],
[13], [14], including how FFL can carry the function of
adaptation [12], [13]. However, the behavior of sensitivity
of FFLs in the stochastic regime, where slow parameters
binding results in highly stochastic behavior of the system
is unknown.

Our models are under strong stochastic conditions of slow
promoter binding. Recent studies suggest that slow promoter
binding creates distinct expression levels with considerable
lifetime [15], [16], [17]. We first compute accurately FFLs
probability distributions. In this case FFL can be multistable
and can exhibit up to three probability peaks in the copy
number of the output node. We study the sensitivity of
the regulation intensities of feed-forward loop to model
parameters. Regulation intensities play important role as they
define the strength of regulation in FFLs. We introduce a new
definition of sensitivity, which characterizes the response of
the steady state probability distribution to perturbation to
system parameters, within a given interval. Further we show
how the steady state responds to change of values of the
parameters. We show how change in gene expression under
FFL regulations are sensitive to system parameters, including
the state of multistability in FFLs.

II. MODELS AND METHODS

A. Feed-forward loop can exhibit multiple phenotypes

1) Architecture of FFLs: The network motif of FFL has
three nodes, consisting of three genes a, b, and c. Their pro-
tein products are denoted as A, B, and C, respectively (Fig. 1
A). Gene a expresses protein A at a constant expression rate
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sA. Gene b has one promoter site, and turns into a gene-
protein complex bA upon binding to protein A. Gene c also
has one promoter site, which can be occupied by either one
of its transcription factors A or B. This type of regulation
is known as an “OR ” gate. Competitive binding of proteins
A and B to the promoter site of gene c turns it into either
gene-protein complexes cA or complex cB, correspondingly.
The biochemical reactions corresponding to the feed-forward
loop model are listed below:

b+A
rA
b→ bA; bA

f A
b→ b+A;

c+A
rA
c→ cA; cA

f A
c→ c+A;

c+B
rB
c→ cB; cB

f B
c→ c+B;

/0
sA→ A; A

dA→ /0;

b
sB→ B; bA

sB∗k1→ B; B
dB=1→ /0;

c
sC→C; cB

sC∗k2→ C; cA
sC∗k3→ C; C

dC→ /0.

Here rA
b = rA

c = rB
c = 0.005 are binding rates of proteins A

to gene b, A to gene c, and B to gene c, respectively. f A
b =

f A
c = f B

c = 0.1 are unbinding rates of proteins A to gene
b, A to gene c, and B to gene c, respectively. The rates of
degradation of proteins A, B, and C are dA = dB = dC = 1,
and basal synthesis rates are sA = sB = sC = 10, respectively.
Gene b is expressed with a constant basal expression rate sB,
but once it is bound with protein A, the expression rate is
reduced/increased by k1-fold (Fig. 1 A). The basal expression
rate of gene c is sC, but it is changed k2-fold for a complex
cB, and k3-fold for a complex cA. We will further call the
parameters k1, k2, and k3 regulation intensities.

2) Types of feed-forward loop: Simplified representation
of feed-forward loops consist of three nodes: a top node
A, a buffer node B, and an output node C. It also has
three regulatory links: the regulations of B and C by A, and
the regulation of C by B. There are two regulatory paths
regulating the output node C by input node A: directly from
A to C, and indirectly from A to B, then from B to C. Each
regulatory link is either up or a down regulation. Alltogether,
there are eight types of feed-forward loops (Fig. 1 (B)).
Depending on the sign of regulation (positive for activation,
and negative for inhibition), either through direct or through
indirect paths, FFLs can be classified into coherent and in-
coherent feed-forward loops. Incoherent/coherent FFLs have
odd/even number of “−”signed edges, respectively. Coherent
FFLs are shown as C1, C2, C3, C4 and incoherent as I1, I2,
I3, I4 in the Fig. 1 B.

3) Simulations: We explore all 8 possible types of FFLs
and examine their behavior over a wide range of values of
k1, k2, and k3. We computed probability landscapes of height
types of FFLs, with the parameters k1, k2, and k3 in the
ranges of k1 ∈ [2.5× 10−2,3.0], k2 ∈ [2.5× 10−2,5.1] and
k3 ∈ [2.5× 10−2,5.1]. With these parameter ranges, we are
able to observe all eight possible types of feed forward loops
(Fig. 1 B, Table. (II-A.3)).

Parameter ranges for the eight types of FFL studied
FFL k1 range k2 range k3 range
C1 (1.0, 3.0] (1.0, 5.1] (1.0, 5.1]
C2 [0.025, 1.0) (1.0, 5.1] (0.025, 1.0]
C3 (1.0, 3.0] [0.025, 1.0) [0.025, 1.0)
C4 [0.025, 1.0) [0.025, 1.0) (1.0, 5.1]
I1 (1.0..3.0] [0.025..1.0) (1.0..5.1]
I2 [0.025, 1.0) [0.025, 1.0) [0.025, 1.0)
I3 (1.0, 3.0] (1.0, 5.1] [0.025, 1.0)
I4 [0.025, 1.0) (1.0, 5.1] (1.0, 5.1]

Our calculations uncovered six different types of multi-
stabilities in these FFLs (Fig. 2) Systems with one peak
with their probability landscapes are shown in red. Those
with two peaks either for B, or for C are in yellow, Those
with three peaks for C are in green. Those with four peaks
(two for B and two for C) are in lightblue. Those with six
peaks are shown in purple. Overall these FFLs have mono-
or bimodality in B and up to three stable peaks in C.

(B)

(A)

C1         C2       C3      C4        I1        I2       I3        I4

Fig. 1. The network model of FFL ans the architecture of different
coherent and incoherent FFLs: (A) General network and corresponding 3-
node schematic representation of the FFL containing three genes a, b, c
expressing three proteins A, B, C, such that protein A regulates the expression
of b and c through binding, and protein B regulates the expression of c. (B)
The eight types of feed-forward loop.

B. Sensitivities of regulation intensities in FFL

1) Definition of sensitivity: In deterministic models, sen-
sitivity of parameters simply measures changes in the output
at steady state, when values of model parameters are altered.
In stochastic models where the output is a probability dis-
tribution, sensitivities is often measured by changes in the
expected value of the output[18].

Here we introduce a new definition of stochastic sensitivity
and show it is more effective in measuring the differences
and similarities in behavior of different types of FFLs.

We define the sensitivity s′ki
(k0,k) to changes in ki, i =

1,2,3, whose value is altered from k0 to k as follows:

s′ki
(k0,k) = E[

|Pk(x)−P0(x)|
P0(x)

/
|k− k0|

k0
],
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Fig. 2. Different states of multistability for Feed Forward Loops: 1 peak
(red); 2 peaks, either for B, or for C (yellow); 3 peaks for C (green); 4
peaks, 2 peaks for B and 2 peaks for C, (lightblue); and 6 peaks, 2 peaks
for B, and 3 peaks for C, (purple).

where P0(x) is the system probability landscape at parameter
value of ki = k0 and Pk(x) is the landscape at ki = k 6= k0.
The value of parameter ki belongs to a finite interval (a,b),
which is (0,1) for inhibition and (1, A) for activation, where
A is some finite number. The sensitivity of ski on the interval
(a,b) is defined as:

ski = max
k0,k∈(a,b)

s′ki
(k0,k). (1)

Our stochastic sensitivity is specific to the intervals of
regulation intensities, which is FFL specific.

2) Sensitivity of regulation intensity k1: We examined the
stochastic sensitivity of regulation intensity k1 using Eqn. (1).
We consider the cases when gene b is inhibited by protein
A, with k1 < 1, and gene b is activated by protein A, with
k1 > 1 (Fig. 3).

Fig. 3. The sensitivity of regulation intensity s(k1) on the inhibition of
gene b by protein A (k1 < 1), and on the activation of gene b by protein A
(k1 > 1).

The sensitivity of k1 is smaller in the green and yellow
regions of Fig. 3, and larger in the white and pink regions
(Fig. 3). There are two situations when the sensitivity of k1
is smallest, and the system is most robust to change in k1.
The first situation is when k2 = 1, where the regulation of

the gene c by B is weak, such that the expression of c does
not depend on B copy number. The other region is where
k2 = k3, both the rates of activation/inhibition of c by B and
c by A are of similar values. It means that the system is
robust to k1 change when the proteins A and B regulate the
output node C with the same intensity. The sensitivity of k1
is also small for the smallest values of k1 (i.e., k1 < 1), and
larger for larger values of k1 (i.e., k1 > 1).

3) Sensitivity of regulation intensity k2: We examined the
stochastic sensitivity of regulation intensity k2 using Eqn. (1).
We consider the cases when gene c is inhibited by protein
B, with k2 < 1, and gene c is activated by protein B, with
k2 > 1 (Fig. 4).

Fig. 4. The sensitivity of regulation intensity s(k2) on the inhibition of
gene c by protein B (k2 < 1), and on the activation of gene c by protein B
(k2 > 1).

The sensitivity of k2 is smaller in the green and yellow
regions of Fig. 4, and larger in the white and pink regions
(Fig. 4). The sensitivity is smaller, when the values of k1
are small, specifically, A inhibits the expression of b and the
overall copy number of B in the system is reduced. Hence,
the regulation of output C by B is less prominent, and k2
has smaller sensitivity. The sensitivity of k2 is also smaller
for the small values of k2 (i.e., k2 < 1), and larger for larger
values of k2 (k2 > 1). The dependence of the sensitivity of
k2 to the value of k3 is negligible.

4) Sensitivity of regulation intensity k3: We examined the
stochastic sensitivity of regulation intensity k3 using Eqn. (1).
We consider the cases when gene c is inhibited by protein
A, with k3 < 1, and gene c is activated by protein A, with
k3 > 1 (Fig. 5).

Fig. 5. The sensitivity of regulation intensity s(k3) on the inhibition of
gene c by protein A (k3 < 1), and activation of gene c by protein A (k3 > 1).



The sensitivity of k3 is smaller in the green and yellow
regions of the Fig. 5, and larger in the white and pink
regions (Fig. 5). Smaller k3 sensitivities correspond to larger
values of k1. In this situation A activates the expression of
c, therefore the effect of the regulation of c by direct path
is more prominent. There is also a weak dependence of the
sensitivity of k3 of the value of k2. Smaller k3 sensitivities
correspond to larger values of k2 in the case of k3 < 1, where
the inhibition is more prominent with larger k2. Smaller k3
sensitivities correspond to smaller values of k2 in the case of
k3 > 1, where the activation is more prominent with larger
k2. The sensitivity of k3 is also smaller for the small values
of k3 (k3 < 1), and larger for larger values of k3 (k3 > 1).

5) Dependence of sensitivity on multistability of FFLs:
We now examine the dependence of the values of the
sensitivity on the number of peaks in the system Table. (II-
B.5).

k1, k2, and k3 sensitivities of coherent and incoherent FFLs
with different numbers of peaks

Type of Number Mean Mean Mean
FFL of peaks k1 k2 k3

Coherent 3 0.16 0.80 0.94
2 0.15 0.77 0.69
1 0.12 0.44 0.47

Incoherent 3 0.20 1.02 0.89
2 0.15 0.72 0.75
1 0.11 0.57 0.46

Our results show that the number of peaks is correlated with
the sensitivities of k1, k2, and k3. FFLs with three peaks
are the least robust to changes in the parameters for both
coherent and incoherent FFLs. In contrast, systems with one
peak are the most robust to the change of the parameters for
both case of coherent and incoherent loops.

III. CONCLUSION

In this work, we studied the sensitivities of regulation
intensities of feed-forward loops (FFLs) under the conditions
of slow promoter binding. We first computed the precise
steady state probability distributions of eight types of FFLs
under a wide range of conditions. Our results reveal the
overall of multistable behavior of FFLs in the copy number
of C. We introduced a new definition of the stochastic sen-
sitivity, to quantify the sensitivity of different parameters of
stochastic FFL. We showed how the steady state distribution
responds to changes in model parameters. Specifically, we
quantified how sensitivities of regulation intensities depend
on the values of other regulation intensities and the state of
multistability of the system. We found that the sensitivity of
regulation intensity k1 depends on the values of k2 and k3,
whereas the sensitivities of k2 and k3 strongly depend on k1.
The FFL with more peaks of protein C copy number is less
robust.

The results of our work could be used in construction
of synthetic feed-forward loop, and choosing parameters of
the system according to particular programmed phenotypic
behavior.
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