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Abstract— Single-cell RNA sequencing is a powerful method
that helps delineate the regulatory mechanisms shaping the
diverse cellular populations. Heterogeneous cell populations
consist of individual cells, and the expression of distinct sets
of genes can differentiate one sub-population of cells from
another, as they are responsible for the emergence of distinct
cellular phenotypes. Of particular importance are cells at
transition states that bridge these different cellular phenotypes.
In this study, we develop a method to identify the cells at
transition states bridging different cellular phenotypes. Our
approach is based on persistent homology, which enabled us to
identify the group of cells located on the boundaries between
different sub-populations of cells. We applied this method to
study the reprogramming of human fibroblasts toward induced
pluripotent stem cells using single-cell time-course data. Even
though only the data that is representative of the early stages
of the reprogramming process are analyzed, we are able to
uncover transient cells bridging different cell sub-populations.
The most prominent group of transient cells are found to be
enriched for NANOG, which is a known stem cell transcription
factor that takes part in the maintenance of pluripotency and
other stem cell marker genes. Overall, our method can identify
cells in transient states bridging major cellular phenotypes,
even though they are only a small fraction of the overall cell
population. We also discuss how this approach can link the
topology of the surface of cellular transcripts and bring order to
the transition between cellular states and how it automatically
uncovers the underlying time process.

I. INTRODUCTION

Somatic cells can be reprogrammed with low efficiency
into induced pluripotent stem cell (iPSC) state by the
over-expression of the Yamanaka transcription factors Oct4,
Sox2, Klf4 and cMyc (OSKM) [1], [2]. To this day the
molecular mechanisms that drive the reprogramming process
and the order of the key events that facilitate successful
iPSC conversion remain largely unexplored. Our goal is to
characterize the reprogramming trajectories and key events
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occurring within the successfully re-wired cells using novel
computational approaches.

Single-cell RNA sequencing can be used to delineate the
key events that drive cell fate specification by identifying
gene expression signatures that can distinguish between
somatic, transient, and pluripotent cell states. In order to
identify the different cell identities among a heterogeneous
population, single-cell gene expression can help to infer how
similar/dissimilar cells are. The single-cell gene expression
profiles can be thought as a point cloud in a high dimen-
sional space, and analysis often benefits from dimension
reduction (Fig 1). Several methods, including t-SNE [3] and
UMAP [4], have been adapted for dimensional reduction
for single cell analysis [5]. Although these methods help to
visualize the heterogeneity at the single cell level, the global
and local structures that permeate single-cell expression data
are often not fully preserved and the sub-populations of cells
are often inaccurately defined, perhaps due to distortions in
both global and local structures of the data [6].

Fig. 1. Visualization of the reprogramming single-cell data with
t-SNE (top) and UMAP (bottom) revealing structural differences in
associations between individual cells. In these plots, each cell is
represented by a dot. Cells are colored-coded, with Human fibroblasts
(NHDF) in blue, fibroblasts over-expressing OSKM for three (D3) or
seven (D7) days in red and green, respectively.
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Topological data analysis provides potential resolutions
to such issues [7]. Here we develop a novel approach
and examine the topology of probability peaks located at
coordinates determined by transcript levels. Through analysis
of the topological structures of the high dimensional data
cloud of single-cell RNA transcripts, our goal is to identify
the cells successfully transitioning from one cellular state
to another based on time-coursed measurements reflecting
the beginning process of human fibroblast cells undergoing
reprogramming.

II. METHODS

A. Single-cell RNA-seq Reprogramming Data

Human fibroblasts (NHDF) were infected with Sendai
viruses encoding the transcription factors OSKM and single
cell RNA-seq data were collected prior to infection (NHDF)
and at Day3 (D3) and Day7 (D7) post infection, to investigate
the earliest transcriptional changes induced in the context of
iPSC reprogramming. All data used in this research were
generated in house.

B. Persistent Homology to Identify Transient Cell States

Persistent homology can quantify topological features in
the landscape of transcripts, whose abundancy change as
cells enter different transcriptional states. Persistent homol-
ogy has broad applications, including brain image analysis to
investigate neurological disorders [8], unsupervised learning
on network neuroscience [9] and microscopy data to study
repair loci [10]. It has also been applied to analyze gene
expression data [11]. Here we apply a novel persistent
homology method to study single-cell gene expression of
cells during reprogramming [12].

We analyze the topological space of high dimensional
transcriptomic data by studying the states of probability
peaks. We focus on their appearance and disappearance,
which correspond to the birth and death of 0-th homol-
ogy groups, namely, the appearance and disappearance of
independents components above the level sets of a specified
density or probability level [13]. Thus, 0-th homology groups
indicates the number of connected components in the data
at a particular density or probability levels [12]. We take the
probability p(x) as the height function. At different thresholds
{ri} of the height function:

1 = r0 > r1 > r2 > · · · > rin−1
> rin = 0, (1)

we examine the sets {Xi}, Xi = {x ∈ X | p(x) ≥ ri}, which
form a sequence, namely, a filtration:

∅ ≡ Xi0 ⊂ Xi1 ⊂ Xi2 ⊂ · · · ⊂ Xin−1
⊂ Xin ≡ Ω, (2)

As the threshold changes, different peaks start to appear
from below the sea level of the threshold. This height is
referred to as the birth of the component corresponding to the

new peak, which is identified by the 0-th homology group.
At a different threshold, some components may disappear.
This process is referred to as the death of those components.
This process continues until the last components merge at
the ground level p(x) = 0 [14]. We study the 0-th homology
groups and count the connected components at different
heights via the he aforementioned approach [12].

We discretize the transcript levels using the first three
principal components to analyze our single-cell data and
regard the resulting discrete bins as different cellular states.
The ideal bin size is determined by the density of the cells
undergoing reprogramming and the dimensions of the bins.
After determining the states to which every cell belongs,
a frequency count is calculated for each state, which is
proportional to the probability of how often a state appears
throughout the single-cell space. Using these probabilities,
we can examine the “peak-space” [12] and locate the peaks
that represent a group or a sub-population of cells.

For each connected component, we place a dot according
to its death probability pd(i) (x-axis) and its birth probability
pb(i) (y-axis), respectively. Each dot on the persistence
diagram corresponds to a probability peak. After all peaks
are identified, we then examine the death probability for
each peak in order to detect the component that the peak in
question has merged into. Hence, with persistent homology,
we can identify the bridge states connecting two components.
This allows us to order the cellular states in a manner
reflecting the differentiation time.

C. Identifying Stem cell Genes Using Bulk RNA-seq Data

In order to gain insight into the cells that we have
identified as “transient cells”, we use bulk RNA-sequencing
of pluripotent stem cells to identify a group of signature
genes that are highly expressed in stem cells compared to
fibroblasts (NHDF). Through differential gene expression
analysis, we have identified a set of 830 genes. We utilized
this panel of signature genes to calculate a stem cell score,
which is taken as the mean centered gene expression values
per cell.

We average the expression of these genes for each cell
within our time-course and generate an embryonic stem cell
(ESC) “average” score. This is used to identify individual
cells which are more similar to pluripotent stem cells due to
expression of these signature genes.

III. RESULTS

The pre-processing of single-cell data involves the
following steps: UMI (unique molecular identifier)
correction, removal of doublets and cells with high
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mitochondrial content, selection of cells with at least 200
detected genes and finally accepting genes that must be
present in a minimum of 100 cells. To discover the bridge
states amongst single cells, we have created a matrix where
rows represent 25,417 cells and columns represent the
first three principal components. These first three principal
components captures sufficient variance at the transcriptome
level while allowing us to avoid sparse representation of the
space of cellular states.

After the identification of the connected components in
the single-cell RNA-seq data, we selected the connected
components harboring death states to pinpoint the transitory
cells and explore whether they can provide topological
order to the cellular reprogramming process. Specifically,
a component with a death state indicates that it merges
with another component. In other words, these components
represent the group of cells that are following a certain
trajectory in the course of reprogramming. Overall, we have
uncovered fourteen components or sub-populations of cells
that have moved along the trajectory (Fig 2).

Fig. 2. Persistence diagram for the first three principal components
where each dot represents a probability peak. The x-axis and y -axis
represent the death and the birth probability, respectively.

Amongst these fourteen components, four significant
components eventually merge with other components. We
have visualized the transitory cells bridging these four
components to other components on a two-dimensional
PCA plot (Fig 3). Cells highlighted with solid colors in
Fig 3 are the transient groups of cells on a successful path to
complete the reprogramming process towards pluripotency.
Altogether, there are 141 cells identified as “transient” with
our novel approach.

The majority of these cells (121/141) are found in the D7
samples colored in green. As D7 samples are collected seven
days post-infection, these cells have progressed further along
the reprogramming process compared to cells collected at
a very early time point of Day3 post-OSKM expression
and parental cells (NHDF), which harbor fourteen and six
transient cells, respectively.

As cells lose their fibroblast characteristics during
reprogramming, a pluripotency-associated gene regulatory
network (GRN) of transcripts must be established. We
identified a set of signature genes that define the pluripotency
GRN and are not expressed in the starting fibroblast through
bulk RNA-seq analysis. We then calculated the sum of their
average expression (stem cell score) for every cell in our
time course.

A high stem cell score indicates high expression of
these signature genes, and hence the more similar the
profiled cells become to a pluripotent stem cell. Importantly,
cells identified as transient using our persistent homology
method exhibit the highest stem cell score out of all profiled
cells, indicating that we can capture the individual cells that
are successfully starting transitioning towards a pluripotent
gene regulatory network (Fig 4).

Fig. 3. Plots of principle component analysis of single cells. (Top)
all the data points in the samples of single cells plotted by the first
two PCAs. (Bottom) Cells from the four transition states that bridge
different components of cell sub-populations. The arrow represents
the transition direction. Colors blue, red, and green encode the human
fibroblasts (NHDF), Day3 (D3), and Day7 (D7) samples, respectively.

To further validate that our captured “transient” cells are
indeed expressing pluripotency-associated genes, we plotted
the expression of the stem cell specific transcription factor
NANOG (Fig 5). We find that only our “transient” population
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Fig. 4. PCA plots colored by the stem cell score (top) for all the data
points in the samples and (bottom) for cells that belong to the four
transition states.

of Day7 (D7) cells have up-regulated NANOG, a key event
in the reprogramming process. These results indicate that
our persistent homology method is capable of identifying
the small number of cells that are successfully transitioning
towards pluripotency withing a large and heterogeneous
population of reprogramming cells.
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Fig. 5. The expression of NANOG gene in the transient cells.
Transient cells of Day 7 exhibit heightened NANOG expression
compared to other transient cells and the rest of non-transient cells.

IV. CONCLUSIONS

In this study, we have developed a new approach based
on persistent homology to identify transient cells bridging
different major cellular states. We applied this method to an-
alyze single-cell RNA sequencing data from reprogrammed
human fibroblasts. Even though we only included data rep-
resenting the early stages of the reprogramming process,
we successfully identified multiple density peaks that merge
into other peaks, indicating the presence of transient cells in
the overall cell population. Our current results indicate that
major cellular phenotypes can be discovered from single-
cell transcriptome and, more importantly, we can identify
transient cell states bridging these major cellular phenotypes,
a significant advantage of our approach. Upon successful
additional analyses in understanding the nature of these tran-
sient cells, we plan to apply this method to study an extended
range of reprogrammed cells to uncover the topological order
of the entire reprogramming process.
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